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Abstract 

The capacity of recently-developed extreme learning machine (ELM) modelling approaches in forecasting 
daily urban water demand from limited data, alone or in concert with wavelet analysis (W) or bootstrap (B) 
methods (i.e., ELM, ELMW, ELMB), was assessed, and compared to that of equivalent traditional artificial neural 
network-based models (i.e., ANN, ANNW, ANNB). The urban water demand forecasting models were developed 
using 3-year water demand and climate datasets for the city of Calgary, Alberta, Canada. While the hybrid 
ELMB and ANNB models provided satisfactory 1-day lead-time forecasts of similar accuracy, the ANNW and 
ELMW models provided greater accuracy, with the ELMW model outperforming the ANNW model. Significant 
improvement in peak urban water demand prediction was only achieved with the ELMW model. The superiority 
of the ELMW model over both the ANNW or ANNB models demonstrated the significant role of wavelet trans-
formation in improving the overall performance of the urban water demand model. 

Key words: artificial neural networks, bootstrap, Canada, extreme learning machines, uncertainty, water de-
mand forecasting, wavelets  

INTRODUCTION 

Attributable to demographic expansion and in-
dustrial development, the rapid rise in worldwide ur-
ban water consumption has placed potable water dis-
tribution systems under stress. Given the advent of 
climate change, these problems will likely become 
more acute in the future [SAADAT et al. 2011; ARAGHI 
et al. 2015]. Accurate forecasting of short-term water 
demand can contribute to the efficient operation and 
management of urban water supply systems, resulting 
in demand being met efficiently and sustainably 
[ADAMOWSKI et al. 2013; CAMPISI-PINTO et al. 2012; 
TIWARI, ADAMOWSKI 2014]. The estimation of future 

urban water demand is therefore essential to the sus-
tainable planning of regional water-supply systems 
[ADAMOWSKI et al. 2013; TIWARI, ADAMOWSKI 
2015a, b; ZHOU et al. 2002]. Given increases in the 
diverse components of urban water demand (e.g., res-
idential, public, industrial and commercial use – 
HANEMANN [1998]), water stress and scarcity have 
become critical issues [ADAMOWSKI et al. 2012a, b, c; 
2013; DAVIS, KIEFER 2005; GOYAL et al. 2014; HAI-

DARY et al. 2013; KAYAGA, SMOUT 2008]. Further-
more, multiple-scale interactions between individuals 
and natural systems create a further range of urban 
water demand management challenges [HOUSE-
PETERS, CHANG 2011]. Short-term urban water de-
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mand forecasts play a significant role in the optimal 
operation of  pumps, wells, and reservoirs, as well as 
in informing decisions regarding balanced water re-
source allocation in the face of urgent water needs 
[HERRERA et al. 2010; JAIN, ORMSBEE 2002; 
KAME’ENUI 2003]. Urban water is generally allocated 
according to the experience of operators and average 
water demand; however, accurate and reliable fore-
casts of short-term demand can help operators provide 
water in a more efficient and sustainable manner 
[ZHOU et al. 2002]. 

This study focuses on fast, efficient methods for 
short-term (1-day lead time) urban water demand 
forecasts, in an effort to achieve accurate and reliable 
forecasts of water demand for the City of Calgary, 
Alberta, Canada. Traditionally, linear regression, 
trend-extrapolation, and time-series techniques have 
been applied in forecasting water resources operations 
variables, particularly in the domain of urban water 
demand [ADAMOWSKI et al. 2012a; BELAYNEH et al. 
2014]. Short-term water demand data generally exhib-
its nonlinear and nonstationary behaviour [GHIASSI et 
al. 2008] at multiple spatial and temporal scales 
[HOUSE-PETERS, CHANG 2011]. Non-stationarity, 
such as that attributable to seasonal variations and 
trends, significantly lowers modelling accuracy for 
time series, generally leading to poor predictions in 
operational applications [ADAMOWSKI et al. 2009; 
2010; FRANCESCO, BERND 2000; NALLEY et al. 2012; 
2013; PINGALE et al. 2014; RATHINASAMY et al. 
2013; 2015]. Wavelet transformation, a time–fre-
quency representation of a signal present at many dif-
ferent intervals in the time domain, provides consid-
erable information about the physical structure of the 
time series data [BELAYNEH et al. 2014; DAUBECHIES 
1990; KARRAN et al. 2014; NOURANI et al. 2014]. 
Wavelet analysis uses a mother wavelet function to 
decompose non-stationary data into multiple scale-
specific time series [NALLEY et al. 2012; 2013] and 
thereby helps to distinguish among daily, weekly, and 
seasonal cycles inherent in water demand.  

Wavelet-transformation-based artificial neural 
networks (ANNW) have been found to be more accu-
rate than multiple linear regression, time-series or 
regular artificial neural network (ANN) models in 
forecasting regional drought [KIM, VALDES 2003], 
rainfall-runoff [ANCTIL, TAPE 2004; NOURANI et al. 
2009], monthly and daily streamflow [ADAMOWSKI 
2007; ADAMOWSKI, SUN 2010; KIŞI 2008; 2009; MA-

HESWARAN, KHOSA 2012; NAYAK et al. 2013; TIWARI 
et al. 2013], monthly groundwater levels [ADA-

MOWSKI, CHAN 2011], and short-term urban water 
demand [ADAMOWSKI et al. 2012a, b, c; TIWARI, 
ADAMOWSKI 2013]. Other hybrid methods proposed 
in the hydrological forecasting literature are the boot-
strap-based ANN (ANNB) [TIWARI, CHATTERJEE 
2010a, b], fuzzy neural networks [ALVISI, FRANCHINI 
2011], and grey neural networks [ALVISI, FRANCHINI 
2012]. Besides reducing uncertainty in the variance 
by mimicking randomness [EFRON, TIBSHIRANI 

1993], ANNB models are simpler and easier to use in 
addressing uncertainty in an operational setting com-
pared to Bayesian approaches [ISUKAPALLI, GEOR-

GOPOULOS 2001]. Several studies have shown ANNB 

models to outperform standard ANN models [ABRA-

HART 2003; HAN et al. 2007; JEONG, KIM 2005; JIA, 
CULVER 2006; SHARMA, TIWARI 2009; SRIVASTAV et 
al. 2007; TIWARI, CHATTERJEE, 2010a]. Both ANNW 

and ANNB hybrid approaches can be combined to 
form a wavelet-bootstrap-ANN (ANNWB) model with 
the potential ability to achieve greater accuracy and 
reliability in real time water demand forecasting. 
However, this has not been undertaken to date. 

In the present study a wavelet-extreme learning 
machine (ELMW) [HUANG et al. 2006; 2015] based 
water demand model, developed with limited data 
[limited years of dataset), is proposed. The ELM is 
a fast three-step model designed to use a Single Layer 
Feedforward Neural Network with hidden neurons 
and randomly chosen weights. The hidden layer 
learns patterns from distinct observations and there-
fore requires no parameter tuning, only a predefined 
network. The ELM is free from the complications 
faced by gradient-based algorithms (e.g., learning 
rate, learning epochs and local minima) [ACHARYA et 
al. 2014; BELAYNEH, ADAMOWSKI 2014; ŞAHIN et al. 
2014]. Despite their widespread use, ANNs suffer 
from difficulty in training predictors and may not, 
therefore, produce a unique solution over various runs 
due to different weights [COULIBALY, EVORA 2007; 
KHAN, COULIBALY 2006]. 

As a result, the present study sought to explore, 
for the first time, the use of ELM, ELMB and ELMW 

water demand forecasting models for short-term ur-
ban water demand forecasting for the city of Calgary 
(Alberta Canada), and compare their performance to 
that of previously applied ANN, ANNB, and ANNW 

models [TIWARI, ADAMOWSKI 2015a, b]. As only 
three years of urban water demand data were available 
for calibration and validation of the models, a second-
ary aim of this study was also to explore how these 
methods fared in situations with limited data. The 
input variables applied in this study consisted of aver-
age daily water demand, maximum temperature and 
total precipitation.  

THEORETICAL OVERVIEW 

EXTREME LEARNING MACHINE 

Owing to its prior application in hydrology 
[ACHARYA et al. 2014; DEO, ŞAHIN 2015a], the pre-
sent study has extended the application of ELM algo-
rithm-based models [HUANG et al. 2006] to forecast-
ing daily urban water demand (UWD). Based on 
state-of-the-art single-layer feed-forward network 
algorithms, ELMs are similar to feed-forward back-
propagation ANNs (ANNFFBP) and least square sup-
port vector regression (LSSVR). However, compared 
to the latter algorithms, ELMs have greater ability to 
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solve regression problems efficiently in a short mod-
elling time [HUANG et al. 2012] and show a relatively 
better predictive performance [ACHARYA et al. 2014; 
DEO, ŞAHIN 2015a, b]. Moreover, in ELMs the 
weights and hidden neuron selections are randomized, 
so that the output weights have a unique least-square 
solution solved by way of the Moore-Penrose general-
ized inverse matrix method [HUANG et al. 2006]. 
Consequently, the ELM is a simple, three-step proce-
dure requiring no parameterization except the ran-
domised determination of hidden neurons. Optimisa-
tion is performed by choosing activation functions for 

hidden nodes based on sigmoid, radial basis or hard 
limit equations [DEO, ŞAHIN 2015a, b; ŞAHIN 2012; 
ŞAHIN et al. 2013; 2014]. This yields distinct ad-
vantages over conventional models. 

Figure 1(a) illustrates the general ELM modelling 
framework. Mathematically, for a set of predictive 
samples (Xi, ti) where i = 1, 2, …, N with inputs,  
Xi = [xi1, xi2, …, xim]  Rm and ti  R, the ELM archi-
tecture consists of L random hidden neurons with ac-
tivation function, g(x) such that [HUANG et al. 2006]: 

 ∑ ௭௭ୀߚ
௭ୀଵ ݃௭ሺ ܺሻ ൌ ∑ ௭௭ୀߚ

௭ୀଵ ݃ሺܽ௭ ܺ  ܿ௭ሻ ൌ ܱ (1) 

 

 

Fig. 1. An illustration of (a) extreme learning machine (ELM) and (b) artificial neural network (ANN) modelling frameworks 
used for prediction of the UWD; source: own study 

Where ܽ௭ ൌ 	 ሾܽ௭ଵ, ܽ௭ଶ,⋯ , 	ܽ௭ሿ் is the weight 
vector connecting the zth hidden neuron, the input neu-
ron, ߚ௭ ൌ ሾߚ௭ሿ் is the weight vector connecting the zth 
hidden neuron and the output neuron, Oi (which is the 
same dimension as the target function, Ti), cz is the 
threshold of the zth hidden neuron, and ܽ௭ ܺ denotes 
the inner product. The output neurons, which are con-

sidered to be linear in this study, do not require any 
transformative equation.It has been proven by HUANG 
et al. [2006] that Single-hidden-layer feed-forward 
ANNs with L hidden nodes and an activation function 
g(X) have the proven capacity to approximate N train-
ing pair samples with zero error, ∑ ‖ ܱ െ ܶ‖ ൌ 0ே

ୀଵ , 
Thus there must exist ߚ௭, ܽ௭ and ܾ௭	such that: 
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 ∑ ௭௭ୀߚ
௭ୀଵ ݃ሺܽ௭ ܺ  ܿ௭ሻ ൌ ܶ (2) 

Which can be written in a compact form as  
H = T, 
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It is noteworthy that the input weights and hidden 
neuron biases are randomly generated in the ELM 
model, which is different from the ANN that requires 
iterative tuning of parameters, and thus, requires 
greater modelling time [DEO, ŞAHIN 2015a, b; ŞAHIN 
et al. 2013; 2014]. The training algorithm is used to 
find least squares solutions to the system of equations 
H = T and the parameter  can directly be deter-
mined as  

 � †H T    (5) 

where the �  is the smallest least-square linear system 

solved using the †H  as the Moore-Penrose general-
ized inverse of H. 

In order to develop an ELM model using a set of 
predictive samples (Xi), the forecasts of the UWD, 
 :ሻ are given byݐሺܦܹܷ
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In the present study, the time-series forecasts de-
noted by UWDk(t) were generated using activation 
functions g(X) described by the logarithmic sigmoid, 
(X) and the output function, (X) equations [VOGL 
et al. 1988] as seen in equations (7) and (8). 
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ARTIFICIAL NEURAL NETWORK 

A well-established class of nonlinear modelling 
techniques mimicking the biological functions of the 
human brain [MCCULLOCH, PITTS 1943], ANN mod-
els served as a benchmark for ELM model perfor-
mance in predicting UWD in this study. Basically, an 
ANN represents a highly interconnected framework 

that sends information from an input to an output lay-
er through weighted connections and functional neu-
rons to facilitate nonlinear mapping of the predictive 
dataset to high-dimensional hyper-planes, as demon-
strated in Fig. 1(b). This allows the separation of data 
patterns, formation of idealised models and subse-
quent UWD predictions. 

Widely applied in hydrology, the popular 
ANNFFBP class of ANN models, equipped with multi-
layer perceptron functional neurons [ABBOT, MARO-

HASY 2012; ADAMOWSKI et al. 2012c; DEO, ŞAHIN 
2015a; KESKIN, TERZI 2006; MEKANIK et al. 2013] 
was used in the present study. The ANN architecture 
is designed to successively update the model parame-
ters (weighted connections and neuron biases) to drive 
the empirical error to a set tolerance through each 
iteration (epochs) of forward passing of updated pa-
rameters and backward propagation of the errors to 
tune them. 

For a set of predictive (input) sample (Xi, ti) 
where i = 1, 2, …, N denotes the sequence of inputs, 
Xi = [xi1, xi2, …, xim]  Rm and ti  R, the FFBP-ANN 
model formulated is written as [KIM, VALDÉS 2003]: 

1 1

( ) ( )
L M

k o kj ji t jo ko
j tn

UWD t f w f w X t w w
 

  
    

  
    (9) 

where, L (determined iteratively rather than randomly 
as with the ELM model) is the number of hidden neu-
rons, Xi(t) is the ith input variable at the time-step, wji 
is the weight that connects the ith neuron in input layer 
and the jth neuron in the hidden layer and wjo is the 
bias for the hidden jth hidden neuron. 

In literature, second-order training methods with 
Levenberg-Marquardt (LM) and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton backpropa-
gation algorithms are used [DENNIS, SCHNABEL 1996; 
MARQUARDT 1963]. The algorithm is used to mini-
mize the mean squared error of the predicted and ob-
served UWD [TIWARI, ADAMOWSKI 2013]. In our 
study, an LM algorithm that uses an approximation to 
the Hessian matrix was used as follows [DEO, ŞAHIN 
2015a]: 

   eJIJJxx TT
kk

1

1


     (10) 

where J is the Jacobian matrix calculated using stand-
ard backpropagation techniques and is less complex 
than computing the Hessian matrix [MARQUARDT 
1963]. The J contains first derivatives of network er-
rors with respect to the weights and biases, e is a vec-
tor of errors, µ is the combination coefficient and I is 
the identity matrix.  

DISCRETE WAVELET TRANSFORMATION 

A primary purpose of this study was to demon-
strate the effectiveness of ELMW models for urban 
water demand forecasting. In general, wavelet de-
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composition is a multi-resolution tool for pre-pro-
cessing of non-stationary signals. This is similar to 
short-time Fourier transformation as a windowing 
technique in which the time-series are decomposed 
into the shifted and scaled versions of a wavelet, 
termed the mother wavelet. These can serve in ex-
tracting frequency-based information from current 
time-series that can then be used to predict future 
time-series. Assuming a continuous time-series X(t) as 
an input vector where t  [∞, –∞], a wavelet function 
߰ሺߟሻ that depends on a non-dimensional time pa-
rameter η is defined as:  

 
1
2( ) ( , )

t
s s

s

         
 

  (11) 

where t = time, τ = time step in which the window 
function is iterated and s  [0, ∞] is the wavelet scale. 
The term ψ(η) must have zero mean and localized in 
both the time and Fourier space. 

The discrete wavelet transformation (DWT) se-
lects translation and location parameters for the input 
signal. Subsequently, discrete wavelets coefficients 
(DWCs) are obtained that represent the minimum 
number of components needed to reflect the time-
series according to the mother wavelet. Several fami-
lies of wavelets have proven useful in a range of ap-
plications [MALLAT 1989]. For practical applications, 
hydrologists use wavelets to analyse a discrete rather 
than a continuous signal. This discrete wavelet is of 
the form: 
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where i and j are the integer values, and b0 and a0 are 
the location parameter and the specified fined dilation 
step, respectively. Common values for a0 and b0 are 
2 and 1, respectively [SEHGAL et al. 2014; TIWARI, 
ADAMOWSKI 2013]. The discrete wavelet transform 
involves selecting scales and positions based on pow-
ers of two, (called the dyadic scales and translations). 
The dyadic wavelet can be compressed as follows:  

 )2(2 2/
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where T(i, j) is the wavelet coefficient for the discrete 
wavelet of scale a=2i and the location b = 2i j. Equa-
tion (14) considers a finite time series, xh, h = 0, 1, 2, 
…, j–1; and j is an integer power of 2, i.e., j = 2i.  

The inverse discrete transform is given by: 
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where തܶ is called the approximation sub-signal at lev-
el i, and Wi(t) represents the details of the sub-signals 
at level i = 1, 2, …, l.  

The wavelet coefficients, Wi(t) (i = 1, 2, …, l) 
provide the details of the signal, which can capture 
small features of interpretational values in the in-
putted dataset. The residual term, തܶ, represents the 
background information of the data. The wavelet is 
robust since it does not include any potentially erro-
neous assumption or parametric testing procedure. 
Because of the simplicity of W1(t), W2(t) …, Wl(t), the 
relevant characteristics in the hydrologic dataset (e.g. 
periods, hidden periods, dependence and jumps) can 
be diagnosed through these discrete wavelet compo-
nents [TIWARI, CHATTERJEE 2011]. Consequently, the 
prediction accuracy of drought models are improved.  

BOOTSTRAP TECHNIQUE 

There are three sources of uncertainty that affect 
the output of the ANN and ANNW models: parameter 
uncertainty, sub-optimal training and insufficient in-
put variables. Bootstrapping is a computational, data-
driven simulation method that can be used to assess 
uncertainty by measuring the variance σs

2 of S, the 
bootstrap resample. Bootstrap samples are generated 
through an intensive resampling with replacement 
method. These samples or realizations provide a bet-
ter understanding of the mean and variability of the 
original data, and thus of its unknown distribution or 
process, thereby reducing uncertainty [EFRON 1979; 
EFRON, TIBISHIRANI 1993].  

Assume a population T with unknown probability 
distribution F, where ti = (xi, yi) is a realization drawn 
independently and identically distributed (i.i.d.) from 
T, xi is a input vector and yi is the corresponding out-
put vector, and n is the size of original dataset. In this 
case: 

 Tn = {(x1, y1), (x2, y2), …, (xn, yn)}  (16) 

is a bootstrap resample obtained from an empirical 
distribution function, F with a mass of 1/n for each t1, 
t2, …, tn. Similarly, a set of bootstrap samples such as 
T1, T2, …, Ts, …, TS can be produced, where s is 
a particular bootstrap resample, whereas S is the total 
number of bootstrap resamples. In such a case the 
total number of bootstrap samples, S, usually ranges 
from between 50 and 200 samples [EFRON 1979]. 

In this study, several bootstrap resamples were 
generated and used to train several different ANN and 
ANNW models. Ensemble forecasts were obtained and 
designated ANNB and ANNWB, respectively. For each 
Ts, an ANN and ANNW model was developed and 
trained using all n observations. The output of ANN 
models was represented in terms of bootstrap 
resamples and corresponding optimized weights as 
fNN(xi, ws) where xi was the input data pattern, and ws 
was the optimized weights of the ANN model for 
a particular bootstrap resample s. The performance of 
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both the models was then evaluated using a set As. 
Then the generalization error denoted as Ê0 was esti-
mated (e.g., ANN model) as [TWOMEY, SMITH 1998]:  
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As is a set of observation pairs ti = (xi, yi) that 
were not included in generating the bootstrap 
resamples or it is the set of data patterns in the testing 
data set or the dataset not included in the development 
of different resamples. S is the number of bootstrap 
samples generated from the training dataset. 

Finally, the estimate y(x) of the ANNB, ANNW 
and ANNB were presented as the average of the S 
bootstrapped estimates of the corresponding ANN 
model (e.g., ANNB) as [TIWARI, CHATTERJEE 2011]:  
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and the variance using S resample was given by: 
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A number of forecasts obtained with ANN and 
ANNW models, trained with multiple realizations of 
the training dataset, served to generate a 95% confi-
dence interval (CI), i.e., two tailed α = 0.05 signifi-
cance level. These CIs indicated the frequency with 
which the CIs would contain the true value in the re-
peated application of the model. A 100·(1 – α) percent 
CI covering the overall UWD water demand ݕො൫ݔ	൯ 
can be estimated as [EFRON, TIBSHIRANI 1993]:  

CI = (LB, UB) = 
= ሾݕොሺݔሻ  ିݐ

ఈ ଶ⁄ ,ሻݔ௦ሺߪ ሻݔොሺݕ െ ିݐ
ఈ/ଶ  ሻ (20)ݔ௦ሺߪ

where n is the total number of water demand observa-
tions, p is the total number of parameters in the NN 
and WNN models, ݐି

ఈ/ଶ  is the α/2 percentile for the 
Student distribution, with n – p degrees of freedom, 
UB is the upper bound, LB is the lower bound, and 
σS(x) is the standard deviation of s bootstrapped esti-
mates. 

PERFORMANCE INDICES 

The developed models’ performances were eval-
uated using five statistical indices: the coefficient of 
determination (R2), root mean square error (RMSE), 

persistence index (PI), mean absolute error (MAE), 
and peak percentage deviation (Pdv), as defined below 
[DAWSON et al. 2007].  

(i) The coefficient of determination (R2) perfor-
mance index is a squared ratio of the combined dis-
persion of two time series to the total dispersion of the 
observed and modelled time series. It presents the 
overall agreement between observed and modelled 
time series and varies from 0 for a poor model to 1 for 
a perfect model. 

The coefficient of determination (R2) is expressed 
as:  
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where n is the number of data points, Oi and Pi are the 
ith observed and ith forecasted UWD values, respec-
tively, and O and P	 are the observed and forecasted 
UWD means, respectively.  

(ii) The root mean square error (RMSE) is 
a measure of overall performance across the entire 
range of the dataset and provides a good measure of 
model performance for high flows [KARUNANITHI et 
al. 1994], as it is sensitive to small differences in 
model performance and exhibits high sensitivity to the 
larger errors occurring for higher magnitudes. It is 
expressed as: 

 



n

i
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n
RMSE
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1  (22) 

The RMSE ≥ 0, and shows a perfect model fit 
RMSE = 0. 

(iii) Percentage deviation in peak (Pdv). It is de-
fined as: 

  


peak

peakpeak

dv
O

OP
P 100  (23) 

where, Opeak and Ppeak are the peak of observed and 
forecasted water demand, respectively. 

(iv) The mean absolute error (MAE) measures 
overall agreement between observed and forecasted 
values, but is not weighted towards higher or lower 
magnitude events. It evaluates all deviations from the 
observed values equally, without considering sign. So 
MAE ≥ 0, with MAE = 0 representing a perfect model 
fit to observed values. It is expressed as: 
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1

1  (24) 
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(v) The persistence index (PI) is one minus the 
ratio of the sum square error (SSE) to the same SSE 
obtained when the last observed value itself is consid-
ered as the forecasted value for a particular lead time. 
The more PI exceeds zero the greater the model’s 
accuracy; however, if PI = 0 then the model has per-
formed no better than a one parameter 'no knowledge' 
model, while if PI < 0 the model has performed more 
poorly than a 'no knowledge' model. It is essentially 
a comparison between the model under study and 
a simple naïve persistence model. Thus, to estimate PI 
the predicted water demand at time t (Pi) is considered 
as the observed water demand at time t-j (Oi-j), where 
j indicates the lead time selected for the water demand 
forecast. PI is therefore expressed as: 
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MATERIALS AND METHODOLOGY 

STUDY AREAS AND DATA PARTITIONING 

With a population of approximately 1.1 million 
people, Calgary is amongst the largest cities in Cana-
da [City of Calgary 2011]. The Bearspaw Plant treats 
water from the Bow River primarily to supply the 
northern half of the city, while the Glenmore Plant 
treats water from the Elbow River and supplies the 
southern portion of the city [City of Calgary 2011]. 
Each plant supplies about half of Calgary’s total 
drinking water needs, and the 4600 km distribution 
system is interconnected through transmission mains. 
Since 1980, the city has invested in maintenance of 
the network by replacing corroded pipes with PVC 
and by adding cathodic protection on pipes to reduce 
the rate of corrosion. As a result, emergency repairs 
have been reduced by 73% [City of Calgary 2011]. 

In 2010, the total per capita water demand in 
Calgary was 406 L·d–1, while residential use was 257 
L·d–1, less than the Canadian average of 343 L·d–1 but 
still greater than other Prairie cities [Environmental 
and Safety Management 2010]. The Government of 
Alberta announced in 2006 that new water licenses 
for the Bow River Basin would no longer be granted, 
which has led to an increased awareness and need for 
water conservation and a demand for reduction 
measures in the midst of continuing population 
growth and climate change. For example, the Calgary 
City Council has adopted a goal of reducing total per 
capita use to 350 L·d–1 by 2033, metering all residen-
tial homes by the end of 2014, and maintaining peak 
demand below 0.95·109 L through to 2032 [Environ-
mental and Safety Management 2010]. 

The average summer high in Calgary is 20°C, 
with a historic extreme high of 36°C, and the average 
winter low is –13°C, with a historic extreme low of  
–45°C. Annual rainfall in Calgary is about 320 mm, 

with a recorded extreme daily rainfall of 95.3 mm. 
Annual snowfall averages around 125 cm, with an 
extreme daily snowfall of 48.4 cm [Environment 
Canada 2010]. 

The data obtained from the City of Calgary con-
sisted of average daily water demand, maximum tem-
perature, and total precipitation, compiled from 
25.03.2004 to 31.12.2006. Additional data were not 
available. For the development of the models, the data 
was divided into three sets: one for training the mod-
els, one for cross-validation to check that the models 
did not over-fit, and one for testing the performance 
of the developed models. The details of the data parti-
tioning are shown in Table 1. 

Table 1. Partitioning of data for artificial neural network 
(ANN) model development  

Dataset Period 
Number of data 

patterns 
Training 25.03.2004 to 24.03.2005 365 
Cross-validation 25.03.2005 to 24.03.2006 365 
Testing 25.03.2006 to 31.12.2006 282 

Source: own study. 

INPUT SELECTION AND DROUGHT MODEL 
DEVELOPMENT 

ANN Model Development  

Selection of significant input variables and identi-
fying optimal model structure are two important steps 
in ANN model development. Correlation statistics 
(e.g., cross-correlation, auto-correlation and partial 
auto-correlation) along with a trial and error approach 
were employed to obtain prior knowledge of input 
variables dynamics. In this procedure information at 
different lag times of daily UWD, daily maximum 
temperature and daily total precipitation were consid-
ered. Following this, the optimal network geometry 
for the ANN model was identified by trial and error, 
and the number of hidden neurons that produced the 
lowest generalization error, ranging between 1 and 15, 
was considered to be the optimal structure [JIA, CUL-

VER 2006]. ANN models were initially developed 
using the significant inputs that were log-transformed 
and linearly scaled to a range of 0 to 1 [CAMPOLO et 
al. 1999]. A second-order training method, the Le-
venberg–Marquardt optimization method was used to 
minimize the mean square error (MSE) between the 
forecasted and observed UWD values.  

ELM, ELMB and ELMW Model Development 

Based on an earlier study that demonstrated the 
practical use of ELM models for drought forecasting 
in eastern Australia [DEO, ŞAHIN 2015a, b], a 3-layer 
network containing input, feature optimisation and 
output spaces was employed (Fig. 1a, b). The ELM 
model employed in the current study was developed 
using the logarithmic sigmoid activation function. 
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Initially, the ELM model was randomly executed 
~50–1000 times to explore input layer weights, 
weights and optimal nodes in the hidden layer and 
model biases yielding the smallest MSE. This resulted 
in ~100 randomisations yielding a stable solution. In 
each case, the CPU time consumed to run urban water 
demand models was recorded.  

Also shown to be an effective tool in drought 
forecasting [DEO, ŞAHIN 2015b], an ANN model was 
developed as a benchmark. The ANN model was 
stopped early when processing the validation dataset 
to avoid overtraining or over-fitting [ADAMOWSKI 
2008a, b; ADAMOWSKI et al. 2012a; TIWARI, ADA-

MOWSKI 2013]. During this process the MSE was 
monitored at iterations of the training and during 
cross-validation phases. The training was stopped 
when the MSE reached a minimum [BISHOP 1995]. 
As with previous studies [DEO, ŞAHIN 2015a, b; TI-

WARI, ADAMOWSKI 2013], the fast and efficient sec-
ond-order Levenberg–Marquardt training algorithm 
was employed in the ANN model.  

A robust ELM model was developed by consider-
ing different input variables and optimization parame-
ters. Two further hybrid models were developed: 
bootstrap-based ELM (ELMB), and wavelet-based 
ELM (ELMW). MATLAB® (v.7.10.0] code was writ-
ten to develop all the wavelet models, while bootstrap 
resamples were generated using an Excel add-in 
(Bootstrap.xla) [BARRETO, HOWLAND 2006]. The en-
semble of roughly 200 ELMB models were developed 
for each bootstrap resample dataset, and all the 200 
forecasts were later combined to generate an ensem-
ble of all these forecasts. To further improve the 
ELM, we applied discrete wavelet transformation 
(DWT) on the predictor signals to achieve a time-
scale representation of the localized and transient 
phenomenon at different scales in the data series 
[ADAMOWSKI 2008a, b; ADAMOWSKI, CHAN 2011; 
ADAMOWSKI et al. 2012a, b; KIM, VALDÉS 2003; TI-

WARI, ADAMOWSKI 2013]. The DWT process aimed 
to achieve a time-scale realisation of both the local-
ized and the transient phenomena at various frequen-
cies. The frequency content and temporal variations 
was analysed by effectively decomposing inputs into 
discrete wavelet coefficients (DWCs) to make the 
non-stationarity obvious and the model more respon-
sive to the variations in frequencies of the input data 
[TIWARI, ADAMOWSKI 2013].  

The utilized wavelet function was adopted from 
a family of the Daubechies mother wavelet [NOURANI 
et al. 2009; WU et al. 2009] whereby the DWT pro-
cess operated as two sets of functions with a high-pass 
and a low-pass filter. The predictor variables were 
passed through the high- and low-pass filters to ac-
quire detail (db1, db2, db3) in terms of high frequency 
components and approximation coefficients (A3) in 
terms of low frequency components of the signal. As 
the performance of the db5 wavelet with three levels 
of decomposition provided the best performance, for 
illustrative purposes only 3 levels of decomposition 

(db1, db2, db3] and 1 approximation (A3) are pre-
sented for the UWD data over the tested period (Fig. 
2). The low-frequency components reflected by A3 
showed the broad-scale patterns in the predictor da-
taset including its periodicity and trends, and was 
closely in-phase with the predictor signal, whereas the 
high-frequency components (db1, db2, db3] appeared 
to replicate greater details of the subtle but significant 
patterns in the UWD time-series [KÜÇÜK, AĞIRALI˙ 
OĞLU 2006].  

Though earlier studies have demonstrated a better 
performance of wavelet-based models, the ways in 
which the wavelet sub time-series are included in 
model development can vary greatly. Some studies 
have used all of their wavelet sub-series [ADA-

MOWSKI, SUN 2010; NOURANI et al. 2009; WANG, 
DING 2003] whereas others have removed the db1 
sub-series and added the remaining series, considering 
the former series as noise due to its low correlation 
with their original data [KISI, CIMEN 2011; PARTAL, 
KIŞI 2007; RAJAEE et al. 2010]. However, in some 
studies, new wavelet time-series were developed by 
adding up the effective DWCs based on regression 
correlation [TIWARI, CHATTERJEE 2010b; 2011]. As it 
is wise not to completely rely on a model based on 
a particular wavelet series that captures some phe-
nomena at the expense of others [RATHINASAMY et al. 
2013], we considered each wavelet function in terms 
of its own strengths in capturing stochastic character-
istics and physical structure of the hydrological da-
taset. 

ANNB and ANNW Model Development 

ANNB models were developed in similar manner 
as ELMB models. The ANNW models were developed 
by inputting the wavelet sub time series produced us-
ing DWCs. In this study, wavelet functions from the 
Daubechies family of wavelets [NOURANI et al. 2009; 
WU et al. 2009] were used, and three levels of de-
composition were considered based on the following 
formula [NOURANI et al. 2008]: 

 L = int [log(n)]  (26) 

where, L is the number of decomposition levels, and 
n is the number of time series data.  

The number of datasets n = 1012 yield a value of 
L = 3, leading to three levels of decomposition (d1, 
d2, and d3) and approximation (A3) for the data 
(Fig. 2). The effective DWCs were determined using 
the correlation coefficients between each wavelet 
component and the observed UWD. The correlation 
between the original daily time series for Calgary and 
corresponding different wavelet sub-time series are 
shown in Table 2.  

In earlier studies [ADAMOWSKI, SUN 2010; KIŞI 
2010; TIWARI, CHATTERJEE 2010a; 2011], the signifi-
cant wavelet sub-time series of a particular time series 
was  used  and  added  to generate  a new  time  series, 
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 a) Daily water demand b) Daily maximum temperature 

         

         

         

         

         

Fig. 2. Wavelet sub-time series of the (a) daily water demand and (b) daily maximum temperature of Calgary  
from 24 March, 2004 to 31 December, 2006; A3 = approximation, d1, d2, d3 = details; source: own study 

150.0

300.0

450.0

600.0

750.0

W
at

er
 D

em
an

d
 (M

L
/d

ay
)

Time (day)
-30

-15

0

15

30

45

M
ax

im
u

m
 T

em
pe

ra
tu

re
 (

°C
)

Time (day)

300

400

500

600

700

W
at

er
 D

em
an

d
 (M

L
/d

ay
)

Time (day)
-20

-10

0

10

20

30

40

M
ax

im
u

m
 T

em
pe

ra
tu

re
 (

°C
)

Time (day)

-150

-100

-50

0

50

100

150

W
at

er
 D

em
an

d
 (M

L
/d

ay
)

Time (day)
-10

-6

-2

2

6

10

M
ax

im
u

m
 T

em
pe

ra
tu

re
 (

°C
)

Time (day)

-200

-150

-100

-50

0

50

100

150

200

W
at

er
 D

em
an

d
 (M

L
/d

ay
)

Time (day)
-15

-10

-5

0

5

10

15

M
ax

im
u

m
 T

em
pe

ra
tu

re
 (

°C
)

Time (day)

-120

-70

-20

30

80

W
at

er
 D

em
an

d
 (M

L
/d

ay
)

Time (day)
-15

-10

-5

0

5

10

15

M
ax

im
u

m
 T

em
pe

ra
tu

re
 (

°C
)

Time (day)

A3

d1

d2

d3

Time, day Time, day 

Time, day Time, day 

Time, day Time, day 

Time, day Time, day 

Time, day Time, day 

W
at

er
 d

em
an

d,
 m

L·
da

y–
1  

W
at

er
 d

em
an

d,
 m

L·
da

y–
1  

W
at

er
 d

em
an

d,
 m

L·
da

y–
1  

W
at

er
 d

em
an

d,
 m

L·
da

y–
1  

W
at

er
 d

em
an

d,
 m

L·
da

y–
1  

M
ax

im
um

 te
m

pe
ra

tu
re

, 
°C

 
M

ax
im

um
 te

m
pe

ra
tu

re
, 

°C
 

M
ax

im
um

 te
m

pe
ra

tu
re

, 
°C

 
M

ax
im

um
 te

m
pe

ra
tu

re
, 

°C
 

M
ax

im
um

 te
m

pe
ra

tu
re

, 
°C

 



46 M. TIWARI, J. ADAMOWSKI, K. ADAMOWSKI 

© PAN in Warsaw, 2016; © ITP in Falenty, 2016; Journal of Water and Land Development. No. 28 (I–III) 

Table 2. Correlations between different wavelet sub-time 
series and the original time series 

Wavelet sub-time 
series 

Water  
demand 

Maximum 
temperature 

Total  
precipitation 

A3 0.40 0.32   0.01 
d1 0.10 0.02 –0.06 
d2 0.15 0.06 –0.13 
d3 0.16 0.06 –0.10 

Source: own study. 

becoming new inputs with which to develop the 
ANNW model. In this study, a threshold allowable 
correlation level of 0.1 was used in determining the 
inclusion and use of all DWCs in the model develop-
ment process. Moreover, considering that all the wave-
let components play a different role in the original 
time series, ANNW models were developed using all 
components as separate inputs. As with the develop-
ment of the ANN and ANNB models, data partitioning 
for training, cross-validation, and testing was done in 
a manner similar to that employed for ANNW models. 

RESULTS AND GENERAL DISCUSSION 

WATER DEMAND FORECASTING IN CALGARY 
USING ELM, B-ELM AND W-ELM MODELS 

For 1 day lead-time UWD forecasting, the signif-
icant input variables were water demand at time t [i.e., 
WatDemand(t)] and maximum temperature at time t 
[i.e., MaxT(t)]. The statistical and graphical (scatter 
plots) assessment of ELM models’ performance in 
UWD forecasting are presented in Table 3 and Figure 
3a, respectively. Statistical performance metrics for 
the ELM model were generally satisfactory, indicat-
ing that the margin of difference between actual and 
forecasted UWD was relatively small. Considering 
the range of water demand in Calgary (313.38 mL·d–1 
≤ UWD ≤ 684.25 mL·d–1), the performance of the best 
ELM models (RMSE = 33.02 mL·d–1, can be viewed 
as satisfactory for 1-day lead-time UWD forecast. 

Table 3. Water demand forecasting for 1 day lead times 
using the best models for testing dataset 

Model Lead time R2 
RMSE  

mL·day–1 
Pdv  
% 

MAE  
mL·day–1

ELM 1 0.850 33.02 10.06 24.42 
B-ELM 1 0.851 32.97   9.61 24.14 
W-ELM 1 0.927 23.11   6.04 16.70 

Source: own study. 

This study further explored the capacity of boot-
strap-based ensemble modelling along with ELM 
models for UWD forecasting. Some 200 bootstrap 
resamples of the training dataset were generated and 
ELMB models were developed by averaging the fore-
casts obtained from 200 resultant ELM. The statistical 
and graphical (scatter plots) assessment of ELMB 
models’ performance in UWD forecasting are pre-
sented in Table 3 and Figure 3b, respectively. On the 
basis of these assessments the ELMB could be seen to 

slightly outperform the ELM model. Given that the 
ELMB model was developed using several realization 
of the training dataset it was expected to produce sta-
ble and reliable results even if the pattern of the train-
ing and testing datasets changed. 

The efficacy in daily UWD forecasting of ELMW 
models relative to other machine learning models was 
also considered. In order to develop the ELMW mod-
els, all the time series datasets were decomposed into 
approximation and details and all the components 
were considered separately as inputs for ELMW model 
development. The ELMW models were developed 
using wavelet sub-time series derived from the dataset 
that produced the best ELM model for Calgary. Based 
on a trial and error process the best ELMW models for 
1-day lead-time forecasts were found with inputs 
a3(t), d3(t), d2(t), and d1(t) at time t of wavelet com-
ponents A3, d1, d2, d3 of daily water demand (WatDe-
mand), daily maximum temperature (MaxT) and total 
precipitation (TotP), respectively. The d1 component 
showed a lesser correlation with the original water 
demand than the other components (i.e., A3, d2, and 
d3), indicating that d1 components may be redun-
dant/noise information contained in the original water 
demand time series (Tab. 2). However, it was found 
to not be altogether without importance during UWD 
forecasting, as it showed that all the components ex-
hibit some important information about the physical 
characteristics of the original UWD time series. The 
statistical and graphical (scatter plots) assessment of 
ELMW models’ performance in UWD forecasting are 
presented in Table 3 and Figure 3c, respectively. The 
scatter plots revealed the ELMW model to significant-
ly outperform the unenhanced ELM model (R2 = 
0.927 vs. R2 = 0.850, respectively) in UWD forecast-
ing. This showed the supremacy of ELMW models in 
UWD forecasting compared to ELM and ELMB mod-
els.  

WATER DEMAND FORECASTING IN CALGARY 
USING ANN, B-ANN AND W-ANN MODELS 

In an earlier study TIWARI and ADAMOWSKI 
[2015] developed models for UWD forecasting by 
applying the same input variables for the same dataset 
length. One can therefore compare the performance of 
newly developed ELM, ELMB and ELMW models 
with the earlier applied ANN, ANNB and ANNW 

models. The structure and performance of the best 
ANN models for the UWD forecasting testing dataset 
for Calgary are shown in Table 4. For 1-day lead-time 
UWD forecasting, the significant input variables ob-
tained were water demand at time t [i.e., WatDe-
mand(t)] and maximum temperature at time t [i.e., 
MaxT(t)]. The number of optimum hidden neurons 
was identified as 3. 

The hydrographs and scatter plots of observed 
and forecasted UWD values using the best ANN 
models for 1 day lead-time UWD prediction (Fig. 4a) 
show that ANN models’ performance to be accepta-
ble, with forecasted values following the general trend 
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Fig. 3. Hydrographs and scatter plots for observed (Obs) and predicted (Pred) water demand in Calgary for 1 day lead time 
forecasts for the testing dataset using the best models: a) ELM, b) B-ELM, c) W-ELM; source: own study 

Table 4. Water demand forecasting for 1 day lead times 
using the best models for testing dataset 

Model Lead time R2 
RMSE  

mL·day–1 
Pdv  
% 

MAE  
mL·day–1

ANN 1 0.860 32.97 11.92 24.31 
B-ANN 1 0.854 33.71 13.47 24.67 
W-ANN 1 0.924 24.15   8.25 17.48 

Source: own study. 

of observed values and yielding an almost 1:1 regres-
sion line in forecasted vs observed scatter plots. The 
performance of ANN models was comparable to that 
of ELM models; however, the ELM models were 
more time efficient than the ANN models (ELM ≈ 2 
sec, ELMB ≈ 400 sec, ELMW ≈ 1 sec, ANN ≈ 4 sec, 
ANNB ≈ 800 sec and ANNW ≈ 3 sec CPU time). 

Similar to ELMB models, the ANNB models were 
developed using bootstrap resamples of the training 
dataset used to develop the best ANN models. For 
each lead time, results from 200 ANN models devel-
oped from 200 bootstrap resamples were averaged to 

generate the ANNB forecast. Based on observed vs. 
forecasted UWD scatter plots (Fig. 4b), and statistical 
performance indices (Tab. 4) for the testing dataset 
the performance of the ANNB models to be compara-
ble to that of ANN models for 1-day lead-time UWD 
forecasting, but their accuracy decreases significantly 
for longer lead-times. The performance of the ANNB 
models was slightly less accurate than those of the 
ANN models. Likewise, the performance of ELMB 
model was slightly better than that of the ANNB mod-
el for UWD forecasting. 

The statistical and graphical (scatter plots) as-
sessment of ANNW models’ performance in UWD 
forecasting with 1-day lead-times are presented in 
Table 4 and Figure 4c, respectively. The best ANNW 

model outperformed the best ANN and ANNB mod-
els, demonstrating the ability of wavelet analysis to 
capture useful information from different periodic 
components (i.e. wavelet sub-time series). The ELMW 
model performed slightly better than the ANNW mod-
els for UWD forecasting. 
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Fig. 4. Hydrographs and scatter plots for observed (Obs) and predicted (Pred) water demand in Calgary for 1 day lead time 
forecasts for the testing dataset using the best models: a) ANN, b) B-ANN, c) W-ANN; source: own study 

CONCLUSIONS 

Accurate and reliable UWD forecasting is neces-
sary to help transition to more effective and sustaina-
ble urban water resources planning and management 
[BUTLER, ADAMOWSKI 2015; HALBE et al. 2013; 
2014; INAM et al. 2015; KOLINJIVADI et al. 2014; 
STRAITH et al. 2014]. In this study, ELMW models 
based on their capacities of wavelet transformation 
and ELM modeling techniques were employed to 
simulate the UWD in the city of Calgary, Canada. 
A limited yet more appropriate set of predictor varia-
bles were utilized. The feasibility of using ELMW for 
UWD forecasting was compared to that of traditional 
ELM and ANN models, as well as ANNB and ANNW 
models. In this study ELM, ANN, ELMW, ANNW and 
ANNB models were developed for 1-day lead time 
UWD forecasting for the city of Calgary, Canada. 
Based on five performance indices (R2, Pdv, RMSE, 
PI, MAE), ELMW models were found to perform con-
siderably better than ANN, ELM, ANNB, and ANNW 
models. This highlights the ability of wavelet trans-

formation to decompose time-series data with non-
stationarity into discrete wavelet components, high-
lighting cyclic patterns and trends in the time series 
data at varying temporal and spatial scales and mak-
ing the data readily usable in forecasting. Indeed, the 
margins of prediction errors were much smaller for 
the ELMW and the model execution time was shorter 
compared to the other machine learning models con-
sidered in this work. Therefore, as a pioneer study on 
the application of ELMW modelling to UWD predic-
tion, this research clearly demonstrated the feasibility 
of wavelet-based modelling for UWD forecasting. 
Moreover, this study provides a promising advance-
ment to machine learning models for UWD studies 
and the opportunity to explore the ELM and wavelet 
techniques in real-time UWD forecasting. 
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Przewidywanie zapotrzebowania na wodę z użyciem technik uczenia maszynowego 

STRESZCZENIE 

Słowa kluczowe: bootstrap, ekstremalne maszyny uczące się, falki, Kanada, niepewność, prognozowanie zapo-
trzebowania na wodę, sztuczne sieci neuronowe  

Oceniono zdolność modelowania z użyciem ekstremalnej maszyny uczącej się (ELM) stosowanej samo-
dzielnie bądź w połączeniu z analizą falkową (W) lub metodami bootstrapowymi (B) (tzn. ELM, ELMW, ELMB) 
do przewidywania dobowego zapotrzebowania na wodę w mieście. Wyniki porównano z uzyskanymi tradycyj-
nymi metodami bazującymi na sztucznych sieciach neuronowych (tzn. ANN, ANNW, ANNB). Modele przewidu-
jące zapotrzebowanie na wodę zbudowano z wykorzystaniem trzyletniego zapotrzebowania na wodę i zestawu 
danych klimatycznych dla miasta Calgary w kanadyjskiej prowincji Alberta. Hybrydowe modele ELMB i ANNB 
zapewniały satysfakcjonujące prognozy jednodniowe o podobnej dokładności, natomiast wyniki uzyskane z za-
stosowaniem modeli ELMW i ANNW były bardziej dokładne, przy czym model ELMW okazał się lepszy niż 
ANNW. Istotną poprawę prognozowania szczytowego zapotrzebowania na wodę w mieście uzyskano jedynie 
z zastosowaniem modelu ELMW. Wyższość modelu ELMW nad modelami ANNW czy ANNB dowodzi znaczącej 
roli transformacji falkowej w usprawnianiu działania modeli prognozujących zapotrzebowanie na wodę w mieście. 

 
 


