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Abstract: Maximum Torque Control (MTC) is a new method applied for control of in-
duction motor drives. The drive is controlled by dc voltage supplying a converter in the
range below nominal speed and by a field that weakens for a speed range above the nom-
inal speed. As a consequence, the control is quite similar to the control of a classical
separately excited dc motor. This control method could be explained as a kind of sim-
plification of Direct Torque Control (DTC), because the switching scheme is the same
as for the DTC, but the variable responsible for a torque control is constantly set for
“torque increase”. This kind of control of induction motor drive is simpler than DTC
because torque values need not be estimated. The proposed control method offers very
good performance for 3-phase induction motors and requires smaller switching frequency
in comparison to DTC and Field Oriented Control (FOC). The application of the con-
trol is widely demonstrated for a 3-phase 315 kW, 6 kV motor drive by use of computer
simulation.
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1. Introduction

The control of 3-phase induction motors by use of dc/ac converters seems to be well ex-
plored and was described in many papers [1, 5, 2 ] and books [6, 7]. There is a variety of
advanced methods of control of such drives [4, 12, 15, 16] but they mainly fall into two cat-
egories: Field Oriented Control (FOC) and Direct Torque Control (DTC). Both these methods
require similar computation effort and yield comparable results [1, 3, 5, 11]. This result does
not come as a surprise since a 3-phase single level converter offers 8 switching states only. But
still the combination of switching states, their duration and frequency offer a potential to imple-
ment a novel control. In this paper a new method called Maximum Torque Control (MTC) is
presented and explained in relation to DTC and FOC. The adjective “maximum” could be eas-
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ily explained comparing this method to DTC. If we take the switching table for DTC we find
two variables, whose combination determines the choice of next switching state – one that is
responsible for a change of the magnetic field and the second one responsible for a change of
electromagnetic torque. In the case of the proposed new MTC method the variable for torque
control is set “torque up” constantly. As a result, the switching table is reduced to two rows
only – one for “field increase” and the other one for “field decrease”. The practical effect of
such control is that torque always follows its accessible extremes, and control of the rotational
speed is performed by dc voltage value supplying the converter for a speed range below the
rated value, and by a field weakening for speed above the nominal. These work very well and
are closely similar to the old traditional methods of control of separately excited dc motors with
a commutator. The term “Maximum Torque Control” is present in the literature but has taken
on a different meaning. In [10] it is a problem of a maximum torque per ampere in the field
weakening region of control, in [14] a problem of finding an optimal frequency of supply volt-
age, and in [13] it is a control of permanent magnet synchronous motors. Hence, the Maximum
Torque Control (MTC) proposed here offers an original control method, derived from DTC, but
resulting in control of an induction machine quite similar to the control of separately excited dc
motors and yielding similar characteristics. The following sections of the paper will explain the
theoretical basis for MTC control and its relations to DTC and FOC, and will present wide illus-
tration of its application to the 315 kW, 6 kV 3-phase induction motor – resulting from computer
simulations.

2. Mathematical models

To explain MTC and its relationship to FOC and DTC, it is necessary to present the mathe-
matical models of induction machines in orthogonal axes using (Ψs, is) and (Ψr, is) variables.
For (Ψs, is), the model takes the form, as in [8]:

Ψ̇sx = usx −Rsisx +Ω0Ψsy ,

Ψ̇sy = usy −Rsisy −Ω0Ψsx ,

i̇sx = (αrΨsx + pΩrΨsy +usx)/(Lsσ)− (αs +αr)isx/σ + pΩ0sisy ,

i̇sy = (αrΨsy − pΩrΨsx +usy)/(Lsσ)− (αs +αr)isy/σ − pΩ0sisx ,

Ω̇r = [p(Ψsxisy −Ψsyisx)︸ ︷︷ ︸
Te

−Tl −DΩr]/J,

(1)

where: Ψsx, Ψsy are stator flux transformed to x, y axes, isx, isy are stator currents transformed
to x, y axes, usx, usy are stator voltages transformed to x, y axes, Ls, Lr, Lm are stator, rotor and
magnetizing inductances, Rs, Rr are stator, rotor, windings’ resistances, αs = Rs/Ls is a stator
winding’s damping coefficient, αr =Rr/Lr is a rotor winding’s damping coefficient, σ = 1−ks kr
is a winding’s leakage factor, ks = Lm/Ls is a stator winding’s coupling coefficient, kr = Lm/Lr
is a rotor winding’s coupling coefficient, Ω0 = 2π fs/p is angular speed of a magnetic field, Ωr
is an angular speed of a rotor, s = (Ω0 −Ωr)/Ω0 is a slip of a rotor, Te, Tl are electromagnetic
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torque and load torque respectively. Equations (2) constitute a mathematical model of induction
motor drive for (Ψr, is):

Ψ̇rx =−αr(Ψrx −Lmisx)+ pΩ0sΨry ,

Ψ̇ry =−αr(Ψry −Lmisy)− pΩ0sΨrx ,

i̇sx = (krαrΨsx + kr pΩrΨsy +usx)/(Lsσ)− γisx + pΩ0sisy ,

i̇sy = (krαrΨsy − kr pΩrΨsx +usy)/(Lsσ)− γisy − pΩ0sisx ,

Ω̇r = [pkr(Ψrxisy −Ψryisx)︸ ︷︷ ︸
Te

−Tl −DΩr]/J,

(2)

where γ = (αs +αrkskr)/σ .
By transforming variables in (1) in the following way:

(Ψsx,Ψsy, isx, isy,Ωr)→ (τ,Ψs, ixτ , iyτ ,Ωr),

we obtain the model of an induction motor transformed to orthogonal xτ ,yτ axes. These axes are
oriented in respect to x,y axes by use of the angle τ so that the xτ axis coincides with the direction
of Ψs vector (Fig. 1). The transformed model (3) is particularly useful for DTC.

pτ̇ = (uyτ −Rsiyτ)/Ψs − pΩ0 ,

Ψ̇s = uxτ −Rsixτ ,[
i̇xτ

i̇yτ

]
=

1
Lsσ

[
uxτ +αrΨs

uyτ − pΩrΨs

]
+

[
−(αs +αr/σ p(τ̇ +Ω0s)

−p(τ̇ +Ω0s) −(αs +αr)/σ

][
ixτ

iyτ

]
,

Ω̇r = [pΨsiyτ︸ ︷︷ ︸
Te

−Tl −DΩr]/J.

(3)

A similar transformation of the mathematical model (2) is made (Ψrx,Ψry, isx, isy,Ωr) →
(ρ,Ψr, ixρ , iyρ ,Ωr), introducing ρ angle as the new variable orienting xρ , yρ coordinate system

Fig. 1. Orthogonal reference frames for transformed
induction motor models, and voltage vectors
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in respect to x, y axes of the original system, where the rotor flux vector Ψr determines the
direction of xρ . Consequently, we receive:

pρ̇ = Lmαriyρ/Ψr − pΩ0s,

Ψr =−αrΨr +Lmαrixρ ,[
i̇xρ

i̇yρ

]
=

1
Lsσ

[
uxρ + krαrΨr

uyρ − pΩrΨr

]
+

[
−γ p(ρ̇ +Ω0s)

−p(ρ̇ +Ω0s) −γ

][
ixρ

iyρ

]
,

Ω̇r = [pkrΨriyρ︸ ︷︷ ︸
Te

−Tl −DΩr]/J.

(4)

The mathematical models in (3), (4) are applicable in the design of DTC and FOC and provide
valuable information regarding the steady state of the drive. From (3), for τ̇ = 0, we find the
angular speed of the magnetic field:

pΩ0 = (uyτ −Rsiyτ)/Ψs (5)

and for Ψ̇s = 0, magnetizing current:

ixτ = uxτ/Rs . (6)

From (4), for a steady state, we can determine the angular speed of slip pΩ0s = Lmαriyρ/Ψr
= RrTe/(pΨ2

r ). It is proportional to the rotor’s resistance and the torque, and inversely propor-
tional to the square of the rotor flux. In addition, we can learn that Ψr = Lmixρ . At the end of
these considerations it is necessary to say that the two above presented mathematical models are
not precise or more clearly rigorous. The equation system presented in x, y perpendicular axes,
that is applied here is developed [8] with the assumption, that the reference x, y axes rotate with a
constant angular velocity Ω0, which is never the case when frequency fs changes, and in addition
angle ρ may also not be a constant value. On the margin we have to note, that the same remark
applies to equations transformed to the d, q axes, which rotate with a speed of the rotor Ωr, in the
case that the speed is not constant. In fact, the most general is an α , β two-axes equation system,
in which the reference axes are immobile in respect to the stator, but in that case, we would not
be able to develop an effective and easy to interpret control.

3. Explaining Maximum Torque Control method

As we can see from Fig. 2, the angular distance between coordinate systems τ and ρ is small
(5◦ to 10◦) and is called “torque angle”. An expression of this is given by the following formula
for electromagnetic torque:

Te = pkrΨsΨr sin(ϕT ),

where ϕT = τ −ρ is the torque angle. The dynamics of the torque angle is:

p φ̇T = p(τ̇ − ρ̇) = (uyτ −Rsiyτ)/Ψs −Lm αr iyτ /Ψr − pΩr. (7)
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Fig. 2. Explaining the torque angle φT

Rough estimations of (7) lead to the following assumptions iyτ = iyρ = iy and Ψs = Ψr = Ψ.
By adopting these assumptions, the equation in (7) takes the form:

p ϕ̇T = [uyτ − (Rs + krRr)iy]/Ψ− pΩr. (8)

From (8), we can see that an increase of uyτ voltage is followed by an adequate increase in
the torque Te. Consequently, a new balance is established resulting from transient courses of iy
current and angular speed Ωr. Thus, MTC involves the selection of a converter state which en-
sures the highest value of uyτ . In fact, this choice is limited to two output vectors of the converter
being the closest, in angular distance, to a line perpendicular to the axis of a sector in which Ψs
lies (Fig. 3). For example, under an assumption that that Ψs vector is in sector I, we use either of
V2 or V3 output vectors of the converter to control the drive. V2 vector is applied for the case when
Ψs magnetic field vector has to increase, whereas V3 when the magnetic field should decrease.
Table 1 contains MTC switching states for all six sectors of the control plane and this table is
much simpler than the one for DTC, because it contains two rows only – one for the field increase
(FU) and the other one for the field decrease (FD).

Table 1. MTC control vectors for 3-phase induction motor

Sector I II III IV V VI

FU V2 V3 V4 V5 V6 V1

FD V3 V4 V5 V6 V1 V2

Such a selection of the switching states offers a clear advantage of relatively low switch-
ing frequency, but its disadvantage is associated with the rather high uyτ voltage fluctuation
uyτ = cUdc cos(ϕs −30◦), where ϕs is the angle measured from the axis of a sector in which
Ψs vector lies. The range of ϕs is ϕs = ⟨−30◦, 30◦⟩ and hence,

uyτ/Udc = c⟨0.5, 1.0⟩ . (9)
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Fig. 3. Switching states for 3-phase
converter supplying induction motor

A constant c in (9) depends slightly on uxτ = Rsixτ and is close to the 0.67 value. The pulsa-
tions of stator currents and the torque resulting from such voltage fluctuations are much limited,
as it is demonstrated later in this work.

4. Transient and steady state characteristics

From (3) we can see that the interaction between the transformed stator currents ixτ and iyτ ,
by (τ̇ +Ω0s) factor, is a weak one. This interaction is even more negligible for a small slip
values. As a result of adopting the assumption that (τ̇ +Ω0s) = 0, it is possible to find a transfer
function Udc (s̃)→ Ωr (s̃) and study the transient characteristic of the drive. The other necessary
assumption is a constant proportion of uyτ/Udc, which according to (9), is a simplification. The
transformed operator equations, respecting a constant value of the stator flux Ψs take the form:

Js̃+D −pΨs

pΨs

Lsσ
s̃+

αs +αr

σ


[

Ωr (s̃)

iyτ (s̃)

]
=

 −Tl

uyτ

Lsσ

 . (10)

With the minor assumption, D = 0, Equations (10) lead to the transfer function for the speed
of the drive.

Ωr (s̃) =
−
(

s̃+
αs +αr

σ

)
Tl +

pΨs

Lsσ
uyτ

J
(

s̃2 +
αs +αr

σ
s̃+

p2Ψ2
s

JLsσ

) , (11)

where s̃ is the Laplace transform operator. The discriminant of the denominator of (11) is:

∆ =

(
αs +αr

σ

)2

− 4p2Ψ2
s

JLsσ
. (12)
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The oscillatory character of the transient courses is for
4p2Ψ2

s

JLsσ
>

αs +αr

2σ
, the damping factor

is exp
(
−αs +αr

2σ

)
, while the pulsation of oscillations equals to

Ωosc =

√
p2Ψ2

s

JLsσ
−
(

αs +αr

2σ

)2

.

Equations (10)–(12) are strictly similar to the respective equations for transients of separately
excited dc motors, if only we substitute the parameters

αs +αr

σ
→ α t =

Rt

L t
, Ψs → Ψe , Lsσ → L t , (13)

where: Rt is an armature resistance of dc motor, L t is an armature inductance and Ψe is an
excitation flux.

Mathematical model (3) makes it possible to calculate the steady state characteristics of an
induction motor controlled by MTC. A set of figures show some steady state curves, just to
illustrate combined features of separately excited dc and induction motor characteristics of this
kind of drive.

(a) (b)

(c) (d)

Fig. 4. Steady-state curves for the 315 kW, 6 kV induction motor drive: (a) torque; (b) stator current;
(c) rotating field speed; (d) rotor speed, versus slip, for Udc = (1.0, 0.8, 0.6, 0.4, 0.2, 0.1)Udcn
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(a) (b)
Fig. 5. Steady-state curves for the 315 kW, 6 kV induction motor drive: (a) stator current; (b) speed of

the rotor, versus torque, for stator magnetic field Ψs = (1.0, 0.95, 0.9, . . . , 0.75)Ψn

(a) (b)
Fig. 6. Steady-state curves for the 315 kW, 6 kV induction motor drive: (a) stator current; (b) rotor

speed, versus stator flux, for different load torque values Tl = (1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0)Tn

(a) (b)
Fig. 7. Steady-state curves for the 315 kW, 6 kV induction motor drive: (a) slip of the rotor; (b) rotor
speed as a function of dc supply voltage Udc (in the range of low voltages), for different load Tl =

(0.1, 0.075, 0.05, 0.025, 0)Tn

5. MTC dynamics simulations for 3-phase induction motor drives

We can remark at this point that all mathematical models [8, 9] used in simulations of dy-
namics have untransformed stator winding circuits with a star connection point, and the switches
directly operate within the controlled circuits. At first, we present free acceleration course for
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a 3-phase induction motor with following rated parameters: Un = 6 kV, Pn = 315 kW, p = 2,
Tn = 2030 Nm, and Ψs = 19.5 Wb controlled within ±6% band. The supply voltage to the con-
verter is Udc = 8600 V.

An important characteristic of this control is associated with the sampling period, understood
as the period between the consecutive control decisions concerning the change of the converter’s
state by switching or continuation of a current state. In the courses presented in Fig. 8–11, the
value of the dead time is 200 µs, which gives a maximum switching frequency of 5 kHz, whereas
the actual switching frequency is 3.2 kHz. The course of the frequency fs (Fig. 8d) could be
explained on the basis of analysis of the first equation in (3) and (4). The high frequency at the

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Free acceleration courses of the 3-phase of 315 kW, 6 kV induction motor controlled by MTC:
(a) stator current; (b) electromagnetic torque; (c) stator flux hodograph; (d) stator flux frequency; (e) slip of

the rotor; (f) rotational speed
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beginning of the course results from the very small initial value of the Ψs flux. The following
graphs show the results of computer simulations of the dynamics for the 315 kW, 3-phase motor,
after the stepwise decrease of dc voltage supplying a converter from Udc = 8600 V to half of its
this value. From Fig. 9 it is clear that the magnetic field frequency as well as rotational speed
act proportionally to match the voltage drop, whereas the flux is regulated within the required
nominal band.

(a) (b)

(c) (d)

(e)

Fig. 9. Transients of the 315 kW, 6 kV induction motor controlled by MTC, after 50% step decrease of the dc
voltage supplying the converter: (a) stator currents; (b) electromagnetic torque; (c) rotor speed; (d) magnetic

field frequency fs; (e) slip of the rotord

Fig. 10 shows the dynamic response of the 3-phase 315 kW induction motor drive to the
linear field weakening from the nominal flux 19.5 Wb to 0.62 of this value.
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(a) (b)

(c) (d)

(e)

Fig. 10. Transients during magnetic field linear decrease for the 315 kW, 6 kV motor with MTC control:
(a) flux amplitude; (b) flux hodograph; (c) torque and rotor speed; (d) stator flux frequency; (e) slip

Fig. 11 presents the dynamic courses of the 315 kW motor drive during the linear decrease
of the required speed and proportional decrease of the dc voltage supplying a converter. There
is a comparison of results obtained without and with additional simple PI control of the speed,
with respect to a given speed line. The results show that the MTC control of the drive by the dc
supply level works effectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Transients of the 315 kW, 6 kV induction motor drive, controlled by MTC, along given speed and
voltage lines: (a) required speed and dc voltage lines; (b) electromagnetic torque; (c) rotor speed; (d) stator
flux frequency; (e) slip of the rotor; (f) error of the regulation. In each figure there are compared courses:

one with an additional PI regulation of the dc voltage and the second one without it

6. Conclusions

This paper presents a new effective method for induction motor drive control, called MTC,
which forms a simplified derivative of the DTC considering control algorithm, but with the re-
sulting characteristics similar to the ones for traditional dc motors. The application of this method
offers good quality of dynamic courses and a simple control algorithm. The main control of the
drive is based on the decrease of dc voltage supplying a converter for the speeds lower from the
nominal or a decrease of the stator flux magnitude to increase the speed above the nominal value,
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while a simplified DTC switching scheme is followed. Generally, this method of control results in
transients and steady-state characteristics quite similar to the characteristics of separately excited
dc commutator motors controlled by dc armature voltage or field weakening. The method is more
effective in terms of reducing switching frequency in comparison to both FOC and DTC. The de-
tailed characteristics of this control method depend on a way in which dc voltage is controlled,
the sampling period, and the breadth of the band of flux magnitude stabilization. The variety of
specific control methods that are used to control dc motor drives are directly applicable to MTC
of induction drives via control of dc voltage supplying the converter.
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