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Modeling of strains and stresses of material nanostructures§
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Abstract. Stress and deformation analysis of materials and devices at the nanoscale level are topics of intense research in materials science
and mechanics. In these investigations two approaches are observed. First, natural for the atomistic scale description is based on quantum and
molecular mechanics. Second, characteristic for the macroscale continuum model description, is modified by constitutive laws taking atomic
interactions into account. In the present paper both approaches are presented. For a discrete system of material points (atoms, molecules,
clusters), measures of strain and stress, important from the mechanical viewpoint, are given. Numerical examples of crack propagation and
deformation of graphite sheets (graphens) illustrate the behavior of the discrete systems.
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1. Introduction

The rapid development of nanotechnology associated with the
design and manufacture of devices at nano- and microscale
level requires thorough analysis of mechanical processes i.e.
motion, deformation, stress distribution, yield and failure con-
ditions, in the range of atom and molecule dimensions. Thus
the modeling of strains and stresses appearing in nanostruc-
tured materials is of great importance and recently constitutes
a challenging topic in many fields of science and engineering
(mechanics, chemistry, physics, biology, electronics etc.). In
the modeling of mechanical properties of nanostructural sys-
tems two approaches can be observed. On the one hand, the
atomistic description (based on quantum mechanics and mole-
cular dynamics) is extended by notions, typical for the phe-
nomenological mechanics, like deformation gradients, strains,
stress tensors, etc [1-5]. On the other hand, the characteristics
of the macro scale continuum mechanic descriptions are mod-
ified by constitutive laws, which take molecular interactions
into account [6–10]. In the present paper a short survey of
modeling nanostructured material from the purely mechani-
cal point of view will be given. Both molecular and contin-
uum mechanics description with numerical examples will be
presented.

2. Strains and stresses on the molecular level

To introduce field quantities in discrete systems, let us con-
sider a system of material points with masses and position
vectors ri, i = 1, .., N referred to a fixed Cartesian frame
{0, xα}, α = 1, 2, 3. Let the position of points in the initial
configuration be denoted by vectors Ri. Furthermore, let the
collection of all points (atoms, molecules) in the initial and
current configurations be denoted by B0 and Bt, respectively.
Thus the mapping of B0 onto the set Bt given by the relation

rij = F i · Rij , (1)

where rij = rj − ri, Rij = Rj − Ri, defines the molecular
deformation gradient tensor F i (assuming that in the neigh-
borhood of the point Ai the deformation is homogenous).

This quantity corresponds to the notion known in continu-
um mechanics, where it constitutes the fundamental measure
of deformation coupling the differential line segments dX and
dx, before and after deformation, respectively. On the atom-
ic (molecular) level different definitions (models) of F i are
proposed.

1. The most natural and simple approach, from the me-
chanical viewpoint, valid for crystal cells, rests on the Cauchy-
Born hypothesis [11], which states, that crystal cell deforms
according to a locally uniform continuum deformation gra-
dient. It means that the lattice vectors behave like material
vectors, i.e. they are “embedded” in macroscopic deforma-
tion. Thus the Bravais lattice vectors deform according to (1)
by the matrix

F = ∇x =

(

∂xi

∂XK

)

, (2)

where xiand XK , i, K = 1, 2, 3 are the spatial and material
coordinates of the continuum particle, respectively. Accord-
ing to the Cauchy-Born rule, the tensor function F i = F (X)
has a macroscopic meaning and results from the solution of
the system of equations of continuum mechanics (obviously
obtained by the finite element method).

2. For periodic nanoscale systems, the Parrinello-Rahman
model is most frequently used [2, 12, 13]. Thus the calcula-
tional cell Ω (Representative Volume Element RVE) with vec-
tors H1, H2, H3, which span the edges of Ω, is introduced
(Fig. 1). Forming the matrix H = (Hαβ), whose columns
constitute coordinates of the vectors Hα, α = 1, 2, 3, one
can express the position vector ri, related to the corner of Ω
as origin, in terms of this matrix and scaled coordinates siα

as follows ri = Hαsiα = (Hαβsiα) = H · si (summation
over index α). Regarding the components Hαβ , as general-
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ized variables and denoting its initial values by H0
αβ , one can

write
Riβ = H0

αβsiα ⇒ siα =
(

H0
αβ

)

−1
Riβ

⇒ riβ = Hαβ

(

H0
αγ

)

−1
Riγ .

Fig. 1. The Parrinello – Rahman cell

Hence the matrix

F = H · (H0)
−1, (3)

which couples the vectors rij and Rij , stands for the defor-
mation gradient of the RVE.

3. In the case of an arbitrary arrangement of the points
(without periodicity cell) the atomic strain tensor proposed in
[14] is introduced, by using the Voronoi and Delaunay tessel-
lation of space. For any atom (i) the displacement gradient
in the form

∇ui =

NT
∑

j=1

kij

∂uij

∂x
(4)

is defined. Here are: kij – the volume fraction of Voronoi
polyhedron that falls inside the j-th Delaunay tetrahedron,
NT – the number of tetrahedrons, uij = rij − Rij . It is
assumed that in the interior of the Voronoi polyhedron the
relative displacement uij is treated as a function of xα in
a given Cartesian coordinate system. From (4) it follows that
F i = 1 + ∇ui (here 1 stands for unity tensor).

4. Another proposal for arbitrary set of points is presented
in [15]. This definition takes the form

F i =





Ni
∑

j=1

rij ⊗ Rij



 ·





Ni
∑

j=1

Rij ⊗ Rij





−1

(5)

as a result of minimization of the function d(F i) =
Ni
∑

j=1

|rij − F iRij |2. Here Ni means the number of molecules

interacting with the atom (i) in the space tesselation. Hav-
ing F i, the strain tensor, defined similarly like in continuum
mechanics in the form

Ei =
1

2

(

F T
i · F i − 1

)

(6)

can be introduced.
For the control volume V the total tensor E = 1

V

∑

i

ViEi

is defined, where the quantity Vi stands for the volume of the
Voronoi polyhedron of the atom (i).

Especially two scalars: the local dilatation ε =
trEi = Ei

αα, and the local deviatoric distortion γ =
[

2
3 tr

(

Ei − 1
3ε1

)]
1

2 are frequently used. After the well known
polar decomposition of the deformation gradient F i = QiU i,
where U i is the symmetric right hand stretch tensor and Qi

is an orthogonal tensor, one obtains U2
i = F T

i F i. With the
use of U i the generalized strain measures

Em =
Um − 1

m
(7)

are defined. For m = 2 it means the well known strain tensor
of Cauchy-Green. The limit for m → 0 gives the Hencky’s
logarithmic measure of strain E = lnU = (lnλkδkj) (no
summation over k!), where j, k = 1, 2, 3, λk denotes the k-th
eigenvalue of U , δkj is the Kroneker symbol and brackets
stand for a matrix.

In the paper [16] the strain tensor in the form

Ê =

3
∑

k=1

f(λk)wk ⊗ wk, (8)

is introduced, where f(λk) denotes an arbitrary chosen
monotonically increasing function, satisfying the conditions

f(1) = 0,
df

dx

∣

∣

∣

∣

x=1

= 1, and wk are the eigenvectors of U .

Tensor (8) was used in [16] in atomistic simulation of quan-
tum dot.

The most natural way to introduce the notion of stresses
at the molecular level is the application of the virial theorem
[17, 18]. Let us consider a system of points with velocities
vi, subjected to forces resulting from the potential, which
depends explicitly on mutual distances rij = |rij |. For the
system of points in RVE the principle of the dyadic moment
of momentum can be written [17]

κ̇0 =
∑

i

1

V





∑

j

f ij ⊗ rij − mivi ⊗ vi



, (9)

where κ0 =
∑

i

ri ⊗ mivi is the tensorial moment of mo-

mentum with respect to the origin point 0, f ij =
∂U

∂rij

rij

rij

=

χijrij is the interaction force, where χij =
1

rij

∂U

∂rij

, and V is

the volume of the RVE. Equation (9) expresses the Clausius
virial theorem known in statistic mechanics and molecular
dynamics (see also [18]).

Hence the expression

σi =
1

V





∑

j

f ij ⊗ rij − mivi ⊗ vi





=
1

V





∑

j

χijrij ⊗ rij − mivi ⊗ vi



 ,

(10)

defines the molecular virial stress tensor, which, as one can
see, is symmetric.
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The term σk
i =

1

V
mivi ⊗ vi called kinetic tensor, de-

scribes the kinetic contribution to the momentum flux (sim-
ilarly like in continuum mechanics for particles in Eulerian
description), whereas the first term defines the tensorial mo-
ment of forces.

This tensorial moment, having the meaning of stress, can
be obtained also in a different manner, by expressing the po-
tential U(r) by means of strains according to a formula

rij =
√

rijrij =
√

(2Ei + 1) : Rij ⊗ Rij , (11)

hence U(rij) = U(Ei). Thus the tensor

Si =
1

V0

∑

j

∂U

∂Ej

=
1

V0

∑

j

∂U

∂rij

∂rij

∂Ei

=
1

V0

∑

j

1

rij

∂U

∂rij

Rij ⊗ Rij =
1

V0

∑

j

χijRij ⊗ Rij ,

(12)
where V0 is the volume before deformation, corresponds to the
definition of the second Piola-Kirchhoff stress tensor known
in elasticity. Similarly the formula

T i = SiF i =
1

V0

∑

j

1

rij

∂U

∂rij

F i · Rij ⊗ Rij

=
1

V0

∑

j

χijrij ⊗ Rij =
1

V0

∑

j

f ij ⊗ Rij ,

(13)

defines the first Piola-Kirchhoff stress tensor. Multiplying (13)

by J−1F T
i , where J =

V

V0
, one obtains the molecular Cauchy

stress tensor

σ
p
i = J−1F T

i T i
R =

1

V

∑

j

f ij ⊗ rij , (14)

which coincides witch the potential part of (10).
In the Parinello-Rahman model the stress tensor appears

as a result of the Lagrangian formulation of the equations of
motion. It is namely for the system with varying cell

L = E−U =
∑

i

miHṡi · Hṡi

2
+

MḢsi · Ḣsi

2
− U(Hsij),

where Hṡi stands for the molecule velocity vi, Ḣsi called
steam velocity is the rate of the cell, M means the mass of
RVE, and E is the kinetic energy of the system. Remark:
in this model the cross multiplication terms Ḣsi · Hṡi and
Hṡi ·Ḣsi are neglected. Treating the components of the lat-
tice origin vector Hα, Hαβ , as generalized variables, one can
obtain the following expression for the generalized force

∂L

∂Hαβ

= −
∑

i



−miHṡi · ṡi +
∑

j

χijrij ⊗ sij





= −
∑

i





1

V



−miHṡi · Hṡi +
∑

j

χijrij ⊗ rij







H−1V .

The term inside square brackets corresponds with (10),
since sij = H−1rij , and H−1V = A means the so called

“area tensor” (see [19]). Thus we have
∂L

∂Hαβ

=
∑

i

σi · A.

Remark: one should emphasize that the kinetic term σk
i

in (10) has no effect on true (Cauchy ) stress tensor, since
it violates the objectivity rule (when the set of atoms with

forces being in equilibrium

(

∂U

∂rij

= 0

)

moves in rigid mo-

tion, all stress components vanished in the ensemble, whereas
the kinetic term remains different from zero). More about the
virial stresses see also in [20–22].

Extending the Cauchy-Born rule on the higher order de-
formation gradient in the form (see [23])

rij = FRij +
1

2
∇F : Rij ⊗ Rij , (15)

enables taking into account the local inhomogeneous deforma-
tion. The above formula is in correspondence with the quadrat-
ic term of Taylor series included in continuum mechanics in
the frame of the so called second gradient theory, basing on

the expansion ∆x = FdX +
1

2
∇F : dX ⊗ dX . In that case

the potential takes the form U(rij) = U(F ,∇F ), and hence

T H =
1

V0

∂U

∂∇F
=

1

2V0

∑

j

f ij ⊗ Rij ⊗ Rij , (16)

defines the third order tensor of hyperstresses, whose compo-
nents describe the intrinsic reaction of the particle system on
the inhomogeneous deformation.

In molecular dynamics simulations most frequently the
Cauchy microstress tensor (10) is used.

The current position vector ri of the particles results from
the solution of the equations of motion, which in the case of
two body potentials takes the form

mir̈i =
∑

j

1

rij

∂U

∂rij

(rj − ri). (17)

3. The continuum atomistic model

As mentioned in the introduction, the approaches with the
mixed continuous – molecular description of nanomaterials
are frequently used [24–27]. The idea of this kind of model-
ing is based on the experimentally verified assumption, that
many mechanical properties and behaviors of nanostructures
can be effectively described by using continuum mechanics
models (e.g. for rods, beams, 2D and 3D continua), provided,
that the constitutive laws of the material take into account
molecular interactions. The fact, that efficient FEM calcula-
tions with molecular material description can be performed,
opens new perspectives for investigations in mechanics, ma-
terial science, and their applications.

Then we have for the material potential U(rij) =

W (rij(E)) = W
(√

(

2Ei
KL + δKL

)

RijKRijL

)

, KL =
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1, 2, 3 (RijK are coordinates of the vector Rij). Hence

SKL =
1

V0

∂W

∂EKL

=
1

V0

∂W

∂rij

∂rij

∂EKL

=
1

V0

∑

j

χij (rij)RijKRijL,
(18)

defines the constitutive equations of the nanomaterial, which
coincides with definition (12).

The continuum atomistic equation of motion reads




1

V0

∑

j

χijRijKRijLFkL





,K

+ ρRbK = ρRük,

k = 1, 2, 3,

(19)

where ρR is the reference density and (, ) means differentia-
tion.

Starting with the continuum mechanics solution of the
system by expressing the displacements in the obvious FEM
form

uk(x, t) =
∑

α

Nkα(x)qα(t), (20)

we obtain the standard matrix equation

Mαβ q̈β = F ext
α − F int

α . (21)

where

F ext
α =

∫

V

ρbkNkα(x)dV +

∫

S

pkNkα(x)dS,

F int
α =

∫

V

SKL(rij(x))FkL

∂Nkα(x)

∂xK

dV ,

Mαβ =

∫

V

ρNkα(x)Nkβ(x)dV ,

and ρ is density, bk – density of the mass loads, pk – surface
tractions (all indexes K , L and k are subject to summation
according to the tensor rules).

The term F int
α generally leads to strongly nonlinear struc-

ture of the stiffness matrix, due to the material nonlinearity
(18). Thus an iterative solution strategy in the form of incre-
mental approach is usually used.

4. Carbon nanotubes

As an example of the nanostructure, for modeling of which
both molecular and continuous FEM description are often
used, we mention CNTs. Since they posses unusual mechani-
cal properties, like the strength Rr = 300 · Rsteel

∼= 150 GPa,

Young’s modulus E = 9 ·Esteel, fraction a =
Rr

ρ
= 12, where

it is a = 2 for Kevlar, and a = 6−8 for diamond (for steel as
a master fraction a = 1). Properties of CNT depend on chiral-
ity, defined by the chirality vector c = na1+ma2 = c(n, m),
where a1, a2 are basic vectors of the net structure of the CNT.
One can distinguish the “zig-zag” structure with c(n, 0), the
“armchair” structure with c(n, n), and arbitrary chirality with

c(n, m). Lots of experimental data as well as numerical simu-
lation results have been published since CNTs were discovered
by Iijima in 1991 [28]. Stiffness coefficient

k (r) =
f (r)

r − R
=

∂U

∂r
r − R

and Young’s modulus ECNT(r) =
1

r − R

∂U

∂r

R

A
, A =

πd2

4
, d

– bond diameter, as functions of molecular interactions calcu-
lated with the use of the spring and beam models respectively,
are given in [29]. More details about modeling of CNTs can
be found in [30–35].

5. Numerical examples

We end the presentation of modeling of deformations and
stresses in nanomaterials by simple examples of numerical
simulations. Computations were performed by means of mole-
cular dynamics code LAMMPS [36].

5.1. Crack propagation in the copper sheet. This is a stan-
dard numerical test of molecular modeling of stress distri-
bution in nanostructures. We consider a rectangular copper
sheet of dimensions 865.36 × 626.45 A◦, with an oblique
crack obtained by removing 42 atoms from the whole set of
93767 atoms with masses mi = 63.52 g/mol.The Morse po-
tential U = D0

[

e−2α(r−r0) − 2e−α(r−r0)
]

for r ≤ rc, with

parameters for copper D0 = 0.17337 eV, α = 2.320783
1

A◦
,

r0 = 2.588754 A◦ has been used. Positions were defined on
a hexagonal lattice. The initial velocities were assigned tak-
ing from a Maxwell distribution at a temperature 273 K. The
initial equilibrium was reached after 100 steps. Tension in the
horizontal direction was induced by the means of velocities

vx = 0.0518
A◦

p sec
, applied to vertical edges of the sheet. The

crack propagation and stress distribution obtained by solv-
ing equations (17) and using formula (14) are presented in
Figs. 2–5. Stresses presented in Fig. 5 were calculated af-
ter “freezing” the system in the final configuration by adding
dumping viscous forces proportional to atom’s velocity.

Fig. 2. Deformation at extension 3.3%
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Fig. 3. Deformation at extension 3.7%

Fig. 4. Deformation at extension 4.1%

Fig. 5. Stress distribution along the crack propagation direction (from
the crack tip to the sheet’s edge)

5.2. Graphene sheet and CNT. Graphene sheets of chirali-
ty (6,6) and (10,0), and corresponding to them armchair and
zig-zag nanotubes have been considered. Morse potential with

data D0 = 2.894188 eV, α = 2.625
1

A◦
, r0 = 1.42 A◦ has

been used. Temperature was set to 10 K. Graphene sheets and
CNTs have been subjected to tension by applying velocities
to vertical edges. Final stretching equals 10%. The resultant
deformation are presented in Figs. 6–9.

Fig. 6. Deformation of the zigzag graphene

Fig. 7. Deformation of the armchair graphene

Fig. 8. Zigzag CNT before and after deformation

Fig. 9. Armchair CNT before and after deformation

6. Conclusions

Two approaches, most frequently used to describe mechani-
cal phenomena at the nanoscale level, were presented. First is
the molecular dynamics approach. In frame of this descrip-
tion different deformation measures were shortly demonstrat-
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ed. Analogously to the continuum mechanics three kinds of
stress tensors were introduced. The second approach, consis-
tent with continuous description, is modified by formulation
of material’s constitutive laws taking into account molecular
interactions. This proposition, representing pure phenomeno-
logical point of view, seems to be very promising for en-
gineering applications, particularly in the case of CNTs and
nanocomposites. On this occasion it is worth noting, that ac-
cording to [25] a CNT composite fibers were manufactured,
which were 100 m long, 50 µm in diameter, containing about
60% SWNTs, and having a tensile strength of 1,8 GPa. Pro-
ducing of this kind of structural elements with macroscale di-
mensions is a great challenge for the future engineering. Thus
suitable and proper methods of designing and modeling, with
nanoscale effects taken into account, are very desirable and
up-to-day. Methods presented in this paper can be treated also
as a part of multiscale modeling of structures, as well as cur-
rent extension of investigations in the field of continua with
microstructure.
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