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Abstract. The paper considers the machine-part grouping problem, as equivalent to partitioning the set of machines and operations into
subsets, corresponding to block diagonalisation with constraints. The attempts to solve the problem with clustering methods are outlined. The
difficulties encountered are presented, related to (i) ambiguity of formulations; (ii) selection of criteria; and (iii) lack of effective algorithms.
These are illustrated in more detail with a limited survey of similarity and distance definitions, and of criteria used, constituting the main
body of the paper. The return is proposed to the basic paradigm of cluster analysis, as providing simple and fast algorithms, which, even if
not yielding optimal solutions, can be controlled in a simple manner, and their solutions improved.
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1. Introduction

Among the formal problems in so-called “flexible manufac-
turing” a persistent element is constituted by “optimum di-
vision of production space” according to machines and oper-
ations. This issue is referred to as “group technology cell
formation”, “machine-part grouping”, “cellular manufactur-
ing”, “part family & machine cell formation” etc. If, namely,
machines used, indexed i ∈ I = {1, . . . , n}, can execute
operations from the sets Ki = {k1i, . . .} of cardinality mi,
then, given the financial and physical constraints (buildings,
transport) and costs, the problem arises of dividing the set of
machines, I , into subsets and assigning to these subsets opera-
tions k ∈ K , so as to optimise a production organisation qual-
ity criterion. This very general criterion, if maximised, usually
reflects “density” of operations within the machine groups es-
tablished and “sparseness” of operations outside these groups.
Additional aspects, complicating the formulation and solution
of the general problem are timing, costs, sequencing of op-
erations, possibility of multiplication and costs of machines,
as well as various limitations on groups. In what follows, we
shall be referring to the general problem outlined as MPG,
for machine-part grouping.

Since the beginning of the 1970s attempts were undertak-
en to solve this problem with the clustering methods. A num-
ber of respective studies appeared, in which (i) the quality
criterion is formulated in a variety of manners (the differences
resulting from both the ambiguity of the problem and consid-
eration of additional aspects); (ii) various solution methods
are proposed, starting with the classical algorithms of cluster-
ing, through their newer variants, including the use of various
metaheuristics, up to the methods only indirectly referring to
cluster analysis (e.g. uniquely by the form of the quality cri-
terion).

This paper contains a short survey of the MPG models and
the proposed clustering methods, as well as those referring to
the notions proper for cluster analysis. The existing difficul-
ties, technical and substantial, are characterised, and certain
proposals are forwarded, meant to help in further work in the
field. The main body of the paper is constituted by (limit-
ed) surveys of similarity or distance definitions used and the
criteria proposed and optimised.

2. The domain, fundamental notions and issues

Assume we deal with a set of “machines”, numbered by in-
dex i, i ∈ I = {1, . . . , n}, and a set of “operations” (“part
processes”), numbered by index k ∈ K = {1, . . . , m}. Each
„machine” can perform operations from a set Ki ⊆ K , with
∪iKi = K , and, in general (luckily), Ki ∩Kj 6= φ, ∀i,j ∈ I .
Assume also that the set of “operations” K exhausts a certain
“technological process” (or a set of “technological process-
es”), having as output a definite product or a group of prod-
ucts.

In quite a natural manner, then, a problem arises of “(op-
timum) production organisation”: to group together machines
engaged in similar sets of operations, and to separate machines
engaged in different ones. Such production organisation would
lead to minimisation of the (unnecessary) „transport” activi-
ties, transitions between machines, and other “slack” opera-
tions. Let us add that it is unimportant whether the groups of
machines obtained (“production cells”) are actually spatially
isolated or only appropriately spatially organised.

Numbers i and k can be treated, respectively, as indices
of rows and columns of a matrix, containing problem data.
This is the “incidence matrix”, A = {aik}, whose elements
inform, whether machine i performs operation k (aik = 1),
or not (aik = 0). It is easily seen that this formulation of
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the MPG problem can be interpreted as the problem of such
(“optimal”) permutation of columns and rows of matrix A as
to obtain the block-diagonal structure, formed out of the ele-
ments aik = 1. The blocks, composed of 1’s, situated along
the main diagonal of the matrix, would correspond to the
machine groups obtained.

Assume we obtained through such a permutation a matrix
A∗, resulting from our effort to build possibly homogeneous
blocks of 1’s along the main diagonal of the matrix, leaving
possibly all 0’s outside of the blocks. Assume further that
the number of such explicit blocks, indexed q, is p∗, so that
q = 1, . . . , p∗. We can now classify all entries of A∗ in the
following manner: (i) 1’s inside blocks; (ii) 0’s outside blocks;
(iii) 1’s outside blocks, and (iv) 0’s inside blocks. In the light
of the previous remarks concerning “optimum organisation”
one could formulate in very general terms the following ob-
jective function, depending on A∗, and reflecting cost, to be
minimised:

Total cost (A∗) = ΣqC(q) + kiiiΣc(ik : 1’s outside blocks)
+kivΣc (ik: 0’s inside blocks),

where block-proper costs C(q) are composed of block setup
cost (which would depend on the magnitude of the block, but
less than linearly) and a function of operation costs, cik, for
ik belonging to the block. Thus, generally, the less blocks,
the better from the point of view of the first component of
the cost function, but, of course, the other two components
are then bigger. The coefficients kiii and kiv reflect the differ-
ence of costs, related to the necessity of performing “isolated”
operations, involving, in particular, losses related to internal
transport, and to the unused capacity of a block. This formu-
lation, even though only illustrative, serves to emphasise the
essential “structural” features of the problem considered.

This illustration introduces, as well, some important as-
pects of the problem, namely: (i) one should not expect obtain-
ing, in general, the “ideal” solutions, in which there are no 1’s
outside of blocks and 0’s inside them; (ii) the thus formulated
problem lacks uniqueness (how to evaluate the potentially dif-
ferent structures A∗ obtained?); and, crucial for our purpose
here: (iii) the pairs of rows (machines), as well as pairs of
columns (operations), situated in the (“well-behaved”) output
matrices side by side – within the blocks or outside of them –
are, as a rule, “similar”, while the pairs of rows and columns,
situated far away, are clearly different.

Thus, permutation of rows and columns, leading to the
block-diagonal structure, appears to yield the desired proper-
ties of the solution and feature simplicity, but its implemen-
tation requires resolving of a number of basic issues:

(i) The quality criterion and the ideal structure. It is nat-
ural to evaluate solution A∗ with (say, without loss of gen-
erality, non-negative and increasing) function Q(A∗, A) of
the number of 0’s in blocks and 1’s outside of them. The
“ideal structure” would, then have Q(A∗, A) = 0. This
case is, though, particular, as (“statistically”) exceptional,
and specialised methods can be applied to obtain it, if we
know it exists. Hence, we assume that for the best practi-
cable solutions, Q(A∗, A) > 0.

(ii) Uniqueness of formulation. This issue is reflected in
diversity of forms of Q(A∗, A). Let us note at least the
following sources of this ambiguity: (a) do 0’s in blocks
and 1’s outside of them weigh the same? (b) what should
be the reference for the numbers of 0’s in blocks and 1’s
outside of them?

(iii) Similarity of machines and parts. It is the observation
that block-diagonal structure is formed by groups of ma-
chines and/or parts mutually “similar” that constitutes the
basis of using the paradigm of cluster analysis. Yet, from
this intuitive observation to effective algorithms, optimis-
ing definite functions Q(A∗, A), it is indeed far.

There is also a very important issue of realistic modelling
of aspects, for which the model presented is only a rough ap-
proximation. Let us only mention some these aspects: (a) pos-
sibility of multiplying the machines: if solution can be im-
proved by using machine i in more than one block (which
ought to have a reflection in terms of cost and can be ac-
counted for by applying function Q(A∗, A) from a definite
class); (b) use of matrix A containing natural or real numbers,
reflecting not just the fact of using machine i in operation k,
but also, say, cost or time; (c) constraints, concerning parame-
ters of the blocks, such as number of machines in a block, or
number of operations, etc.; (d) requirements (taking also the
form of constraints), concerning sequencing of operations (so
that permutations of columns k are limited). Note that aspect
(b) can be accounted for through appropriate distance defini-
tion. Aspects (a) and (c), though, require much more complex
approaches.

On the top of these there are, of course, numerous oth-
er considerations, of quite specific and detailed nature, like,
for instance, the way the parts and subassemblies are moved
around production space (transport means, routes, distances,
etc.). All this has an impact on the potential concrete formula-
tion of the problem in terms of both the quality criterion and
the similarity of machines / parts. Hence, the overall structure
of the domain may be perceived as composed of three layers,
like in Fig. 1.

Fig. 1. The overall perception of the problem domain and the ele-
ments of modelling and solution approaches

As indicated already, we assume that the general form of
the problem is adequately represented by the drive towards
block-diagonalisation of the incidence matrix (which is, in-
deed, a sweeping assumption), and focus on specific issues,
associated with two other layers, that is – the one of criteria
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and algorithms, with emphasis on clustering, and of similari-
ties between machines / parts. (We shall be using indistinctly
the terms “distance” and “similarity” in view of the unique
mutual relation between the two, given the strict monotonicity
of this mutual relation).

Let us also add that MPG, being a problem in organ-
isation of production space, is closely related to the facility
layout problem as it is often formulated and the methods used
are often the same or very similar.

3. Attempts to apply clustering

3.1. The concept and its realisation. The fact that the block-
diagonal structure corresponds in a way to the structure of the
appropriately defined similarities / distances caused already at
the beginning of the 1970s an interest in cluster analysis as
a potential solution methodology. It appeared that the para-
digm of cluster analysis: for a set of given objects divide it into
subsets so as to have objects belonging to the same subsets
possibly similar and objects belonging to different clusters –
possibly dissimilar, fits well the problem solved (similarity and
dissimilarity being, of course, expressed through distances).
The proposal for such a way of proceeding was forwarded,
largely independently, by Burbridge [1], McAuley [2], and
Carrie [3]. This started an ample literature on the subject.
The studies and the publications were especially abundant in
the 1980s. In the middle of the 1990s the publications ap-
peared summing up the work done, achievements and failures
(e.g. Cheng, Kumar and Motwani [4]; Crama and Oosten [5];
Sarker and Mondal [6]; Sarker and Khan [7]; Kulkarni and
Kiang [8]).

Initial attempts concerned the use of the classical, gen-
eral clustering algorithms. Yet, they did not fulfil the expec-
tations. Then, specialised methods were developed, mostly
special cases of the general algorithms. The consecutive stage
consisted in formulation of mathematical programming tasks,
modelling possibly precisely the considered aspects of the
problem, see, e.g., papers by Kusiak, Vannelli and Kumar
and [12], by Askin et al. [13], Veeramani and Mani [14].
Solving of the problems obtained with classical methods of
optimisation, though, turned out to be too difficult. The next
stage, still underway today, consisted in application of meta-
heuristics: tabu search, simulated annealing [15, 16]; genet-
ic algorithms [17–19]; simulated neural networks [8, 20–22],
or [23] (fuzzy neural networks); or ant colony (see [24] for
the facility layout problem). Regarding the methods used
to solve the facility layout problem, mentioned before, it is
worth noting that quite a similar reasoning occurred, see,
e.g. [25, 26] and [27].

Within the same “paradigm” of solving the MPG problem,
hybrid algorithms have been devised (e.g. [28]), as well as
quite special clustering procedures (e.g. [29], or [30]). Like-
wise, specialised heuristics have been designed and applied
([31], or [32], the latter dealing with an incremental cell for-
mation scheme). The continuing use of the fuzzy-set-based
clustering is represented, in particular, by [33–35], as well
as [36]. There are also, of course, attempts to use graph the-

oretical approaches, like [37]. In this context let us mention
that a whole stream of MPG-oriented methods refer to the
p-median problem (e.g. [38, 39]), as we shall also see fur-
ther on.

3.2. The essential elements of the approach. The publica-
tions mentioned, and especially the surveys, contain charac-
terisation of both the approaches associated with the classical
methods of cluster analysis, and the consecutive methodolog-
ical attempts. Here, we should mention apart the papers by
Shafer and Rogers, [40–41], devoted to a large extent to the
review of the distance / similarity definitions used (altogether
23 such definitions). Some of them are, again, well known
from the literature on clustering (Jaccard, Russell and Rao,
Dice, Rogers and Tanimoto, etc.), while other were developed
specially for MPG. Since the papers by Shafer and Rogers sev-
eral new proposals for distance definitions appeared (see, e.g.
[42, 43], or [44, 45]). Attention should be paid to the paper by
Dimopoulos and Mort [46], where an evolutionary algorithm
is proposed to evolve distance for classical agglomerative clus-
tering procedures. Within the block layout context, [25] pro-
poses simultaneous use of various distance definitions, in view
of different conditions applying to, for instance, various trans-
port means. A more general perspective is outlined in [47],
where similarity models and their applications are considered
in a general context.

For many MPG methods, especially related directly to
clustering, distance definition constitutes, in fact, one of three
essential components, indicated in Fig. 1: (A) definition of
distance (or similarity, or “proximity”); (B) quality criterion
Q(A∗, A); and (C) the method of search for A∗. The compo-
nents B and C appear in all methods, and are treated in them
in a variety of manners. In particular, in methods based on
mathematical programming, component B is complemented
with constraints, describing the problem.

Yet, a particular problem, appearing in case of applica-
tion of clustering methods is to consider both “dimensions”
of the problem, i.e. machines i and parts-operations k. The
basic paradigm of cluster analysis, namely, refers to only one
“dimension”, i.e. numbering of objects along only one index.
This causes the necessity of complementing the respective al-
gorithms with procedures concerning the other “dimension”.
Alas, such manipulations do not provide unambiguous effects
and their computational burden is comparable with that of the
initial problem.

This is also largely why in later studies direct applica-
tion of clustering algorithms was abandoned, first of all to
the advantage of mathematical programming and respective
methods. Yet, clustering continues to be applied, or at least
referred to, in view of the limitations to all the other method-
ologies (examples are [29, 30, 36, 48]),

At the end of this section let us mention that the entire
development of the domain resulted from the difficulties en-
countered on the way. Also in the most recent period, with the
use of the newest methods of optimisation, neural networks
and parallel computing, it is possible at most to somewhat
improve computational efficiency of solving MPG problems.

Bull. Pol. Ac.: Tech. 57(3) 2009 219



J.W. Owsiński

The fundamental issues, related to problem formulation and
solution methods, remain unchanged. Therefore the studies of
summarising and comparative nature search for new defini-
tions of distance and similarity, new criterion functions and
optimisation methods.

We shall now proceed to the short surveys of similarity /
distance definitions (A), first, and quality criteria (B) of the
transformed incidence matrix, thereafter. It is obvious that the
two are intimately interrelated, but, despite this, there are vir-
tually no methods, in which this association would really be
effectively exploited. This is due to the fact that, like in Fig. 1,
there must be an algorithm to optimise, and the algorithms
used and developed refer (directly) either to A or to B, but
virtually never to both.

4. Similarity and distance definitions

We have already indicated that the problem at hand has two es-
sential dimensions – machines and parts (processes). Yet, it is
also true for the vast majority of approaches, whether explic-
itly using the clustering paradigm, or not, that they overlook
this duality. There are two essential aspects to the duality, one
merely software-technical and related to reconstruction of the
block-diagonal structure from clusters (realisation of permu-
tation), but the other one much deeper, associated with the
previously mentioned relation to quality criteria. We shall not
consider these here, but simply concentrate on the definitions
and their consequences. In this section we shall largely fol-
low Saiful Islam and Sarker, [42], to then develop over their
valuable presentation. Thus, we shall be basically consider-
ing the distances between machines (machine descriptions),
notwithstanding potential applicability to distances between
part (part routes or processes), and the (possibly different)
consequences thereof.

4.1. The basic properties and definitions. We shall start
with examples of machine descriptions in order to refer to
them in providing similarity definitions, their interpretations
and envisaged consequences. The examples show, in a way,
situation for n = 4, m = 8, as an excerpt from a binary in-
cidence matrix (Table 1). We shall use notation sij and dij

for, respectively, similarities and distances between machines
i and j.

The basic structure of the fundamental set of similarity
definitions relies on the following notions:

a(i, j) – number of 1’s on the same positions in i and j (num-
ber of parts processed by both machines),

b(i, j) – number of 1’s on definite positions only in i (number
of parts processed only by machine i of the two),

c(i, j) – number of 1’s on definite positions only in j (number
of parts processed only by machine j of the two),

d(i, j) – number of 0’s on the same positions in i and j (num-
ber of parts not processed by either machine).

The values of these four basic indicators for the example
of Table 1 are shown in Table 2.

Table 1
An academic example to illustrate similarity definitions, aik values for

n = 4 and m = 8

i= k = 1 2 3 4 5 6 7 8

1 0 0 1 1 1 0 0 1

2 0 0 0 1 1 0 0 0

3 1 1 0 0 0 1 1 1

4 1 0 1 0 0 1 1 0

Table 2
Values of the indicators a(i, j), b(i, j), c(i, j) and d(i, j) for the example of

Table 1

i,j: a(i,j) b(i,j) c(i,j) d(i,j) a(i,j) + b(i,j) + c(i,j)+ d(i,j) = m

1,2 2 2 0 4 8

1,3 1 3 4 0 8

1,4 1 3 3 1 8

2,3 0 2 5 1 8

2,4 0 2 4 2 8

3,4 3 2 1 2 8

Let us also add at this point that the notion of similarity
(and, implicitly, of distance) is used in the studies reported in
quite a “relaxed” manner, meaning that certain (usual) formal
requirements (like, e.g., non-negativity) are not necessarily
kept to. Given this caveat, Table 3 presents the set of simi-
larity coefficients that are basic for the domain. To make the
content of the table clear note yet that it is most often required
that the similarity between the machines satisfy the following
properties (in further notation we omit indices i and j when-
ever they are not necessary):

P1: no mismatch, sij tends to 1 for b and c close to 0;
P2: minimum match, sij tends to 0 (or −1∗) for a and d

= 0 (or close to 0);
P3: no match, sij = 0 (or −1∗) for a = 0;
P4: complete match: sij = 1 for a = m;
P5: maximum match: sij tends to 1 for a + d tending to

m, a 6= 0 and the higher the a, the higher the sij .
∗ in reference to previous remark: the so-called non-Jaccardian
similarities (see Table 3) do not satisfy the condition of non-
negativity – their values range between −1 and +1.

The definitions, quoted as illustration in Table 3, can be
classified into three groups (i) six “Jaccardian” coefficients,
being simple relative measures, displaying varying emphasis
on different components of respective vectors (i.e. a, b, c, d);
(ii) two “non-Jaccardian” coefficients, in which “penalisation”
occurs for the mismatches between the machines, represented
by b and c; and (iii) two coefficients, explicitly developed to
satisfy the formal requirements like P1 through P5, and yet
other ones.

Following the previous review of literature let us note
that Table 3 presents just an excerpt from the exhaustive list
of definitions forwarded in the literature, of which there are
not only many more, but, as well, devices have been devel-
oped to evolve the “most appropriate” parametric definitions
within an approach to MPG. All these definitions satisfy (to
a different degree) various (sets of) requirements, formal as
well as pragmatic, and produce different values of similarity
for the same machine descriptions.
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Table 3
Machine similarity measures used in MPG

Name of measure Definition
Satisfaction of properties or their conditions

P1 P2 P3 P4 P5

Jaccard a/(a + b + c) Yes n.a. Yes Yes n.a.

Russell & Rao a/(a + b + c + d) d = 0 n.a. Yes Yes n.a.

simple matching (a + d)/(a + b + c + d) Yes Yes d = 0 Yes Yes

Rogers & Tanimoto (a + d)/(a + 2(b + c) + d) Yes Yes d = 0 Yes Yes

Sorenson 2a/(2a + b + c) Yes n.a. Yes Yes n.a

Sneath & Sokal 2(a + d)/(2(a + d) + b + c) Yes Yes d = 0 Yes Yes

Yule (ad - bc)/(ad + bc) Yes Yes Yes n.a. Yes

Hamann ((a + d) − (b + c))/((a + d) + (b + c)) Yes Yes d = 0 Yes Yes

Ochiai a/[(a + b)(a + c)]1/2 Yes n.a. Yes Yes n.a.

Baroni-Urbani & Buser (a + (ad)1/2)/(a + b + c + (ad)1/2)) Yes Yes Yes Yes Yes

Saiful-Islam & Sarker (a + (ad)1/2)/(a + b + c + d + (ad)1/2)) No Yes Yes Yes Yes

Table 4
Values of similarity coefficients for the example of Tables 1 and 2

Name of measure Definition∗
Values of similarity for machines i, j

1,2 1,3 1,4 2,3 2,4 3,4

Jaccard a/(a + b + c) 2/4 = 0.50 1/8 = 0.125 1/7 = 0.14 0 0 3/6 = 0.50

Russell & Rao a/m 2/8 = 0.25 1/8 = 0.125 1/8 = 0.125 0 0 3/8 = 0.375

simple matching (a + d)/m 6/8 = 0.75 1/8 = 0.125 2/8 = 0.25 1/8 = 0.125 2/8 = 0.25 5/8 = 0.625

Rogers & Tanimoto (a + d)/(m + b + c) 6/10 = 0.60 1/15 = 0.07 2/14 = 0.14 1/15 = 0.07 2/14 = 0.14 5/11 = 0.45

Sorenson 2a/(2a + b + c) 4/6 = 0.67 2/9 = 0.22 2/8 = 0.25 0 0 6/9 = 0.67

Sneath & Sokal 2(a + d)/(m + a + d) 12/14 = 0.86 2/9 = 0.22 4/10 = 0.40 2/9 = 0.22 4/10 = 0.40 10/13 = 0.77

Yule (ad - bc)/(ad + bc) 8/8 = 1.00
− 12/12
= − 1.00

− 8/10
= − 0.80

− 10/10
= − 1.00

− 8/8
= − 1.00

4/8 = 0.50

Hamann ((a + d) - (b + c))/m 4/8 = 0.50
− 6/8

= − 0.75
− 4/8

= − 0.50
− 6/8

= − 0.75
− 4/8

= − 0.50
2/8 = 0.25

Ochiai a/[(a + b)(a + c)]1/2 2/2.83 = 0.71 1/4.47 = 0.22 1/4 = 0.25 0 0 3/4.47 = 0.67

Baroni-Urbani & Buser (a + (ad)1/2)/(m - d + (ad)1/2))
4.83/6.83

= 0.71
1/8 = 0.125 2/8 = 0.25 0 0

5.45/8.45
= 0.64

Saiful-Islam & Sarker (a + (ad)1/2)/(m + (ad)1/2))
4.83/10.83

= 0.45
1/8 = 0.125 2/9 = 0.22 0 0

5.45/10.45
= 0.52

∗ here, identity a + b + c + d = m is used for simplicity

Now, Table 4 shows the values of the similarity coeffi-
cients for the pairs of machines from Tables 1 and 2.

The values, appearing in Table 4, are telling not just be-
cause of the differences between various definitions (why
should one bother forwarding new definitions, if they were
only to reproduce values known for other ones?), but in view
of the “reversals”, essential for the grouping, or clustering pro-
cedures. Thus, while it is obvious that in the example treat-
ed the pairs of machines (1,2) and (3,4) are candidates for
groups, the degree of similarity in these two groups differs
significantly depending upon the definition:

pair (3,4) is more coherent than (1,2) according to 2 me-
asures,

pairs (3,4) and (1,2) are equally coherent according to 2
measures,

pair (3,4) is less coherent than (1,2) according to 7 mea-
sures,

should we apply a voting procedure?
So, Tables 3 and 4 illustrate the fundamental aspect that

we wish to emphasise here, and to which we shall yet be
returning: on the one hand, there is relative facility of for-
warding and using various distance and similarity measures,
ensuring high degree of flexibility with respect to the poten-
tial different concrete problem formulations, but, on the other
hand, the choice is not guided by a formal procedure or strict
conditions that would relate the problem formulations to the
(properties of the) similarity coefficients.

This aspect is also very well visible within the next level
of consideration, namely that of quality criteria.

5. Evaluation of solution quality

5.1. Initial notions. Let us introduce the following notations
(matrices A and A∗ are of dimensions n × m):

G – number of 1’s in the matrix,
T – number of 0’s in the matrix, i.e. G + T = nm,
E – number of 1’s outside of the block-diagonal structure A∗,
F – number of 1’s in the block-diagonal structure, i.e.

E + F = G,
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V – number of 0’s in the block-diagonal structure,
W – number of 0’s outside of the block-diagonal structure,

i.e V + W = T ,

hence:
E + F + V + W = G + T = nm, and:
E + W = number of elements outside of the block-diagonal

structure A∗,
F +V = number of elements in the block-diagonal structure.

Note that, for a concrete problem, G and T are given “pa-
rameters” of the problem. In particular, G/(G + T ) ∈ (0, 1)
is the density of the matrix. This information is very “super-
ficial”, and we would like to know more on the configuration
of 1’s and 0’s in matrix A, and not only their shares. Yet, this
particular kind of information is contained in the solution we
look for.

The paper by Nair and Narendran [49], contains quite a de-
tailed analysis of the quality indicators, based primarily on the
quantities introduced above.

5.2. The quality criteria applied. The simplest indicator,
broadly used in literature, is the “share of exceptions” (“excep-
tional operations”), denoted SE, SE = E/G = E/(E +F ). It
is the share of 1’s outside of the block-diagonal structure in
the total number of 1’s, which is being minimised in the set
of admissible matrices A∗, that is – the divisions of G into
E and F . Yet, the most known forms of the indicators are
“grouping efficiency”, GI, and “grouping efficacy”, GE.

The first one is defined as GI = rG(1) + (1 − r)g(0),
r ∈ [0, 1] being the weight coefficient, G(1) = F/(V + F )
(share of 1’s in the block-diagonal structure, BDS), and
g(0) = W/(E + W ) (share of 0’s outside of BDS). This
indicator is, of course, maximised.

Grouping efficacy, on the other hand, is defined as GE =
(1 − SE)/(1 + SV), where SE is the “share of exceptions”,
and SV, analogously, is the “share of empty operations”, i.e.
SV = V/G = V/(E + F ), that is – the ratio of 0’s in BDS
to the total number of 1’s. By simple transformations we ob-
tain the expression for GE, i.e. GE = (G − E)/(G + V ) =
F/(G + V ) = F/(F + V + E).

Another class of BDS quality criteria relates not so much
to the entire matrix, or to all the operations, G, as to the
obtained “block-diagonal field”, BDS (F + V ). And so, the
counterpart of the “grouping efficiency”, related to the “block-
diagonal field”, is ge = (1−E/(F +V ))/(1+V/(F +V )) =
(F + V −E)/(F + 2V ). This indicator was yet further mod-
ified in the successive studies to the definitely much more
complex parametric form (parameter r), that is:

ger = (1 − (rV + (1 − r)E)/(F + V ))/

(1 + (rV + (1 − r)E)/(F + V )) =

= (F + (1 − r)(V − E))/(F + V (1 + r) + (1 − r)E).

This indicator was then transformed to other forms of the
BDS quality criteria. In particular, the form

gerq = (1 − (rV + (1 − r)(E − Q))/

(F + V ))/(1 + (rV + (1 − r)(E − Q))/(F + V )),

was proposed, with yet another variable, defined as follows:

Q = 0 for E ≤ F + V ,

Q = E − (F + V ) for E > F + V .

This indicator was analysed in detail in [49]. Sarker
and Khan [7], consider yet, mainly following other authors,
a broader range of criteria, referring to the here introduced
notions.

The first of those is the “weighted grouping efficiency”,
Ger, defined as Ger = (r(G−E))/(r(G+V −E)+(1−r)E),
with weight r. It can be easily established that = rF/(r(F +
V )+ (1− r)E). Another indicator, quite simple, on the other
hand, is SI = 1−E/G, i.e. SI = 1−E/(E+F ) = F/(E+F ),
that is – the counterpart of the minimized indicator SE

on the “positive” (maximized) side. The next simple indi-
cator was called “grouping measure”, and was defined as
GM = F/(F + V ) − E/G.

Sarker himself proposed the “doubly weighted grouping
efficiency measure”,

GI2 = ((r1F + (1 − r1)V )/(F + V ))

((r2F + (1 − r2)E)/(F + E)),

referring to similar prerequisites as the preceding indicators.
The subsequent indicators have somewhat different pre-

requisites, such as, for instance, grouping of 1’s possibly
close to the main diagonal of the matrix A∗, or maximis-
ing the similarities of rows and columns. We shall quote here
the indicator, corresponding to the former prerequisite, the
so-called “clustering measure”, GC, GC = (Σik(δ2

h(aik) +
δ2
v(aik))1/2)/Σikaik, where δh(.) and δv(.) are functions of

distance along, respectively, rows and columns, of the ele-
ments aik of matrix A∗ from the diagonal, defined as:

δh(aik) = i − k(n − 1)/(m − 1) − (m − n)/(m − 1)

for aik 6= 0, and δh(aik) = 0 for aij = 0,

and, analogously,

δv(aik) = k − i(m − 1)/(n − 1) + (m − n)/(n − 1)

for aij 6= 0, and δv(aik) = 0 for aik = 0.

For the sake of completeness, we shall quote yet in this
short survey of the quality indicators of the BDS a criterion
which gained significant popularity, even though its sense is
not directly related to the problem here considered. This is,
namely the “bond energy measure”, see, e.g., [9], considered
in [7] in a normalised version, that is,

Gep = (Σikaikai,k+1 + Σikaikai+1,k)/Σikaik,

where we consider the elements aik of matrix A∗ within the
appropriately defined summation limits or assume values of
aik along the borders of the matrix.

A separate group, that we only mention here, is constitut-
ed by the indicators based on quality measures defined for the
quality of partitioning into groups along rows and columns,
usually in the form of a pair of indicators, for rows and for
columns.

And so, similarly as for the definitions of distance, the lit-
erature of the subject contains numerous indicators of quality
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of the BDS, some of them quite complicated and far from in-
tuition. A typical example of such a quite complex indicator is
provided in [17]. It refers directly to the division into groups,
entailing division into blocks, and accounts for three compo-
nents: (i) linked with measure of similarity between blocks
(though only with respect to one dimension); (ii) linked with
the similarity inside blocks (actually: the number of 1’s inside
blocks), and (iii) the number of blocks.

This quality function is characteristic for the situation here
considered in which, not being able of formulating a unique
quality criterion, we look for solutions, which satisfy several
criteria, considered simultaneously within the framework of
one function, or the objective function and constraints. Let
us note that the problem considered is indeed very similar to
identification of “notions” or “rules” in data matrices, espe-
cially if these matrices are binary, or strongly discrete (small
number of values of aik). This is one of the fundamental
problems in data analysis (see Bock [50]). No wonder, then,
that the objective function analysed in [17] in the context of
application of genetic algorithms in solving the problem con-
sidered, is analogous to the objective function proposed by
Stańczak [51], in the search for rules in a discrete matrix.

5.3. The reasons for and the directions of search. The di-
versity of formulations of the quality indicators of the BDS
stems from the wish of making them match certain intuitive,
or more formal, representations of the role of such an indi-
cator. And so, in design of successive forms here quoted, the
following prerequisites were taken into consideration:

– non-negativity of the indicator value and/or taking of val-
ues from the interval [0,1];

– independence of the problem dimensions, expressed
through n and m (e.g. normalisation);

– independence of the “density” of matrix A, expressed
through G/(G + T );

– possibly equilibrated weight of the 1’s outside of the BDS
(E) and 0’s inside it (V ); yet, with respect to this aspect
there is a frequent postulate of regulating the weights of E
and V ; it is necessary to know a priori the principles of this
regulation, as well as the range of the respective coefficient
(this applies, in particular, to “grouping efficiency”, GI, in
which, in cases of large and sparse matrices, in order to
balance out the influence of values composing E and V ,
very small values of r should be selected).

Notwithstanding these “detailed” postulates, hard to sat-
isfy simultaneously, there are also two more general ones,
applying by no means only to the here considered problem:

– the simplicity and intuitive appeal of the quality indicator
as the model of the problem,

– facility of (carrying out, designing the procedure of) opti-
mising with the help of the indicator.

Let us add that since in the majority of methods explicit
or implicit distance or similarity measures are used, as shortly
commented upon in Sec. 4, it should have been hoped that
a correspondence exist between the BDS quality indicators

and these distance/similarity definitions, ensuring both bet-
ter results of the respective procedure, and its more effective
working. Alas, owing, on the one hand, to the variety of for-
mulations, supposed to express the same aspect of the concrete
problem considered, and lack of formal relations between the
quality criteria and similarity definitions, the choices with this
respect are made on the basis of “common sense”, with lit-
tle possibility of a priori assessment of the consequences of
choices made.

In effect, the whole domain considered is devoted to the at-
tempts of fulfilling the above stipulations. Therefore the mul-
tiplicity of empirical, theoretical and comparative studies. In
the face of the still existing difficulties, computational and
interpretative, as witnessed by the ample literature, it is pro-
posed here to return to the basic paradigm of cluster analysis,
from which the studies in this domain started.

In order to illustrate the issues, associated with the devel-
opment or selection of the methods, we quote the data from
Viswanathan [43], and Saiful Islam and Sarker [42], concern-
ing the results of some chosen methods for quite a group of
concrete tasks.

Let us explain that the OG method appearing in Table 5 is
based on an integer model, reducing, actually to the problem
of cluster analysis, while the heuristics compared is a spe-
cialised variety of the classical clustering algorithms. The pa-
per [42] is largely devoted to demonstration that the use of
an adequate distance definition may significantly improve the
results achieved in optimisation.

Table 5
Comparison of selected methods for examples of the MPG problems

Dimension
n × m

Grouping efficiency, GI [%], methods: CPU time [sec.]∗

p-median1 p-median
modified2

OG
model3

heuristic4
OG

model3
heuristic4

5×7 85.62 85.62 85.62 83.00 0.54 0.28

5×7 78.57 78.57 79.61 77.96 0.56 0.27

8×12 85.53 85.53 85.53 85.53 0.69 0.29

8×20 71.72 71.88 72.76 71.88 2.78 0.29

10×20 100.0 100.00 100.00 100.0 0.63 0.29

11×22 87.82 87.82 87.82 88.58 1.21 0.30

14×24 58.63 82.16 82.34 82.34 1.43 0.30

16×43 59.01 81.80 80.04 80.04 3.24 0.37

24×40 100.0 100.00 100.00 100.0 1.49 0.37

24×40 56.77 95.20 95.20 95.20 2.06 0.35

5×6 – – 90.00 90.00 0.52 0.27

20×35 – – 88.38 88.38 1.52 0.29

40×100 – – 95.10 94.33 5.24 0.62

16×30 – – 76.00 77.50 1.57 0.32

7×11 – – 88.00 88.00 0.51 0.26

10×25 – – 83.22 82.35 1.67 0.30

15×30 – – 64.50 63.60 3.21 0.31

8×10 – – 96.00 96.00 0.61 0.28

25×55 – – 100.00 100.0 2.93 0.41

30×60 – – 100.00 100.0 2.86 0.43

40×60 – – 100.00 100.0 3.09 0.48

40×70 – – 99.54 99.54 4.50 0.56

First ten examples after Ref. 43, the subsequent ones after Ref. 42
∗ IBM-3090-600-E; 1[12]; 2[43]; 3,4[42].

Bull. Pol. Ac.: Tech. 57(3) 2009 223



J.W. Owsiński

Table 5 shows clearly how limited (if any) are the gains
from the use of explicit optimisation, achieved at the cost of
increased computational burden (by almost one order of mag-
nitude). Besides, some of these methods fail to a much bigger
degree than the simple heuristics. Particularly surprising are
the poor results of the p-median method for examples 7, 8
and 10.

6. Application of clustering

6.1. General justification. It is not without reason that the
model of clustering problem was at the foundations of the
studies from the domain. At least, on the verbal level this
model is a very appropriate representation: “to separate com-
plex objects possibly internally coherent, and at the same time
possibly differing among themselves”.

Besides, the methods of cluster analysis feature a num-
ber of characteristics that allow for considering them as ap-
propriate with respect to both a more detailed modelling
and to solving the problem considered. These characteris-
tics are:

– flexibility and facility of accounting for various assump-
tions related to the properties of the problem (e.g., various
distance or proximity definitions, various clustering algo-
rithms, etc.);

– simplicity of both the general manner of reasoning and
a vast majority of concrete algorithms, allowing for an in-
tuitive understanding of the procedure and the sources of
its results;

– possibility of developing and using computationally effec-
tive algorithms (at the order of at most O(n3) or O(n3m3),
or better);

– possibility of dealing away with the stage of “learning” of
“learning sets”;

– possibility of applying (choosing) various assumptions and
algorithms (see above), yet without the necessity of de-
signing algorithms for the needs of concrete applications (a
frequent case with metaheuristics); we put apart, of course,
the stage of modelling, where the need of securing adequate
fit is obvious.

6.2. The principle of work. We shall comment on the func-
tioning of a clustering general algorithm from the popular
group of progressive merger algorithms for the MPG prob-
lem. These algorithms start from the situation, in which all
objects (here: machines and parts/operations) are considered
as separate entities (the initial matrix A). Then, the objects
are aggregated, columns or rows, which are most similar. In
case of binary or strongly discrete objects this often means
aggregating identical objects. Such objects (or their respective
elements) ought, indeed, be placed in matrix A∗ together in
the same blocks (or together outside of blocks).

Let us consider in a bit more detail a certain academic
example, to which we shall yet refer. Matrix A of dimensions
n × m = 8 × 9 is as shown below:

i/k 1 2 3 4 5 6 7 8 9

1 1 1 0 1 0 0 0 1 0

2 0 0 1 1 0 0 1 0 1

3 0 0 1 0 0 0 1 1 1

4 0 0 1 1 0 0 0 1 1

5 1 0 0 0 1 1 1 0 0

6 1 1 0 1 0 0 0 1 0

7 1 0 0 1 1 1 1 0 0

8 1 1 1 0 0 0 0 1 0

The density of this matrix is equal G/nm = 33/72 ∼= 46%,
proper more for an academic example, since the real-life inci-
dence matrices usually feature much lower densities, at 10%
or lower.

The first operation in agglomerative clustering is to calcu-
late distances (or proximities). We can define distances either
between machines i or between parts k. Assume we use the
apparently simplest in this situation distance definition, i.e.
dii′ = Σk|aik −ai′k|, and, analogously, dkk′ = Σi|aik −aik′ |
(in this way we put apart, at least for this exercise, if not in
more general terms, the considerations concerning the “best”
similarity or distance measure, as illustrated in Sec. 4). Then,
we obtain the triangular distance matrices as shown below:

Distances between machines, dii′

dii′ 1 2 3 4 5 6 7 8

1 0 6 6 4 6 0 5 2

2 0 2 2 6 6 5 6

3 0 2 6 6 7 4

4 0 8 4 7 4

5 0 6 1 6

6 0 5 2

7 0 7

8 0

Distance between parts, dkk′

dkk′ 1 2 3 4 5 6 7 8 9

1 0 2 7 4 3 3 5 4 8

2 0 5 4 5 5 7 2 6

3 0 5 6 6 4 3 1

4 0 5 5 5 4 4

5 0 0 2 7 5

6 0 2 7 5

7 0 7 3

8 0 4

9 0

In both matrices the extreme, and close to extreme, values
are shown in bold. The progressive merger procedures aggre-
gate first the objects closest to each other, to then aggregate
the closest groups (clusters). The solution proper should be
reconstructed from the thus arising hierarchy. Without speci-
fying the course of the procedure for the above example we
can, on the basis of the basic paradigm, estimate the possible
result. It could be composed of three blocks, formed by the
following subsets of machines and parts:
Block I: i = 5, 7 (d57 = 1), k = 5, 6, 7 (average distance

= 1.33)
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Block II: i = 1, 6, 8 (average distance = 1.33), k = 1, 2, 8
(average distance = 2.67)

Block III: i = 2, 3, 4 (average distance = 2), k = 3, 4, 9
(average distance = 3.33).

We could thus obtain the matrix A∗ of the form:

i/k 5 6 7 1 2 8 4 3 9

5 1 1 1 1 0 0 0 0 0

7 1 1 1 1 0 0 1 0 0

8 0 0 0 1 1 1 0 1 0

6 0 0 0 1 1 1 1 0 0

1 0 0 0 1 1 1 1 0 0

2 0 0 1 0 0 0 1 1 1

3 0 0 1 0 0 1 0 1 1

4 0 0 0 0 0 1 1 1 1

with clearly visible blocks. To obtain such a matrix A* with
clustering algorithms we should answer two already men-
tioned basic questions: (i) how to conduct aggregation simul-
taneously according to two dimensions of the matrix (or: how
to coordinate the aggregations, if they are not simultaneous?);
(ii) how to choose a solution in the hierarchy, produced by
the agglomerative algorithms? Other issues, mentioned be-
fore, especially in the context of indicators of quality of the
block-diagonal structure, are mainly solved by selecting (iii)
distances dii′ and dkk′ , and (iv) the method of calculating dis-
tances between clusters. Finally, since clustering algorithms
can have complexity of O(n2m2), or even less, it is possible
to (v) verify other constraints on the BDS during the function-
ing of the procedure (acceptance or rejection of aggregations,
resulting from the algorithm).

6.3. Relation to the indicators of the quality of block-

diagonal structure: the ideal structure. It can be easily
noticed that in the case of existence of the ideal structure
the respective indicators take extreme values (most often =
0), which, in the terminology of cluster analysis, is equivalent
to identification of groups (clusters), corresponding to blocks,
in which distances between columns and rows are zero. Iden-
tification of such structure (under milder conditions) is one
of the basic requirements on clustering methods. This condi-
tion is fulfilled by, in particular, the classical agglomerative
schemes, but not necessarily so by the procedures from the
K-means group.

Such a structure arises in the agglomerative schemes by
joining the rows (columns) having zero distances. At a cer-
tain instant no more such aggregations can be performed and
the rows (columns) would have to be joined having non-zero
distances.

Note that such a course of the initial aggregation phase is
not exceptional. In many practical problems subsets of iden-
tical objects (in terms of descriptions used) are encountered
and the first iterations of the algorithms consist in identifica-
tion of these subsets. In particular, of course, there may be no
such steps at all. It is important what kind of structure we do
obtain after joining the identical objects. Here of importance
are these aspects of the quality indicators, which refer to the

magnitudes of blocks (groups), or their number, putting pref-
erence on large blocks and/or their small number. Hence, if
steps of joining the “identical” objects end up with creation
of a small number of small blocks, one can hardly speak of
a correct solution, the ambiguity of the very notion of solution
put apart.

Let us also note that in case of ideal structure the fact that
blocks are not disjoint is of no importance. And so, in ma-
trix A∗ from the last example, two first blocks have column
no. 1 in common. This does not change the fact that dis-
tances inside of the blocks between (in this case) either rows
or columns are zero, and similarly extreme values are attained
by the indicators of quality of the block-diagonal structure.

6.4. Relation to the indicators of the quality of block-

diagonal structure: steps of the procedure. Irrespective of
whether on a given step of the agglomerative procedure the
objects (groups) are joined, whose distances are zero, or not,
it can be posed that if joining occurs for the closest objects,
then it is equivalent to such a change in the quality indicator
of the BDS, which is the best from the point of view of the
preceding structure.

Such a local property can be demonstrated for a broad
class of problems, quality indicators of the BDS and agglom-
erative clustering algorithms. This correspondence is not just
a question of mathematical properties of the functions used.
It also has a substantial meaning, as we have already indi-
cated that the distance function, used in clustering ought to
(and indeed, can) correspond to the desired properties of the
structure from the point of view of the respective indicator
(therefrom the ample studies like those of Shafer and Rogers
[40, 41], or of Saiful Islam and Sarker [42], devoted to analy-
sis of various distance definitions and attempts of designing
specialized distanced, endowed with such properties).

Even though we do not dispose (now) of the proof that an
appropriately designed agglomerative scheme leads to an op-
timal solution, or its sufficiently good approximation, the very
simplicity of the algorithms allows for seeking solutions sat-
isfying corresponding conditions, including those of quality
of the BDS.

6.5. Satisfying the constraints. We have already mentioned
various constraints that happen to be formulated for the so-
lution of the flexible manufacturing problem. Certainly, if we
use to solve this problem the clustering algorithms, the very
block-diagonal form must be treated as a constraint, if it is
not obtained directly from the procedure.

The clustering algorithms have polynomial complexity,
most often O(n3) or O(n4) (in our case – more like nm), al-
though some simplified algorithms, especially those from the
“data mining” domain, register better results (like O(nlogn)).
Taking into account the usually encountered dimensions of
the flexible manufacturing problems, much smaller than for
the “real-life” data analysis problems, we gain a significant
margin, both for potential improvement of solution quality
and for their selection with respect to constraints.
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Thus, at every step of the procedure fulfillment of con-
straints would be checked for the objects joined or the struc-
ture obtained. Considering the manner of proceeding in many
clustering algorithms, this is a natural procedure. In a wide
class of these algorithms, namely, the subsets are formed of
the objects the closest to the currently considered one (k near-
est neighbours). Such subsets are formed in a natural way
during the review of the objects. Selecting among them does
not, therefore, significantly weigh on the computational com-
plexity.

We do not mean here, of course, for this approach, veri-
fication of fulfillment and selection of objects for fulfillment
of very complicated constraints, which occur in the literature
and in reality of flexible manufacturing. Such tasks, though,
are being usually solved with highly specialised methods, and
the solutions obtained can hardly be assessed for the “degree
of optimality” (e.g. the question of multimodality of the ob-
jective function) or for their sensitivity (increased probability
of violating constraints under the change of problem condi-
tions).

In a vast majority of the clustering methods, used to solve
the problem considered, the block-diagonal structure is ob-
tained after the proper algorithm terminates its work. Note
that this is also the moment, when some constraints can
still be checked and their satisfaction attempted, e.g. through
“backward movement” in the hierarchy established through
the working of the algorithm.

6.6. Once more on ambiguity. Let us return to ambiguity,
illustrated with the indicators of quality of the BDS. This is-
sue ought to be considered in the context of computational
cost of obtaining a solution and organisation of its use. If,
namely, the economic and organisational aspects do not lead
to a unique (“standard”) problem formulation, then a doubt
arises whether it is worthwhile to try to establish the methods
of solving accurately the concrete problems or rather to ensure
the possibility of effective solving a broad class of problems
with the possibility of applying heuristics, leading to solu-
tions with desired properties (values of the quality indicators
or fulfillment of constraints).

In this context, we should, of course, assure fulfillment
by the approach selected (e.g. based on agglomerative clus-
tering procedures) of certain formal requirements, related to
the quality of solutions, even if it were not a precise represen-
tation of the indicators of quality of the BDS. This is needed
in view of both the potential establishment of correspondence
between the problem of clustering and the one of flexible man-
ufacturing, and of the necessity of having an internal criterion
of quality of the methods applied. The approach proposed by
this author ([52, 53]) satisfies these conditions.

7. Conclusions

Thus, the problem of flexible organization of production
space, analysed for some thirty years already with the pur-
pose of finding effective solution methods, remains the ob-
ject of methodological attempts, originating from various do-

mains. This is caused, first, by the ambiguity of formulation
of the problem, in conjunction with the multiplicity of the
forms, and, second, the actual lack of effective methods for
solving the essential forms of the problem. Since the very be-
ginning application of clustering algorithms was attempted.
These attempts, however, were abandoned, in the hope that
other methods, allowing for a more precise modelling of var-
ious aspects of the problem, shall also yield more accurate
solutions. Yet, these efforts proved also to a large extent vain,
except for very specialized forms of the problem, or, in any
case a partial success was paid for by a high cost. The latter
concerns, in particular, such aspects as simplicity, intuitive in-
terpretation, possibility of application to various forms of the
problem, flexibility in the sense of facility of change under
varying conditions, or lack of necessity of providing learning
examples. The clustering algorithms, even if in general do
not provide precise solutions to concrete forms of the prob-
lem, are characterized by just these aspects. The arguments,
brought forward in the paper, suggest the return to application
of clustering algorithms, fulfilling appropriate formal require-
ments, possibly complemented with heuristics, allowing for
a more precise solution of the concrete forms of the problem.

At the same time, explicit application of clustering might
allow for an appropriate analysis of the essential problems,
indicated in this paper, crucial for the success in effective
solving of MPG, such as:

– correspondence between similarity definitions and group-
ing criteria and problem formulations,

– numerical effectiveness of the algorithms accounting for
more intricate constraints,

– two-way clustering and quality assessment (machines and
parts).

Indeed, these are the challenges to the domain.
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