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Abstract 

In order to make the analog fault classification more accurate, we present a method based on the Support Vector 
Machines Classifier (SVC) with wavelet packet decomposition (WPD) as a preprocessor. In this paper, the 
conventional one-against-rest SVC is resorted to perform a multi-class classification task because this classifier 
is simple in terms of training and testing. However, this SVC needs all decision functions to classify the query 
sample. In our study, this classifier is improved to make the fault classification task more fast and efficient. Also, 
in order to reduce the size of the feature samples, the wavelet packet analysis is employed.  In our investigations, 
the wavelet analysis can be used as a tool of feature extractor or noise filter and this preprocessor can improve 
the fault classification resolution of the analog circuits. Moreover, our investigation illustrates that the SVC can 
be applicable to the domain of analog fault classification and this novel classifier can be viewed as an alternative 
for the back-propagation (BP) neural network classifier. 

Keywords: analog circuits, fault classification, Support Vector Machines Classifier, Neural Networks, wavelet 
packet decomposition. 
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1. Introduction 

 
For nearly forty years, the subject of analog circuit fault diagnosis has been of interest to 

researchers in the domain of analog testing. The fault diagnosis can be divided into two parts: 
fault detection and fault localization [1]. Fault detection technique can detect whether a circuit 
under test is faulty. Next, the fault localization technique is employed to find which 
component or sub-system module is faulty. In our conception, the fault diagnosis can be 
summarized to the problem of fault classification. Fault classification can be performed by a 
circuit mathematical model or an artificial intelligence approach. The circuit model can be 
used to perform fault location or even parameter identification easily, but, in fact, it is hard to 
obtain an accurate model even for a linear analog circuit because of component value 
variation (i.e. tolerance) resulting from manufacturing technology or other factors. Also, it is 
complicated to establish an analog fault model because the number of possible analog faults 
can be infinite. Another problem is the limitation of accessible nodes of the analog circuit, and 
this limitation will probably impair the diagnosis resolution. Focusing on these difficulties of 
analog fault classification, artificial intelligence seems to be the most effective tool in analog 
circuit fault classification. In the past decades, the Neural Networks (NNs) based methods has 
been applauded by researchers in diagnosing analog linear circuits or even nonlinear 
circuits[2, 3]. The NN can learn the samples itself according to some training rules and after a 
training stage it can predict a sample which does not belong to the training samples. A large 
number of articles have addressed the applications of neural networks in analog circuit 
diagnosis[2−9] and a review of this literature indicates the importance of NNs in the 
application to analog fault diagnosis.  
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Up to now, the back-propagation neural network (BPNN) was the most popular classifier 
in the analog diagnosis domain, but this ANN still faces some difficulties, e.g., easy 
entrapment into the local minima during the training stage, long training time to convergence 
etc. In order to solve these problems, some additional measures or even different neural 
networks have to be considered. For example, the genetic algorithm (GA) is used in [5] for 
finding a global minimal solution; in [4], the learning vector quantization neural network 
(LVQNN) is adopted to avoid this local minimum in training stage; a modular diagnostic-
system is used in [6] to replace the single neural network with many small-sized neural 
networks, and this replacement can give a flexible diagnosis of the circuit at component level 
or even system level. Also, the ANN is sensitive to the data dimension of the training 
samples. High-dimensional data always results in a long training time, and sometimes, failure 
to converge. Hence, a proper preprocessor is necessary. In the application of analog circuit 
diagnosis with NNs, the widely used preprocessor is the wavelet decomposition technique [3, 
5−8]. The wavelet decomposition is a multi-resolution analysis method which can get the 
details and approximations (coefficients) of the signal.  

In this paper, the wavelet packet decomposition technique is utilized to reduce the feature 
size, then, a fault classifier is designed to perform fault classification (including detection and 
localization). The presented classifier in this paper is a multi-class SVC, which is based on an 
ensemble of binary support vector machines classifiers (BSVC). The SVC is characterized by 
fast convergence to the global optimization, excellent generalization capability and immunity 
to high-dimensional data, etc. These characteristics make the SVC an attractive classifier in 
diagnosing the analog circuits and the consequent experiments also prove the SVC is 
applicable to analog circuit diagnosis. In the past several years, some researchers have begun 
to use the SVC to perform the analog circuit diagnosis task [10−12]. The frequently used SVC 
is based on the structure of so-called one-against-one or the one-against-rest. In [12], the 
author employs a multi-class SVC which has a one-against-rest structure to perform fault 
classification task. In [10] and [11], the one-against-one SVC is preferred for this task. For N 
fault classes, a one-against-one SVC has to train N (N−1) / 2 BSVCs and in the diagnosis 
stage, N (N−1) / 2 decision functions must be calculated. In our study, a one-against-rest SVC 
is resorted to perform analog circuit fault isolation because this classifier has a simple 
structure compared to the one-against-one SVC. For N fault classes, the conventional one-
against-rest SVC will train N BSVCs, and thus, only N calculations of all decision functions 
are needed. In this paper, the conventional one-against-rest SVC is further improved and this 
improvement will contribute to the reduction of testing time while keeping diagnosis accuracy 
acceptable.  

This paper is organized in the following order. In Section 2, we give a concise introduction 
to BSVC and several multi-class SVCs are also outlined in this section. The proposed SVC as 
well as the fault decision algorithm is discussed in Section 3. In Section 4, the method is 
validated by the experiment results from simulated circuits as well as actual circuits with 
discrete components. Results based on several tables and figures are given in Section 5. 
Useful conclusions are presented in Section 6. 

 
2. Multi-class support vector machines classifiers used in this study 
 
2.1. Binary support vector machines classifier (BSVC) 
 

For binary classification, let {( , )i ix y } ( 1,2,...,i Q= ) be a set of training samples. Each 

sample d
ix R∈ , d being the dimension of the input space, is assigned to }1,1{ −+∈iy . The input 

space is mapped via the mapping function ( )φ i to a high-dimensional linear space, where an 
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optimal hyper-plane * *W ,b˄  ˅ is found to separate the sample x with indicator 
function ( ( ))sign f x : 

 
1 ( ) 0

( ( ))
1 ( ) 0

f x
sign f x

f x

+ ≥
= − <

, 
 

where:  

                                                        * *( ) ( )f x W x bφ= +i .                                                        (1) 
 

In the case of nonlinear separable training samples, slack variables 0iξ ≥  are introduced. 

Considering the criterion of maximal margin/error minimization leads to the following 
optimization problem:  
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where C is the upper bound, controlling the tradeoff of the classification boundary complexity 
and classification error. Solving this optimization problem will lead to a quadratic program 
(QP) solution, in which Lagrange Multipliers kλ are introduced:  
 

                                                   *

1

( ) ( , )
svn

k k k
k

f x y K x x bλ
=

= +∑ ,                                                (3) 

where svn is the number of total support vectors, 0kλ > is the Lagrange multiplier of the 
thk support vector, and ( , ) ( ), ( )k kK x x x xφ φ=< > is the kernel function, here, ,< ⋅ ⋅ > is the dot 

product.  
Generally, the support vectors can be divided into two types: unbounded support vectors 

(UBSV) and bounded support vectors (BSV). The UBSV refers to the support vectors whose 
corresponding Lagrange multipliers are less than C and the BSV refers to the support vectors 
whose Lagrange multipliers are equal to C.  Here, the kernel function must meet Mercer’s 
condition [13]. In our study, both the thq -order polynomial kernel function and the radial 
basis kernel (RBF) function are used:  

 

                                                   ( , ) (1 )T qK x y x y= + i ,                                                     (4.1) 
 

                                                     

2

2

| |

( , )
x y

K x y e σ
− −

= ,                                                          (4.2) 
 

where σ is the width of the kernel function and the superscript T is the transpose of column 
vector x .  

 
2.2. Multi-class SVC 
 

Many practical problems, such as analog circuit diagnosis, fall into the category of multi-
class classification. In order to solve a multi-class problem, several BSVCs must be 
combined, or even a new multi-class support vector classifier should be considered [14]. In 
our research, two typical multi-class SVC techniques are used and compared.  

The first one is the one-against-rest SVC, which was invented by Vapnik [15]. In the 
training stage, N BSVCs are constructed for N classes, and for each training process, the 
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thi class (represented with “-1” label in our study) is separated from the other (N-1) classes 
(represented with “+1” label in our study). In the decision stage, in order to test query 
samplex , the Winner-Takes-All (WTA) rule is always adopted for all the decision functions. 
Let ( )if x ( 1,...,i N= ) be the decision function of the thi BSVC: 

 

                                             *

1

( ) ( , )
i
sv

k

n
i i i

i k k i
k

f x y K x x bλ
=

= +∑ ,                                                (5) 

where i
svn is the support vector number for the thi function ( )if x , i

kλ is the Lagrange multiplier 

of the thk support vector, i
ky  is the label of the thk support vector, and *ib is the bias of ( )if x .  

The WTA rule is: 
                                                       

1,2,...,

arg min( ( ))i
i N

f x
=

,                                                              (6) 

 

The second conventional multi-class method is the one-against-one SVC. In the training 
stage, all possible pair classes are trained and altogether N (N−1) / 2 BSVCs are constructed. 
In the decision stage, Max-wins strategy is adopted. In this paper, we use the decision method 
described in [14].  

Other types of multi-class SVC, such as the decision-tree or hierarchical SVC [16], will 
probably generate different classifier structures by different combinations of BSVCs. This 
means that additional measures need to be adopted to gain a viable classifier structure, and 
these measures are usually complex and time-consuming. In our study, these methods are not 
addressed.  
  
3. The proposed fault classification method 
 
3.1. Method principle  
 

The SVC proposed in our experiments is based on the one-against-rest SVC. The 
conventional one-against-rest SVC requires the calculation of all the decision functions, 
which are not necessary for most of diagnosis cases.  

For instance, suppose to classify three fault classes (see Fig. 1), represented by “1”, “2” 
and “3” (in the high-dimensional space) respectively.  

 

 
 

Fig. 1. Three classes are separated by the one-against-rest SVC. 
 

In Fig. 1, the one-against-rest SVC is designed to generate three BSVCs, whose optimal 
decision hyper-planes are D1, D2 and D3 respectively. In this illustration, the arrow direction 
of the optimal hype-plane indicates the label of the training sample (e.g., the arrow direction 
of D1 indicates the label of class “1” is -1 and the other classes are represented by label +1). 
Assume the query sample x to fall into the area of class “1”, then the decision functions for 
the sample should be : 1( ) 0f x < , 2( ) 0f x > and 3( ) 0f x > . In other words, the query sample 
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can be easily assigned to class “1” from the polarity of the decision function outputs. In this 
case, it is the decision function 1( )f x that gives the classification information and the other 

two decision functions (2( )f x and 3( )f x ) are redundant.  

A special case is that the query sample falls into the unclassifiable region (UR, a public 
region formed by more than two hyper-planes, whose decision function outputs are all 
informative) or the rejected region (RR, a public region formed by all hyper-planes), as shown 
in Fig. 2. This phenomenon occurs when two or more fault classes becomes overlapped in the 
measurement space. In our investigations, soft classes are easy to overlap in the measurement 
space because the overlapped soft classes always have some similar samples.  

In the case of UR, the query sample falls into the public area formed by D1 and D3. From 
the figure, it is easy to get 1( ) 0f x < , 2( ) 0f x > and 3( ) 0f x < . Obviously, both 1( )f x and 

3( )f x are informative, and 2( )f x is redundant.  

If the sample falls into the RR, which is formed by all the decision hyper-planes, then we 
get 1( ) 0f x > , 2( ) 0f x > and 3( ) 0f x > . This case means that none of the decision functions is 

informative.  
 

                        
 

Fig. 2. The query sample falls into the UR formed by D1 and D3. In this figure, all URs are shaded by the 
dashed-lines and the RR is shaded by crossed dashed-lines. 

 
In the application of the one-against-rest SVC to analog circuit fault classification, if we 

know which decision functions are informative, many computations will be avoided and the 
testing time will be expected to reduce remarkably. This technique will be useful in analog 
fault detection and localization.  

 
3.2. Fault decision algorithm 

 
Our fault decision algorithm is based on the number of informative decision functions 

(NIDF). Different NIDFs will lead to different fault decision algorithms.  
− NIDF=1. This means only one decision function (( ) 0if x < ) is informative and in this 

case, the query sample should be assigned to the thi fault class.  
− NIDF>1. In this case, the sample falls into the so-called UR. We must take measures to 

deal with this case, or the classifier can not decide on the assignment of the sample. Our 
method is based on a heuristic assumption that the sample has a closer space distance to 
the fault class it should be assigned to. In our method, we calculate the space distances 
between the query sample and the hyper-planes involved in decision calculations. Our 
method is simply illustrated with Fig. 3. 

Assume the query sample to fall into the UR formed by D1 and D3. We calculate the space 
distance d1 and d3, shown in Fig. 3, respectively. If d3 < d1, we assign the query sample to 
fault class “1”, otherwise, the query sample will be assigned to class “3”. This heuristic 
method works well in our experiments. Because, from the point view of space distance, the 
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larger the distance is, the bigger the possibility with which the sample belongs to the 
corresponding class is.  

 

 
 

Fig. 3. Space distance based method is taken to resolve the UR. 
 

The space distance di is calculated in the high-dimensional space (i.e. kernel space), onto 
which the input samples are mapped via the nonlinear mapping function ( )φ i : 

 

                                                                       
| ( ) |

( )
W
i

i
i

f x
d x = ,                                                                                   (7) 

 

where x is the query sample, if  is the decision function of hyper-plane Di, || . ||is the 2-norm 

of the weight vector Wi  of Di.  

According to the principle of support vector machines, Wi can be calculated by:  
 

                                                                    
1

W
i
svn

i i i
i k k k

k

y xλ φ
=

=∑ ˄ .˅                                                                             (8) 

 

It is the UBSVs that mainly determine the classifier performance, and then, only the 
UBSVs are considered in our algorithm. Hence, (8) is changed to be:  

 

                                                                      
1

W
i
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i i i
i l l l
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y xλ φ
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=∑ ˄ ,˅                                                                             (9) 

 

where i

ubsv
n is the number of UBSV of the thi decision function.  

Also, Wi can be computed with the dot product form:  
 

                                                       W W , Wi i i= < > .                                                   (10) 
 

Considering the kernel function principle( , ) ( ), ( )K x y x yφ φ=< > , Wi  turns out to be:  
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In this case, our decision algorithm becomes:  
 

                                                                           arg(max( ))i
i

x d∈ .                                                                          (12) 
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− NIDF=0. In this case, the sample falls into the RR, which is shown in Fig. 4.  
 

 
 

Fig. 4. Space distance based method is taken to resolve the RR 
 

We still adopt the space distance measure to decide on the assignment of the query sample. 
In Fig. 4, the space distances between the sample and all hyper-planes are computed. Our 
fault decision algorithm depends on the following rule: 

 

                                                          arg(min( ))i
i

x d∈ .                                                      (13) 

 

This decision rule indicates that the smaller the distance is, the bigger the possibility with 
which the sample belongs to the corresponding fault class on the other side of the decision 
hyper-plane. For instance, in Fig. 4, if 1 2 3d d d≤ ≤ , then, according to (13), the query sample 
should be assigned to class “1”.  
 
3.3. Method implementation 

 
In fact, it is quite difficult to directly get the informative decision functions with an 

accurate and fast method. The most reliable method is to calculate all decision functions one 
by one and then, select these informative functions directly. But, in this general operation, 
many redundant decision functions are also involved and too much time will be consumed on 
these redundant decision functions. In this paper, we use the Euclidean distance in 
measurement space to obtain the informative decision functions. Euclidean distance 
calculation is well known in analog fault dictionary (FD) applications, and this method is not 
accurate but very fast. In our study, this distance based method can give one or more decision 
function candidates, based on which our method is performed.  

Prior to the use of our approach, three FDs need to be constructed. The first FD (FD1) is 
very simple, and it only contains the centroids of all fault classes. Suppose to classify N fault 
classes and each class contains M training samples. The centroids are defined as below:  

 

                                                      
1

1 M

j ij
i

C x
M =

= ∑ ,                                                             (14) 

 

where ijx is the thi training sample of fault classj ( 1,...,j N= ).  

The second FD (FD2) contains the training parameters of the one-against-rest SVC. In our 
design, every BSVC is trained and the corresponding parameters (such as the support vectors, 
Lagrange multipliers, bias, kernel function type and the related kernel parameters) are saved. 
For convenience of expression, let BSVCj  ( 1,...,j N= ) be the BSVC to separate fault class 

j  from the remaining fault classes.  
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The third FD (FD3) contains the Wi  (or 1/ Wi  , 1,...,i N= ). This FD will make the 

calculation more fast in case the sample falls into the RR.  
Our method can be divided into three steps and these steps are illustrated clearly with the 

flow chart shown in Fig. 5.  
In the first step, the Euclidean distance Ed j ( 1,...,j N= ) between the query sample xand 

centroid jC is calculated respectively. This calculation is not accurate to decide on the 

informative decision function directly, but it is simple and very fast. In our investigation, the 
time consumed for this calculation can be negligible when compared to the next steps. In 
order to find the possible candidates of informative decision functions, the sort operation is 
needed and the indices corresponding to the fault classes also need to be saved to a variable 
index [N]. In this step, the first FD is used. 

In the second step, the candidate decision functions are calculated one by one via FD2. The 
signal function is employed to decide on the informative functions. In our design, once an 
informative decision function is found, the next loop is still executed until a redundant one is 
found. This arrangement can try to avoid the loss of informative decision functions. For 
instance, if the output of 1BSVC  is negative while the output of 2BSVC  is positive, then the 

informative BSVC should be 1BSVC  and so, the program will turn to the third stage for final 

fault detection or localization.  
In the third step, the program can easily determine the region the sample falls into and 

hence the corresponding fault decision algorithm is adopted. The time needed in this step can 
be negligible, because in this step, both of( )if x (calculated from the second step ) and FD3 

(i.e.1/ Wi ) are already available. In this step, FD3 can be used depending on the NIDF.  

 
3.4. Computational complexity for the proposed SVC 
 

According to the flow chart, the computational complexity will contain three parts as 

follows. Let I be the dimension of the samples, svn the average of the support vectors of the 

one-against-rest SVC, BSVCn  the number of BSVCs involved in the second step, iBSVCn  the 

number of informative decision functions.   
− In the first step, the computational load is mainly from the sorting operation, whose 

complexity is 2(I log )NO Ni .   

− In the second step, the computational complexity is mainly from the calculation of 
decision functions. According to [17], the calculation cost of a single BSVC decision 

function is ( )svO H ni , where (I)H O= is the computational cost of kernel function 
(polynomial kernel or RBF kernel). Hence, this step will require a calculation cost of 

( )BSVC svO n H ni i .  

− In the third step, the decision conclusion can be drawn from all informative decision 
functions, so, the computational complexity should be ( )iBSVCO n .  

 
 
 

 
 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 4, pp. 00–00 

 

 

                        
 

Fig. 5. Implementation flow chart of the proposed method. 
 

Hence, the total complexity totalO of the proposed method should be:  
 

                             2(I log ) ( ) ( )N
total BSVC sv iBSVCO O N O n H n O n= + +i i i i  

                                   = 2(max{I log , , })N
BSVC sv iBSVCO N n H n ni i i .                                     (15) 

 

For a practical problem, generally, BSVCn N< , iBSVCn N<  and 2 svnN < , thus we have:  
 

                                  ( ) ( )total BSVC sv svO O n H n O N H n= <i i i i .                                            (16) 
 

In a word, the computational cost of the proposed method is smaller than that of the 
conventional one-against-rest SVC, whose computational complexity can be expressed with 
(16).  
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4. Analog circuits used and feature extraction 
 
4.1. Linear Circuits  
 

The first circuit under test (CUT), as shown in Fig. 6, is a Sallen-Key band pass filter 
(BPF) [6], [12] with 24.5 KHz central frequency.  

 

 
 

Fig. 6. First analog circuit under test. 
 

In this experiment, the operational amplifier output node Vout  is accessible. For this CUT, 
a fault-free component has a model of (1 )X k± , whereX is the nominal value, and k is the 
tolerance. In this paper, k is set at 5% for resistors and 10% for capacitors. A soft fault model 
of component value lower (higher) than the nominal value is expressed with 
[ *(1 ), *(1 )]X f X k− −  ([ *(1 ), *(1 )]X k X f+ + ) respectively, where f is the fault tolerance. 
In this paper, f is set at 50%.  The fault classes used in this circuit are listed in the following 
order: nf, R2↓, R2↑, R4↓, R4↑, C1↓, C1↑, C2↓, C2↑, where “↑” (“ ↓”) indicates the component 
value is higher (lower) than the nominal value. Also, the fault class “nf” means the CUT is 
fault-free.  

The second filter is a High-Pass filter [8], which is shown in Fig.7. For this circuit, Vout is 
the only accessible node. In this experiment, the faulty components and the fault classes are 
all listed in order in Table 1. The component tolerance listed in this Table is for future 
software simulation with Monte Carlo analysis.  
 

 
 

Fig. 7. Second analog circuit under test. 
 

For both circuits simulated with SPICE software, the stimulus is a pulse with 10sµ  
duration and 5 V peak. For every fault class, the samples are generated by varying the circuit 
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faulty components within their nominal tolerances while the faulty component value is set to a 
fault value or changes evenly within its fault tolerance 

 
Table 1. Fault classes designed for the second CUT. Nominal and faulty components values are also specified. 

 

Order Fault class Nominal value Tolerance Fault value 

1 nf - - - 

2 C1↑ 5nf 10％ 10nf 

3 C1↓ 5nf 10％ 2.5nf 

4 R4↑ 1600 Ω 5％ 2500Ω 

5 R4↓ 1600Ω 5％ 500Ω 

6 C2↑ 5nf 10％ 15nf 

7 C2↓ 5nf 10％ 1.5nf 

8 R3↑ 6200Ω 5％ 12000Ω 

9 R3↓ 6200Ω 5％ 2700Ω 

10 R2↑ 6200Ω 5％ 18000Ω 

11 R2↓ 6200Ω 5％ 2000Ω 

12 R1↑ 6200Ω 5％ 15000Ω 

13 R1↓ 6200Ω 5％ 3000Ω 

 
4.2.  Nonlinear circuits 
 

The first nonlinear anlog circuit is a differential amplifier with Q2N2222 transistors (Q1 
and Q2, shown in Fig. 8) and in this circuit, Q3 and Q4 form a basic current mirror. In this 
study, a 10 Hz sine wave signal with 0.05 V is used to excite the circuit and the responses are 
collected via the collector of Q2 (i.e. Vout).  

 

 
 

Fig. 8. A nonlinear circuit. 
 

In this analog circuit, single soft faults for Rc1, Rc2 and Rb are considered. The soft faults 
are summarized in Table 2. For the resistors, the soft fault model increasing the value is 
designed as [ 6 , 10 ]X Xσ σ+ + , where σ indicates a sigma variation from the nominal value 
X .  

For the transistors (Q1~Q4), single hard faults (open or short) are also under consideration. 
In this study, the hard fault for a transistor can have six cases as illustrated in Fig. 9. The open 
fault for single terminal of the transistor is simulated by adding a 100 Mohm resistor in series 
with this terminal (the open fault classes are QBo, QCo and QEo corresponding to (a), (b) and 
(c) respectively in Fig. 9; the short fault is simulated by adding a 1 ohm resistor in parallel 
with these two terminals (the short fault classes are QBCs, QCEs and QBEs corresponding to 
(d), (e) and (f) respectively in Fig. 9).  
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Table 2. Single faults selected for the differential amplifier. 
 

Fault class Nominal value Tolerance Fault model 

Rc1↑ 10k 5% [ 6 , 10 ]X Xσ σ+ +  

Rc1↓ 10k 5% [ 10 , 6 ]X Xσ σ− −  

Rc2↑ 10k 5% [ 6 , 10 ]X Xσ σ+ +  

Rc2↓ 10k 5% [ 10 , 6 ]X Xσ σ− −  

Rb↑ 20k 5% [ 6 , 10 ]X Xσ σ+ +  

Rb↓ 20k 5% [ 10 , 6 ]X Xσ σ− −  

 

 
 

Fig. 9. Hard fault models designed for a transistor Q. 
 

For this circuit, some hard faults can lead to identical results and these hard faults form an 
ambiguity group (AG). For instance, Q1CEs (or Q2CEs) can result in Q2 shut down and the 
potential of Vout will be pulled up to Vcc (+12 V). Hence, Q1CEs and Q2CEs are added to 
the same AG (note that Q4BCs does not exist). For Q1~Q4, the hard fault classes including 
the AG members are summarized in Table 3. In this experiment, altogether 14 fault classes 
are considered including the fault-free class (i.e. “nf” class).  

 
Table 3. The AGs for the amplifier circuit. 

 

Fault class AG members 

Q1BCs - 

Q1BEs - 

Q1CEs Q2CEs 

Q1Bo Q1Co,Q1Eo 

Q2BCs - 

Q2BEs Q2Bo,Q2Co,Q2Eo,Q3BEs (Q4BEs), Q3Bo,Q3Co,Q3Eo, Q4CEs 

Q3BCs Q3CEs, Q4Bo,Q4Co,Q4Eo 

 
In order to further evaluate our methods, a simple half-wave rectifier (see Fig. 10) with 

discrete components is used to obtain real samples and the fault injection is conducted 
manually. This nonlinear circuit has been studied in [3].  

The faulty responses from oV are measured with a data acquisition card (DAC) under the 

stimulus of sin(2 50 )iV tπ= i i . In our experiment, R1 and R2 produce soft faults and diodes 

D1, D2 produce hard faults. The fault classes used in this experiment are listed in the 
following order: nf, R1↓, R1↑, R2↓, R2↑, D1sh, D1o, D2sh and D2o. Here, D1sh means diode 
D1 shorted and D1o means diode D1 opened. Considering the resistors, the single soft fault 
model is identical to the first CUT. The faulty samples for the resistors are collected by 
changing the resistor’s value. For each fault class, 50 actual samples are collected.  
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Fig. 10. The actual analog circuit. 
 

4.3. Feature extraction 
 

In our study, wavelet packet decomposition is employed to perform feature extraction and 
this technique has been addressed in [5] and [8]. For the linear circuits, the WPD technique is 
applied to the fault samples which are decomposed into approximations and details at level N 
(N=1, 2, 3…, segmented with dashed-lines shown in Fig. 11). For this experiment, we have 
chosen the Haar function as the mother wavelet because this wavelet function works well in 
our practice.  

 

 
 

Fig. 11. Wavelet decomposition of a signal S into a hierarchical structure. 
 

For the original sampleDPS , whereDP is the data points of original sampleS , for the 

simulated circuits, DP is 5000 at a sample rate of 5 MHz. For the actual circuit, DP is 2000 
when the DAC works at a sample rate of 100 KHz.   

In our investigations, the wavelet decomposition is implemented at level five, because, at 
this depth good results are always achieved. For three simulated circuits, we use the feature 
extraction approach as follows.  

Let the approximation coefficients be iA ( 1,2,...,16i = ), and the detail coefficients 

be iD ( 1,2,...,16i = ). For every coefficient, the data dimension is 5/ 2DP . We further process 

these coefficients more compactly:  
                                                         i iAC A

∞
= ,                                                           (17.1) 

 

                                                         i iDC D
∞

= ,                                                          (17.2) 
 

where 
∞
i is the infinity norm. Our feature sample is a 32-dimensional vector: 

1 2 16 1 2 16[ , ,..., , , ,..., ]AC AC AC DC DC DC . 

For the actual nonlinear circuit, the wavelet analysis is used to denoise the collected circuit 
responses as shown in Fig. 12. Generally, the signals obtained from the DAC are always 
superimposed with noise. The noise can make fault class (especially for the soft classes) 
overlap in the measurement space, and this will add difficulties to the subsequent process.  
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In this study, the wavelet packet is used to decompose the signal into approximations and 
details. The detail coefficients can be viewed as the high-frequency component of the original 
signal [6]. In our experiment, the approximations should be retained because they can 
reconstruct a purified outline of the waveform.  

We obtain the first approximation at level five, because at this level, the effect of noise can 
be negligible. The waveforms reconstructed by the first approximation are shown in Fig. 13, 
in which we can observe the waveforms have been filtered and refined from noise.  
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Fig. 12. Waveforms of fault classes for the actual circuit. 
 

Considering that the output waveforms of the circuit are cyclical and simple, we further 
extract three well-known features in the time domain:  

 

                   [ 0, 1, 2]f f f   

where:  
− 0 min( )f S= means getting the minimal value from S ;  

− 1 max( )f S= means selecting the maximal value from the signalS ;  

− 2 mean( )f S= is defined as 1

( )
DP

i
i

s

DP
=
∑

.  

This feature extraction technique is also directly applied to the original samples shown in 
Fig. 12, in which the waveforms are not preprocessed with wavelet analysis. We did this for 
the effectiveness illustration of wavelet analysis in terms of noise eradication, because, three 
features used in this study are easily affected by the noise.  

For both cases, we give their three-dimensional (3-D) scatter plots, which are shown in 
Fig. 14 a and b respectively. In Fig. 14, only five classes (including nf and soft classes) are 
given because the noise plays a significant effect on the soft classes.  

Also in Fig. 14, it is easy to find that the features with the wavelet analysis become more 
separable and this indicates the effectiveness of the wavelet analysis in terms of noise 
elimination. Also, this promotion will be beneficial to the subsequent machine learning and 
pattern classification. This conclusion will be supported by the following results.  
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Fig. 13. The first approximation of wavelet analysis at level five for various fault classes. 
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Fig. 14. Feature comparison in 3-D space for two methods: a) features without wavelet analysis;  

b) features with the wavelet analysis at level five. 
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5. Results 
 
5.1. Classifier design 
 

In our study, altogether four fault classifiers are designed. The first one is the BPNN with 
three-layered architecture I-J-K as shown in Fig. 15, in which I is the input size, J is the 
number of hidden-layer neurons, K is the number of output layer neurons. Also in Fig. 15, 

hjb is the bias of the thj hidden-layer neuron where 1,2,...,j J= ; okb  is the bias of the 
thk output-layer neuron whose output is kO , where 1,2,...,k K= . ( )f i is the activation 

function of the hidden layer and ( )g i is the activation function of the output layer.  

Let the input vector be 1 2[ , ,..., ]TIx X X X= . The thj hidden layer neuron receives a total 

activation of T
j hjx b+W i from the input layer (i.e. the sample x ), where 1[ ,..., ]Tj j I jW W=W is 

a weight vector connecting the input vector xand the thj hidden layer neuron. The thk output 

layer neuron receives a total activation of ' '( )T
k okx b+W i , where 

'
1 1[ ( ),..., ( )]T T T

h J hJx f x b f x b= + +W Wi i . Hence, the thk output is:  
 

                                                          ' '(( ) )T
k k okO g x b= +W i .                                           (18) 

 

 
 

Fig. 15. The BPNN architecture used. 
 

For the target value of the output vector we use a 1-of-K coding scheme. Hence, the 
assignment of xcan be determined by: 

                                                            
1,2,...,

arg max( )k
k K

O
=

.                                                          (19) 

 

For the first simulated circuit, we use an architecture of 32-9-9 BPNN to train the samples. 
For the second simulated circuit and the amplifier circuit, the BPNN has an architecture of 32-
13-13 and of 32-14-14, respectively. For the actual circuit, the BPNN uses a structure of 3-9-
9.  

The first SVC designed in our study is the conventional one-against-rest SVC. The second 
one is the proposed method in this paper. Two one-against-rest SVCs have identical training 
parameters, e.g., support vectors, training time, Lagrange multipliers, etc. The third classifier 
is the one-against-one SVC. In the testing stage of one-against-one SVC, we adopt the 
decision strategy addressed in [14].  
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5.2. Machine learning 
 

For all circuits under consideration, the training set contains 10 samples for every fault 
class. The other remaining 40 samples are used for future testing. All samples are normalized 
to have zero mean and standard unity variance.  

For the BPNN, the activation function tansig is used from the input layer to hidden-layer. 
From the hidden-layer to output layer, the activation function is logsig. For each BPNN, an 
error goal of 0.01 is specified because a very small error goal will probably lead to an over-
fitted classifier. In our design, a fast training algorithm adjusted by a momentum constant 

cM is applied and the BPNN learns well if cM is chosen within the range of 0.85~0.88. For 

the BPNN, another problem is that different trainings will probably result in different 
performances. In this paper, every BPNN is trained three times and the final performance is 
achieved by selecting the best one from three trainings.  

For the SVC, we adopt the standard support vector machines algorithm [18]. In our study, 
the upper bound C is confined to 1000, because with this parameter, the SVC classifier can 
achieve good classification performance. We mainly investigate the performance of the RBF 
and polynomial kernel functions. In our study, σ  varies across {0.01,0.1,1,2,4,8,16,32, 
128,256}and q is confined to {1,2,3}, we select an optimal σ  or qdepending on the 
classification performance of the classifier.  

 
5.3. Experimental results 
 

We write Matlab7.0 codes for all classifiers in terms of sample preprocessing, training and 
testing, etc. All codes run on a PC with PIV 2.8GHz Duo CPU and 2GB RAM. For the 
convenience of performance comparison, several specifications are predefined and used in 
Table 4. Additional explanations are also listed in the remarks column.  

In the training stage, for the first two filters, the BPNN converges to the error goal, but, for 
the other two circuits, the BPNN cannot converge within the specified epochs. Despite this, 
the BPNN can still be used to perform fault classification. In our study, for all the circuits 
under test, the SVC can converge to a global solution quickly. The training time comparisons 
for these classifiers are also given in Table 5.  

 
Table 4. Specifications used in our experiments. 

 

Specifications Definitions Remarks 

Accuracy 
percentage of correct classification only for testing 

samples 
 

Recall 
Percentage of correct classification only for training 

samples 
 

TeT testing time in seconds 

TrT training time in seconds 

NSF the number of samples falling into the URs or the RR only used for the SVCs 

TNB 
The total number of BSVCs used for testing certain fault 

class 

only used for the 1st SVC and the 2nd 

SVC and 40 samples are tested. 

 
Our comparisons for different classifiers are mainly based on the specifications.  

− Accuracy & Recall & TeT & TrT. Focusing on the specifications, we give the results by 
BPNN the SVCs in Table 5. In testing the Sallen-Key and High-Pass filter, we found that 
the first-order polynomial kernel function (q=1) can give the best performance. For the 
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differential amplifier, we choose 16σ = . For the actual rectifier circuit without wavelet 
analysis, σ =0.1 and for the same circuit by employing wavelet analysis to get rid of noise, 
the 3rd-order polynomial kernel function is the best choice.  

 
Table 5. Experimental results of several classifiers for the circuits. 

  
Circuit Classifier Accuracy TrT TeT Recall 

BPNN 0.972 2.135 0.329 1 

The 1st  SVC 0.978 1.762 6.412 1 

The 2nd SVC 0.983 1.762 2.271 1 
The Sallen-Key filter 

The 3rd  SVC 0.992 0.879 18.864 1 

BPNN 0.998 3.210 0.443 1 

The 1st  SVC 1 1.268 18.023 1 

The 2nd SVC 1 1.268 2.932 1 
The High-Pass filter 

The 3rd  SVC 1 1.374 56.227 1 

BPNN 0.964 15.228 0.646 0.979 

The 1st  SVC 0.963 1.956 19.894 1 

The 2nd SVC 0.964 1.956 4.332 1 
The differential amplifier 

The 3rd  SVC 0.966 2.388 74.378 1 

BPNN 0.836 14.4 0.267 0.856 

The 1st  SVC 0.828 1.147 4.250 1 

The 2nd SVC 0.828 1.147 0.787 1 

The Half-wave-rectifier  
(without wavelet analysis) 

The 3rd  SVC 0.847 0.894 9.340 1 

BPNN 0.936 11.624 0.263 0.956 

The 1st  SVC 0.969 1.762 4.335 1 

The 2nd SVC 0.978 1.762 0.820 1 

The Half-wave-rectifier  
(wavelet analysis) 

The 3rd  SVC 0.992 0.879 9.438 1 

 
In Table 5, for most cases, the SVC classifier achieves a very close performance (i.e. 

accuracy) to the BPNN with wavelet analysis as the preprocessor. For the actual circuit with 
wavelet analysis, the SVC displays an excellent and accurate the classification performance, 
which is apparently superior to the BPNN. Also, the SVC gives 100% recall capability 
compared to the BPNN. These data indicate that the SVC can be applicable to the analog fault 
detection and localization as an alternative for the BPNN. In our investigations, some samples 
fail to be classified because their corresponding output waveforms are almost identical.  

For the SVCs, the one-against-one SVC always gives an excellent generalization 
capability, however, this classifier consumes too much time to perform classification task. 
Compared to the conventional one-against-rest and one-against-one SVC, the proposed 
approach can give a comparable performance but it needs far less time to implement testing. 

In addition, the SVC illustrates different performances depending on different feature 
extractors when it goes to the actual circuit. For the features without wavelet analysis, the 
classifier displays an inferior performance. However, the classifier performs quite well when 
it is applied to the features with wavelet analysis at level five. This difference also validates 
the effectiveness of the wavelet analysis in terms of noise eradication.  
− TNB. This specification is mainly used to evaluate the computational complexity of two 

one-against-rest SVC. For the conventional one-against-rest SVC, forty testing samples 
will result in the anticipation of total 40Ni  BSVCs, where N is the number of fault 
classes. For the proposed method, only a small portion of BSVCs are needed. Hence, 
based on the aforementioned analysis of the presented flow chart, the time needed is 
reduced remarkably and this reduction is also clear in Table 5. The TNBs consumed by 
two methods are shown in Fig. 16, in which the discrepancy between the first SVC and the 
second SVC seems to be distinct.  
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Fig. 16. Comparison of TNBs consumed by the 1st SVC and the 2nd SVC in testing a) the Sallen-Key circuit 

(N=9); b) the High-Pass filter (N=13); c) the differential amplifier (N=14) and d) the actual nonlinear 
circuit with wavelet analysis (N=9). 
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− NSF. This specification is mainly used to detect the samples falling into the RR. A large 
NSF always means a larger computational complexity. In our investigations, the NSF 
seems to be small. In our method, the space distance based approach is employed to 
resolve these problems. From Table 6, it is clear that the proposed fault decision algorithm 
can correctly classify most of the samples falling into the URs or the RR. In diagnosing 
the actual circuit, the NSF is reduced to 13 from 17 after wavelet analysis, because the 
wavelet analysis can eliminate the effect of the noise, and this elimination can make the 
features become distinguishable and thus, fewer samples fall into the URs or the RR.  

 
Table 6. The effectiveness of the space distances decision algorithm. 

 

Circuit 
Number of testing samples 

NSF 
Number of samples correctly classified 

using the decision algorithm 

The Sallen-Key filter 360 21 19 

The high-pass filter 520 7 7 

The differential amplifier 560 36 32 

The Half-wave-rectifier 
(without wavelet analysis) 

360 
17 12 

The Half-wave-rectifier 
(with wavelet analysis) 

360 
13 8 

 
6. Conclusions 
 

In this paper, we investigate the diagnosis performance of the SVCs by using fault 
dictionary methods. Useful conclusions can be drawn by reviewing the above results: 
− The SVC can be used to perform an analog circuit diagnosis task. In our research, the 

important parameters for the SVC are mainly upper bound C and kernel function 
parameters. The support vectors, as well as the corresponding Lagrange multipliers can be 
found automatically by the training algorithm. For the BPNN, too many network 
parameters need to be adjusted manually (e.g., the hidden layer neurons, activation 
function types, learning rate, momentum constant, etc.), thus, resulting in a more 
unreliable classifier structure. In addition, in our investigations, the trainings of SVCs are 
always successful and the training time needed for each training set is also stable, but the 
BPNN sometimes fails to converge and its performance also varies depending on the 
training stage. In addition to this, the SVC illustrates an excellent and stable fault 
classification performance, which is close or even superior to the BPNN.  

− The wavelet packet analysis is useful in our investigations and this usefulness lies in that it 
can effectively perform feature size reduction and noise eradication operations. In our 
study, the wavelet mother function is Haar, and wavelet analysis depth is specified at level 
five, because with this, good results are always achieved. These results also indicate that 
the Haar wavelet function is effective in the application of analog circuit faults 
classification. In further research, other types of wavelet functions will be exploited.  

− The simulated and practical results have shown that the SVCs, including our proposed 
methods, are applicable to analog circuit diagnosis. The one-against-one SVC performs 
well in our diagnosis cases, but it is not suitable for analog diagnosis case with a large 
number of fault classes, because this classifier requires ( 1) / 2N N −  BSVCs. If N is very 
large, this approach will become prohibitive. Our proposed method is based on the one-
against-rest SVC, which requires N BSVCs to determine a sample assignment. Generally, 
according to the above results and analysis, the proposed method needs less computational 
cost to perform a fault classification task.  

− The computational complexity of the SVC depends on the number of support vectors, thus 
leading to different testing time. This can be roughly explained through Eq. (16). 
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Generally speaking, a large number of support vectors will result in high computational 
and storage complexities. Hence, reducing the number of support vectors while 
maintaining the classifier performance unchanged seems to be a prominent task and this 
task will be envisaged in our next work.  
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