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ENTROPY ANALYSIS OF THIRD-GRADE MHD CONVECTION
FLOWS FROM A HORIZONTAL CYLINDER WITH SLIP

In thermosfluid dynamics, free convection flows external to different geometries,
such as cylinders, ellipses, spheres, curved walls, wavy plates, cones, etc., play major
role in various industrial and process engineering systems. The thermal buoyancy
force associated with natural convection flows can play a critical role in determining
skin friction and heat transfer rates at the boundary. In thermal engineering, natural
convection flows from cylindrical bodies has gained exceptional interest. In this article,
we mathematically evaluate an entropy analysis of magnetohydrodynamic third-grade
convection flows from permeable cylinder considering velocity and thermal slip ef-
fects. The resulting non-linear coupled partial differential conservation equations with
associated boundary conditions are solved with an efficient unconditionally stable im-
plicit finite difference Keller-Box technique. The impacts of momentum and heat
transport coefficients, entropy generation and Bejan number are computed for several
values of non-dimensional parameters arising in the flow equations. Streamlines are
plotted to analyze the heat transport process in a two-dimensional domain. Further-
more, the deviations of the flow variables are compared with those computed for
a Newtonian fluid and this has important implications in industrial thermal material
processing operations, aviation technology, different enterprises, energy systems and
thermal enhancement of industrial flow processes.

Nomenclature

a radius of the cylinder
Be non-dimensional Bejan number
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B0 constant imposed magnetic field
Br Brinkman number
Cf skin friction coefficient
f dimensionless stream function
g gravitational acceleration
Gr Grashof number
Ha Hartmann number
I identity tensor
k thermal conductivity of the fluid
K0 thermal slip factor
M magnetic parameter
N0 velocity slip factor
NG entropy generation number
Nu heat transfer coefficient
Pr Prandtl number
p pressure
Re Reynolds number
T fluid temperature
u, v dimensionless velocity components in x and y directions respectively
V velocity vector
x stream wise coordinate
y transverse coordinate

Greek symbols
Ω dimensionless heat function
α thermal diffusivity
β coefficient of thermal expansion
τ extra stress tensor
Φ azimuthal coordinate
σ electric conductivity of the fluid
η dimensionless radial coordinate
µ dynamic viscosity
ξ non-dimensional tangential coordinate
ψ non-dimensional stream function
ν kinematic viscosity
ε1 first viscoelastic material fluid parameter
ε2 second viscoelastic material fluid parameter
ρ fluid density
β3 third grade material parameter
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θ non-dimensional temperature
ϕ dimensionless third grade viscoelastic fluid parameter

Subscripts
w conditions on the wall
∞ free stream condition

1. Introduction

In many fluids, the flow properties are difficult to explain by a single constitu-
tive equation like Newtonian model. Geological materials and polymer solutions
used in different industries and engineering processes are such fluids which cannot
be explained by Newtonian model. The materials that cannot be explained using
Newtonian model are called the Non-Newtonian fluid models. In the past, several
decades non-Newtonian transport phenomena have motivated considerable interest
among engineers, physicists and mathematicians. This area presents a rich spec-
trum of nonlinear boundary value problems largely due to the extremely diverse
range of rheological models available for simulating complex flow behavior. In such
fluids, the shear stress and strain rate relation is non-linear. The non-Newtonian
fluid models are arduous [1]. The popular non-Newtonian models include oblique
micropolar flows [2], Walter’s-B fluids [3], Jeffrey’s flows [4], Williamson fluid
[5], nanofluid [6], Maxwell flows [7], Eyring–Powell flows [8], tangent hyperbolic
flows [9], Oldroyd-B fluid [10] and Power-law fluid [11]. A particular group of
viscoelastic fluids is simulated with the third-grade model. Examples include cool-
ing oil, polymer solutions and molten polymers in chemical engineering. Of the
different non-Newtonian fluids discussed in the literature, the differential, integral
and rate type models gained prominence. The third-grade model has the ability
to predict shear thinning and thickening characteristics of the fluid. In ref. [12],
the authors presented the flow and heat transport of radiative third-grade model
in the presence of Ohmic dissipation. Ref. [13] presents the radiative magnetohy-
drodynamic third grade flow model from an isothermal cone. The author of [14]
presented the heat transfer analysis of third grade model past parallel plates. Recent
studies with regards to third grade fluid include [15–20].

The presence of magnetic field in natural convection flows plays an important
role and has many applications like nuclear reactor cooling, magnetohydrodynamic
(MHD) generators, geophysics, astrophysics, aerodynamics, plasma engineering,
exploration of oil, etc. The MHD convection flow of Jeffrey’s fluid was considered
in [21]. A spectral relaxation method was employed in [22] to study unsteadyMHD
flows past a semi-infinite vertical plate. Authors of [23] discussed theMHD convec-
tion flows of nanofluid over an exponential permeable stretching sheet using R-K
method. In ref. [24] authors studied the entropy analysis of magnetohydrodynamic
electroosmotic flow. Other recent studies on MHD include [9, 25–29].
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The effective utilization of energy and ideal utilization of resources has per-
suaded investigate into enhancing the productivity of mechanical procedures. Re-
search on the enhancement in heat exchange as a standout amongst the most com-
pelling elements in energy consumption has been the fundamental core interest.
Assessment of entropy generation and the utilization of unique fluid like non-
Newtonian fluids are essential and proficient strategies for accomplishing ideal
warmth exchange. Entropy production determines the irreversibility related with
the natural process such as counter flow heat exchanger for gas to gas applications
[30]. Resent applications of entropy generation include pseudo-optimization de-
sign processes for solar heat exchangers, solar energy collectors and heat energy
systems. Minimization of entropy generation has emerged as a fundamental mod-
ern technique for designing thermal systems. In [31] authors presented the entropy
generation of fourth-grade fluid using perturbation method. Ref. [32] presents the
entropy generation of MHD convection flows of third-grade fluid past a stretch-
ing sheet. The entropy generation of magnetohydrodynamic flows of viscoelastic
fluid past a stretching surface in the presence of Joule dissipation, viscous dissi-
pation and Darcy dissipation and heat generation was investigated in [33]. In [34],
the authors addressed the entropy generation minimization of nonlinear radiative
mixed convection flow analysis from a stretching sheet. The Maxwell’s thermal
conductivity model to study the entropy generation of mixed convection peristaltic
flow of methanol nanofluid was proposed in [35]. The authors of [36] employed
homotopy analysis method to study the nonlinear radiative EMHDNanofluid flows
from a stretching sheet. In ref. [37], the authors analyzed the entropy analysis of
Casson fluid flow with slip effects.

The effects of slip are compelling in different thermal industry processes
and manufacturing fluid dynamic systems such as fluid transportation, material
processing and rheometric measurements. In general, velocity slip elevates the
heat transfer whereas thermal jump reduces the heat transfer. The slip conditions
were first presented in [38]. Ref. [39] analyzes the entropy generation through
porous annulus with slip and convective condition. Authors of [40] presented the
nonlinear radiative magnetohydrodynamic flow of nanofluid considering velocity
slip, viscous dissipation and Joule heating. In Ref. [41], the authors examined
the slip effects of unsteady MHD squeezing flows using homotopy perturbation
method. The Chebyshev spectral collocation method to explore the convective and
slip effects of micropolar fluid through porous channel in [42]. Further studies
include [27, 43, 44].

To the authors’ knowledge, no studies have been communicated with regard
to viscoelastic MHD convection flow of permeable horizontal circular cylinder
with slip conditions. In the present study, non-similarity mathematical analysis is
presented for steady MHD flows in viscoelastic fluid from permeable horizontal
circular cylinder with slip effects. The Keller-box differences scheme is employed
to solve the normalized boundary layer equations and the effects of third-grade
fluid parameter (ϕ), material fluid parameters (ε1, ε2), velocity slip (Sf ), thermal
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jump (ST ), magnetic parameter (M) on the relevant flow variables are described
in detail. Also, the influence of Reynolds number, Hartmann number, Brinkman
number and dimensionless heat function and other physical parameter on entropy
generation and Bejan number are presented. The present study finds application
in solar film collectors, heat exchanger technology, geothermal energy storage
systems, etc.

2. Third-grade viscoelastic fluid model

A subclass of non-Newtonian fluid model considered in the present study
is the third-grade fluid owing to its simplicity. The model precisely catches the
viscoelastic qualities of specific polymers [45, 46]. The Cauchy stress tensor of the
third-grade viscoelastic model in view of [47] takes the form:

τ = −pI + µA1 + α1 A2 + α2 A2
1 + β1 A3 + β2(A1 A2 + A2 A1) + β3

(
tr A2

1

)
A1 , (1)

where Ai (i = 1, 2, 3) are first Rivlin-Ericksen tensors [39] and are given by:

A1 = (∇V) + (∇V)T, (2)

An =
d An−1

dt
+ An−1(∇V) + An−1(∇V)T; n > 1, (3)

and αj ( j = 1, 2) and βk (k = 1, 2, 3) are the material constants.
The steady, laminar, double-diffusive, incompressible, electrically-conducting,

MHD convection flows of viscoelastic third-grade model from horizontal perme-
able cylinder is considered, as illustrated in Fig. 1). Amagnetic field, B0 is assumed
to be directed normal to surface of the cylinder. The x and y axes are considered
along the circumference and normal to surface of the cylinder respectively. Let
Φ = x/a be the angle made by the y-axis with respect to the vertical, where
0 6 Φ 6 π. The acceleration due to gravity g, is assumed to act downwards.

Fig. 1. Geometric illustration of the problem
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Boussineq approximation is also assumed to holds. Let Tw be the constant tem-
perature of the cylinder and the fluid and let T∞ be the ambient temperature of the
fluid. In line with the authors of [13–16], the boundary layer approximations for
continuity, momentum and energy are given by:

∂u
∂x
+
∂v

∂y
= 0, (4)

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂y2 +

α1
ρ

[
u
∂3u
∂x∂y2 + v

∂3u
∂y3 +

∂u
∂x

∂2u
∂y2

]
+

1
ρ
[3α1 + 2α2]

∂u
∂y

∂2u
∂x∂y

+
6β3
ρ

(
∂u
∂y

)2
∂2u
∂y2 + gβ (T − T∞) sin

( x
a

)
−
σB2

0
ρ

u, (5)

u
∂T
∂x
+ v

∂T
∂y
= α

∂2T
∂y2 . (6)

The boundary conditions are defined as:

At y = 0, u = N0
∂u
∂y
, v = 0, T = Tw + K0

∂T
∂y

,

As y →∞, u→ 0, v → 0, T → T∞.
(7)

If N0 = 0 = K0, then no-slip case arises. Defining the stream function, ψ as

u =
∂ψ

∂y
and v = −

∂ψ

∂x
Eq. (4) is satisfied. The dimensionless variables consid-

ered are:

ξ =
x
a
, η =

y

a
Gr1/4, ψ = ν 4

√
Grxξ f , θ(ξ, η) =

T − T∞
Tw − T∞

,

ϕ(ξ, η) =
C − C∞

Cw − C∞
, Pr =

ν

α
, Gr =

gβ(Tw − T∞)a3

ν2 ,

ϕ =
β3ν

ρa4Gr
3/2, ε1 =

α1

ρa2 Gr1/2, ε2 =
α2

ρa2 Gr1/2,

M =
σB2

0a2

ρν
√

Gr
, Sf =

N0Gr1/4

a
, ST =

K0Gr1/4

a
.

(8)
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Using Eqn. (8), Eqns. (6) and (7) reduce as follows:

f ′′′ + f f ′′ − ( f ′)2 + ε1
[
2 f ′ f ′′′ − f f iv

]
+ (3ε1 + 2ε2) ( f ′′)

2

+ 6ϕξ2 ( f ′′)2 f ′′′ + θ
sin ξ
ξ
− M f ′

= ξ

[
f ′
∂ f ′

∂ξ
− f ′′

∂ f
∂ξ
−ε1

(
f ′
∂ f ′′′

∂ξ
+ f ′′′

∂ f ′

∂ξ
− f iv

∂ f
∂ξ

)
− (3ε1+2ε2) f ′′

∂ f ′′

∂ξ

]
, (9)

θ ′′

Pr
+ f θ ′ = ξ

(
f ′
∂θ

∂ξ
− θ ′

∂ f
∂ξ

)
. (10)

The transformed dimensionless boundary conditions are:

At η = 0, f = 0, f ′ = Sf f ′′(0), θ = 1 + ST θ ′(0),

As η→∞, f ′→ 0, f ′′→ 0, θ → 0.
(11)

The shear stress Cf and heat transfer rate are defined as

Cf = ξ f ′′(ξ, 0) + ε1 (2 f ′(ξ, 0) f ′′(ξ, 0) − f (ξ, 0) f ′′′(ξ, 0))

+ 2ϕ ( f ′′(ξ, 0))3 , (12)

Nu = −θ ′(ξ, 0). (13)

3. Entropy generation analysis

The entropy generation due toMHD convection of third-grade fluid flows from
a horizontal circular cylinder is discussed in this section. The volumetric rate of
entropy generation due to magnetic field with heat transfer is given as:

S′′′gen =
k

T2
∞

(
∂T
∂y

)2
+

µ

T∞

(
∂u
∂y

)2
+
σB2

0
T∞

u2. (14)

The 1st term on the right of eqn. (14) signifies the entropy produced by heat flow,
the second term denotes the entropy due to viscous dissipation and the final term
denotes the entropy due to the Lorentz force. The non-dimensional entropy heat
generation NG , the ratio of volumetric rate of entropy generation to characteristic
entropy heat generation rate.

NG =
S′′′gen
S′0

©«
k

T2
∞

(
∂T
∂y

)2
+

µ

T∞

(
∂u
∂y

)2
+
σB2

0
T∞

u2

k(∆T)2

l2T2
∞

ª®®®®¬
, (15)
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NG = Re θ ′2 +
Br
Ω
Re ξ2 f ′′2 +

Br
Ω
Ha2ξ2 f ′2, (16)

where

Re =
l2Gr1/2

a2 , Br =
µ u2

k∆T
, Ha = B0l

√
σ

µ
,

Ω =
∆T
T∞

and u =
ν

a2Gr
1/2ξ.

Eqn. (16) can be written as, NG = N1 + N2, where N1 = Re θ ′2 and N2 =
Br
Ω

Re ξ2 f ′′2 +
Br
Ω
Ha2ξ2 f ′2 are respectively the irreversibility due to heat transfer

and viscous dissipation.
The irreversibility is accessed via Bejan number (Be), is given by

Be =
N1

N1 + N2
. (17)

Clearly, 0 6 Be 6 1. Therefore, if Be = 0, N2 dominates N1 and vice versa if
Be = 1. And, if Be = 0.5, the fluid friction contribution in entropy generation and
the irreversibility due to heat transfer are equal, i.e., N1 = N2.

4. Interpretation of results

The Keller-Box implicit difference scheme, elaborated in [48], is used to solve
the nonlinear boundary value problem defined by Eqns. (9)–(10) along with bound-
ary conditions (11). This is a very powerful technique for parabolic boundary flows.
Themethod is very stable and achieves exceptional accuracy [48]. Recently applica-
tions of this method include hydromagntic Sakiadis flows [49], nanofluid transport
from wedge [50], radiative rheological flows [51], water hammer modelling [52],
porous media convection [53] and viscoelastic flows from semi-infinite vertical
plate [4]. The discrete calculus of Keller-Box technique is fundamentally different
from other numerical techniques. Very comprehensive solutions are obtained and
are presented in Figs. 2–11. These figures illustrate profiles of velocity and tem-
perature for different values of the thermophysical parameters, viz., ϕ, ε1, ε2, Sf ,
ST , M , Re, Br, Ha, Pr and Ω. The default values of for these parameters are:
ϕ = 0.1, ε1 = 0.3 = ε2, Sf = 0.5, ST = 1.0, M = 0.5, Re = 5.0, Br = 5.0,
Ha = 1.0, Ω = 1.0, Pr = 7.0 and ξ = 1.0. The accuracy of the present code is
validated and presented in Table 1 by comparing the present results of heat transfer
rate with those of the authors [54] and [55] for different values of ξ and these are
found to be in good correlation.

Fig. 2 illustrates the distributions of velocity ( f ′), temperature (θ) and entropy
generation (NG) for increasing third-grade material fluid parameter (ϕ). A sig-
nificant decrease (Fig. 2a) in velocity is observed near the cylinder surface with
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Table 1.
Values of the local heat transfer coefficient (Nu) for various values of ξ with Pr = 0.71,

ϕ = ε1 = ε2 = β3 = 0.0, Sf = ST = 0, M = 0.5

ξ
Nu Gr−1/4 = −θ ′(ξ, 0)

Merkin [54] Yih [55] Present

0.0 0.4212 0.4214 0.4215

0.2 0.4204 0.4207 0.4209

0.4 0.4182 0.4184 0.4188

0.6 0.4145 0.4147 0.4149

0.8 0.4093 0.4096 0.4101

1.0 0.4025 0.4030 0.4032

1.2 0.3942 0.3950 0.3953

1.4 0.3843 0.3854 0.3859

1.6 0.3727 0.3740 0.3746

1.8 0.3594 0.3608 0.3609

2.0 0.3443 0.3457 0.3459

2.2 0.3270 0.3283 0.3284

2.4 0.3073 0.3086 0.3088

2.6 0.2847 0.2860 0.2862

2.8 0.2581 0.2595 0.2597

3.0 0.2252 0.2267 0.2265

π 0.1963 0.1962 0.1965

increasing ϕ. The third-grade fluid model reduces to the well-known Newtonian
model as ϕ→ 0, ε1 → 0 and ε2 → 0, viz:

f ′′′ + f f ′′ − ( f ′)2 + θ
sin ξ
ξ
− M f ′ = ξ

[
f ′
∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

]
. (18)

However, thermal boundary layer is slightly increased for ϕ values. The third-
grade fluid parameter (ϕ) is directly proportional to β3 and inversely proportional
to ν. An increase in ϕ is found to increase the temperature slightly (Fig. 2b). In
Fig. 2c with increasing ϕ, the dimensionless entropy generation number decreases
closer towards the walls. As ϕ increases, the bounding between the fluid particles
becomes very strong making the fluid more viscoelastic.

Fig. 3 presents the distributions of velocity ( f ′), temperature (θ) and entropy
generation number (NG) for the increasing values of ε1. The parameter, ε1 appears
in many terms in Eqn. (9) and is directly proportional to α1. The velocity is seen
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to decrease with increasing ε1 values (Fig. 3a). The decreasing trend is due to the
relaxation effect in the fluid further away from the cylinder surface which results
in shear-thickening and higher viscosity in the fluid. The temperature (Fig. 3b) is
slightly increased with increasing ε1 values. The entropy generation number is seen
to be decreased with increasing values of ε1.

Fig. 4 presents the distributions of velocity ( f ′), temperature (θ) and entropy
generation number (NG)with increasing ε2. The velocity is elevatedwith increasing
ε2. A consistent acceleration in velocity is achieved for different ε2 values (Fig. 4a).
For greater values of ε2, the viscosity of the fluid reduces and elasticity increases.
Whereas, in Fig. 4b the temperature is reduced with increasing ε2. Hence, the heat
diffusion rate is decreased with increasing ε2 values. In Fig. 4c it is seen that the
entropy generation number is increased with increasing ε2.

Fig. 5 illustrates the effects of velocity ( f ′), temperature (θ) and entropy gen-
eration number (NG) distributions for increasing vales of Sf . A significant increase
in velocity (Fig. 5a) is observed at the wall for increasing values of Sf . Hence,
the momentum (velocity) boundary layer thickness will be increased. Similar trend
were observed in [27, 43, 44] and [56]. In Fig. 5b, a monotonic decay in tempera-
ture is seen with increasing Sf . Therefore, the thermal boundary layer thickness is
decreased. The NG is slightly decreased with increasing Sf .

Fig. 6 presents the effects of velocity ( f ′) temperature (θ) and entropy gen-
eration number (NG) distributions for increasing thermal jump parameter, ST .
A considerable decrease in velocity, temperature and entropy generation number is
observed with increasing ST . The thermal slip parameter is inversely proportional
to Grashof number, Gr. An increase in Gr, decelerates the boundary layer flow due
to acceleration in buoyancy. An increase in thermal slip parameter, the Grashof
number decreases. A similar trend was observed in [27, 43, 44] and [56].

Fig. 7 depict the impact of magnetic parameter M on velocity ( f ′), temper-
ature (θ) and entropy generation number (NG). The parameter M represents the
ratio of magnetic Lorentzian drag force to viscous hydrodynamic force in the flow.
For M > 1, the magnetic force dominates the viscous force hence the magnetohy-
drodynamic effect is strong. Thereby, the flow is controlled by the magnetic field.
And for M = 1, the magnetic force and the viscous force are of same magnitude.
An increase in M induces a marked deceleration in velocity (Fig. 7a). The radial
magnetic field acts to generate a perpendicular drag force and hence decelerates the
flow. In contrast, Fig. 7b indicates an elevation in temperature with increasing M
values. A significant decrease in entropy generation number is seen with increasing
M values.

Figs. 8–10 present the profiles for entropy generation number, NG and Bejan
number, Be, for different values of Re, Br, Ha and Ω. Both NG and Be are boosted
with increasing Re values, as seen in Figs. 8a and 8b, which is due to an increase
in inertia force of the flow and reduction in viscous force. Figs. 9a and 9b present
the influence of NG and Be for variation in Br. In Fig. 8a, increasing Br is found to
increase NG . Br is defined as the ratio of viscous heat to external heating. Also Br
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is directly proportional to square of cylinder velocity. Therefore, as Br increases,
a considerable increase in NG is observed as shown in Fig. 9a.A significant decrease
in Be is observed in Fig. 9a with an increase in Br. Similar effects were observed in
[34]. The impacts of Ha on NG and Be are presented in Figs. 10a and 10b. It is seen
that an increasing Ha, increases NG but reduces Be, which leads to an increase in
the heat transfer irreversibility at the cylinder surface.

Figs. 11–12 visualize the streamlines for different values of third-grade fluid
parameter, ϕ and magnetic parameter, M . Streamlines are used to visualize the

Fig. 11. Streamlines for various values of ϕ
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fluid flow and the stream function. Also, streamlines define the flow behavior of
the automotive design.

Fig. 12. Streamlines for various values of M

5. Conclusions

In this paper, the governing boundary layer equations are solved analytically by
Keller-Box method. The effect of various thermophysical parameters on velocity
and temperature are discussed numerically and presented graphically. The influence
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of Reynolds number, Brinkman number, Hartmann number and dimensionless heat
function on entropy generation number and Bejan number is also discussed. The
streamlines are also presented. The present code is validated with the previous
Newtonian case studies. The observations that include increasing ϕ, M and ε1
are seen to decrease both the velocity and entropy generation number whereas
the temperature is increased. Increasing ε2 and Sf increases both the velocity and
entropy generation number, but the temperature is reduced throughout boundary
layer. Increasing ST is seen to decrease velocity, temperature and entropy generation
number.

Manuscript received by Editorial Board, May 06, 2018;
final version, August 08, 2018.
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