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Abstract 

Determination of vertical displacements of engineering objects is closely related to geodesic monitoring. Its purpose is 
to record the dynamics of changes in the deformation phenomenon. Geodesic monitoring requires the use of appropriate 
measurement equipment and appropriate methods for processing observation results, which make it possible to determine 
the correlation between the causes and effects of deformations in engineering objects. Progress in information technology 
resulted in the appearance of new methods for processing and compressing experimental data which are resistant to noise or 
interference and enable reduction of the amount of information. 

The paper presents a method for statistical analysis of multidimensional data based on PCA (principal component ana-
lysis) transformation, implemented with the use of a neural network. PCA transformation, related to the Karhunen–Loeve 
transformation, is used for processing signals regarded as stochastic processes. This method makes enables reduction of the 
input data space on the basis of independent principal components with due attention to their significance. It also makes it 
possible to model changes occurring in both buildings and terrain in glacitectonically disturbed areas. 
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INTRODUCTION 

Geodesic measurements are often carried out in tasks 
aimed at determining displacements and deformations of 
engineering objects and large areas of land vulnerable to 
changes caused by exogenous factors as well as human 
activity. In order to identify changes occurring in objects 
geodesic monitoring is used. It consists of geodesic meas-
urements, their analysis and an engineering interpretation 
of the results. Geodesic measurements can be carried out 
using classical geodesic methods, methods based on satel-
lite techniques and methods based on terrestrial or airborne 
laser scanning [KLAPA et al. 2017; KOSITSKY, AVOUAC 
2010; ZACZEK-PEPLIŃSKA, KARSZNIA 2017]. In recent 
years, methods and instruments based on GIS techniques 
and remote sensing have gained in importance. They are 
used for determining displacements and terrain defor-
mations, and also for assessing environmental risks and 
ones caused by human activity. These methods comple-

ment classical geodesic monitoring [SZEWRAŃSKI et al. 
2017]. 

Geodesic monitoring can be periodical (to assess the 
condition of an object at a particular moment) and perma-
nent (to assess the dynamics of the phenomena occurring 
in an object and to identify processes caused by these 
changes). It is worth emphasizing that both construction 
work and the right operation of engineering objects require 
adequate geodesic monitoring, and its lack may lead to 
failures of even construction disasters [ZACZEK-PEPLIŃSKA 
et al. 2013]. 

Data obtained by monitoring have to be properly pro-
cessed to produce reliable and adequately accurate results. 
Bearing in mind that geodesic monitoring may provide 
a large amount of information (especially if permanent), it 
is important that this information should be processed with 
methods that enable analysis and compression of multidi-
mensional data [HEIDARI, MOATTAR 2017]. One of these 
methods is principal component analysis (PCA), which has 
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been widely used in recent years for modelling such non-
linear phenomena as atmospheric studies, meteorology, 
biometrics, statistics, geophysics and civil engineering 
[NEJABAT et al. 2017; TIAMPO et al. 2017]. The PCA 
method has also been successfully used for solving geodes-
ic problems. An example could be the use of the PCA 
method for optimizing the structure of geodesic measure-
ment networks, which also enables detection of areas that 
are poorly represented in geodesic observations [NIEMEIER 
1982] as well as improving the accuracy of the coordinates 
of points obtained using GPS technology [DONG et al. 
2006]. 

This paper presents an attempt to use the PCA trans-
formation for compressing measurement data using neural 
networks [LEŚNIAK, ZIMA 2018]. They are vertical dis-
placements observed in engineering objects located in gla-
citectonically disturbed areas. Glacitectonically disturbed 
soils, which have been affected several times in their histo-
ry by the mass of the expanding glacier, have variable or 
lower soil strength parameters than those defined in the 
standard. As a result, engineering objects located on these 
soils are especially vulnerable to the impact of vertical 
forces, which results in uneven settlement. For this reason 
in a number of cases geodesic monitoring is necessary and 
measurements carried out in the process are aimed at ex-
amining the settlement of the foundations [GONTASZEW-
SKA-PIEKARZ, MRÓWCZYŃSKA 2008]. The results of geo-
desic measurements have been analysed using the PCA 
transformation, which generates new variables called prin-
cipal components. These variables enable reduction of the 
database size and they are represented by the eigenvectors 
of the covariance matrix or the correlation matrix 
[MRÓWCZYŃSKA 2005]. 

METHODS 

Principal component analysis (also called the Hotelling 
transformation, the Karhunene–Loeve transformation or 
the orthogonal decomposition method) is a method of sta-
tistical analysis of multidimensional data, which performs 
linear transformations of the input vector x into the output 
vector y according to the following relation: 

 𝐲 ൌ 𝐖𝐱  (1) 

Where W is the PCA decomposition matrix (the eigenvec-
tor coordinate matrix).  

The linear transformation performed by the linear PCA 
network (Fig. 1) makes enables reduction of the output 
space while preserving the most important information 
about the process analysed. 

In a self-organizing PCA neural network the training 
process takes place without supervision, i.e. there is no 
need for a pre-set output pattern related to the input pat-
tern. The training process consists in detecting significant 
characteristics of the correlation between input signals in 
order to use them in the reproduction phase for finding 
a solution for patterns that do not participate in the training 
process. During the training process the objective function 
is minimized. It is defined as [OSOWSKI 2006]: 

  

Fig. 1. The structure of a self-organizing PCA network; source: 
own elaboration  
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The denotations in the formulas (3) and (4) are defined 
as: c1 and c2 are certain constants related to the input and 
the output vector, M is the number of training patterns, k is 
the number of neurons in the hidden layer, and 𝐁 is the 
covariance matrix of the activity of the ith and kth neuron 
defined as 

          𝐁  
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Where: x͞i is the mean value of the components of the 
input vector x, and p is the number the input vectors. 

If we adopt the diagonal matrix  ൌ ሾଵ, ଶ, … , ሿ , 
created of the eigenvalues 𝜆, then the covariance matrix 𝐁 
can be written as 

 𝐁 ൌ 𝐖்𝐖  (6)  

Where W is the matrix of the coordinates of eigenvec-
tors. If in the problem in question we consider only the 
first m eigenvalues, ordered according to decreasing val-
ues, we will obtain a vector of principal PCA components 
in the form (1). The first of these components has the 
greatest impact on the accuracy of the reconstruction of the 
input vector x, which is carried out according to the 
Karhunene–Loeve transformation: 

 �ු� ൌ 𝐖்𝐲  (7) 

Principal components were estimated based on the ad-
aptation of the weight matrix in step t + 1 using Sanger 
sequencing [OSOWSKI 2006]  

  𝑤ሺ𝑡  1ሻ ൌ 𝑤ሺ𝑡ሻ  𝜂𝑦ሺ𝑡ሻൣ𝑥 െ ∑ 𝑤ሺ𝑡ሻ𝑦ሺ𝑡ሻ
ୀଵ ൧  (8) 

At this point it should be noted that the results of the 
recreation of the input vector depend on the level of corre-
lation of the input data and also to a high extent on the val-
ue of the training coefficient  , whose value should be 

within the range 0 ൏ 𝜂 ൏
ଶ

ఒౣ౮
 (𝜆୫ୟ୶ is the highest eigen-

value of the matrix B).  
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RESULTS AND DISCUSSION 

Measurement data were compressed using principal 
component analysis for a data set of vertical displacements 
of points of a measurement and control network (Fig. 2a) 
stabilized on an object located on glacitectonically dis-
turbed soils. In such soil conditions the object is at risk of 
uneven settlement, especially in variable water conditions. 
For this reason geodesic monitoring is necessary. The 
measurements were carried out in the object using the pre-
cision levelling method in the years 2016–2017, in 7 
measurement cycles carried out at different time intervals, 
which depended on the situation in the object as well as the 
renovation work that was in progress (Fig. 2b). All meas-
urements and calculations were compared to the zero 
measurement carried out in June 2016. 

During the process aimed at determining vertical dis-
placements of points of the measurement and control net-
work mutually fixed points were identified, which defined 
the reference system according to an algorithm consisting 
of two stages. The first stage was carried out in the follow-
ing steps: 
– minimization of the objective function as the sum of 

absolute deviations, 
– checking the condition for fixed points using the itera-

tive method in order to eliminate points that are not mu-
tually fixed,  

– the condition for fixed points was checked in terms of 
the shortest path, and the points that satisfied it were 
adopted as a preliminarily identified reference system. 

 

The second stage consisted of the following four steps: 
– the final definition of the reference system, formulated 

on the basis of the reaction of the observation system by 
an increment of the square of corrections, 

– additional observation adjustments with the assumption 
that the new points in the network are fixed, 

– analysis of the critical value of the increment of the 
square of corrections. 

The displacements of the measurement points that 
were determined are relative in character and they provide 
sufficiently precise information about the stability of the 
building [PRÓSZYŃSKI, KWAŚNIAK 2006]. 

The principal components were estimated based on the 
adaptation of the weight matrix using rule (8) and self-
organizing PCA neural networks. The results are the vec-
tors of the principal components and the weight matrix W: 

W = 

0.6901 –0.4676 –0.0213 –0.3532 0.0671 0.0207
0.3808 0.3120 –0.0341 0.7519 –0.1781 –0.0467

–0.1846 0.3628 –0.7601 –0.3160 0.0483 0.0101
–0.3549 –0.2399 0.1413 0.2426 0.7628 0.0464
–0.4663 –0.4840 0.0364 0.0667 –0.6168 –0.0471
–0.0651 0.5166 0.6378 –0.3920 –0.0834 0.0155

 
The vectors of the principal components are shown in 

Table 1. Table 2 presents the results of the measurements 
of vertical displacements of points of the measurement and 
control neural network and the reconstruction of the dis-
placement values based on PCA transformation with the 
number of principal components adopted as 3 and the val-
ue of the training coefficient η = 0.002. The accuracy of 
the reconstruction, characterized by the mean square error, 
is m = 0.26 mm.  

           

Fig. 2. Research object; source: own elaboration 

Table 1. The vectors of the principal components 

No. y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 
1 –0.8806 –0.9014   0.4222 0.1548 0.7059   0.6313   0.9734   0.9105   0.5614 –0.8613 
2   0.4397   0.4198   0.6558 0.7166 0.5767   0.4581   0.2154   0.0584 –0.2644   0.4526 
3 –0.0218 –0.1126 –0.3377 0.6515 0.3035 –0.3539 –0.0570 –0.3511   0.4750 –0.0718 

Source: own study. 
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Table 2. The vertical displacements of the control points obtained from the measurements and the ones reconstructed using the PCA 
method  

Point no. Specify method 
Displacements of control points in different time (mm) 

07.2016 08.2016 11.2016 12.2016 01.2017 02.2017 

1 
obtained –2.79 –10.25 –13.47 –12.98 –12.86 –12.77 
reconstructed –3.38 –9.04 –13.96 –12.73 –12.66 –13.34 

2 
obtained –1.52 –3.35 –4.80 –4.37 –4.34 –4.26 
reconstructed –1.58 –3.21 –4.86 –4.32 –4.34 –4.32 

3 
obtained –0.71 –1.12 –0.90 –0.70 –0.57 –0.74 
reconstructed –0.79 –0.95 –0.97 –0.64 –0.56 –0.83 

4 
obtained +0.01 –0.14 0.02 0.04 +0.07 –0.43 
reconstructed +0.03 –0.18 +0.4 –0.01 +0.10 –0.40 

5 
obtained –0.06 –0.06 –0.02 –0.01 +0.05 –0.08 
reconstructed –0.05 –0.08 –0.01 +0.01 +0.03 –0.08 

6 
obtained +0.03 +0.12 0.00 +0.45 +0.32 +0.11 
reconstructed +0.08 +0.02 +0.05 +0.32 +0.38 +0.18 

7 
obtained 0.00 +0.06 +0.26 +0.37 +0.49 +0.24 
reconstructed 0.00 +0.06 0.26 +0.40 +0.40 +0.47 

8 
obtained +0.02 +0.02 +0.24 +0.42 +0.47 +0.42 
reconstructed –0.01 +0.09 +0.21 +0.44 +0.48 +0.38 

9 
obtained –0.31 –0.55 0.50 –0.03 –0.12 –0.02 
reconstructed –0.48 –0.18 +0.35 –0.03 0.00 –0.19 

10 
obtained –1.51 –5.59 –7.28 –6.80 –6.76 –6.59 
reconstructed –1.88 –4.87 –7.57 –6.65 –6.62 –6.93 

Source: own study. 

         
Fig. 3. The vertical displacements of the points: control (August 2016) obtained from the measurements,  

the ones reconstructed using the PCA method; source: own study 

Figure 3a shows the results of the vertical displacement 
measurement carried out in August 2016, and Figure 3b 
shows the results of the reconstruction of these measure-
ment data carried out with the PCA algorithm. For this 
measurement period the reconstruction of measurement data 
is the least favourable and its accuracy is m08_16 = 0.47 mm.  

CONCLUSIONS  

PCA transformation carried out using self-organizing 
neural networks can be used as a method of reducing the 
dataspace size, also in relation to data obtained by geodesic 
monitoring. The use of lossy transformation enables re-
placement of a large amount of input information with 
a set of principal components and eigenvectors of the co-
variance matrix.  

PCA enables reconstruction of input data with differ-
ent levels of accuracy. In the case of the problem presented 
in the paper, reduction of principal components led to 

compression of experimental data using only the largest 
component 𝑦 of the vector y which enabled triple reduc-
tion of the amount of processed information. At the same 
time the accuracy of the input data reconstruction was 
within the accuracy of the measurements. The use of PCA 
transformation also has a positive technical meaning, al-
lowing for faster geodetic measurements and engineering 
calculations due to the smaller amount of information nec-
essary to perform them, which leads to a reduction in their 
cost-effectiveness. This proves that the method discussed 
in the paper can be used for compressing data obtained by 
geodesic monitoring of engineering objects.  
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Maria MRÓWCZYŃSKA  

Zastosowanie analizy składników głównych do modelowania zmian na terenach zaburzonych glacitektonicznie 

STRESZCZENIE 

Wyznaczenie przemieszczeń pionowych obiektów inżynierskich jest ściśle związane z monitoringiem geodezyjnym, 
mającym za zadanie zarejestrowanie dynamiki zmian zjawiska deformacji. Monitoring geodezyjny wymaga zastosowania 
odpowiedniego sprzętu pomiarowego oraz odpowiednich metod przetwarzania wyników obserwacji, umożliwiających 
określenie związku między skutkami a przyczynami deformacji badanego obiektu. Wraz z rozwojem technologii informa-
cyjnej zaczęto przetwarzać dane eksperymentalne w sposób odporny na szumy i zakłócenia oraz stosować kompresję da-
nych, pozwalającą na zmniejszenie ilości informacji. 

W pracy przedstawiono metodę analizy statystycznej wielowymiarowych danych za pomocą transformacji metodą ana-
lizy głównych składowych (PCA – principal component analysis), realizowanej z wykorzystaniem sieci neuronowej. 
Transformacja PCA, związana z transformacją Karhunena–Loevego, znajduje zastosowanie w przetwarzaniu sygnałów 
traktowanych jako procesy stochastyczne. Omawiana w pracy metoda umożliwia zmniejszenie przestrzeni danych wej-
ściowych na podstawie wyznaczonych niezależnych składników głównych z uwzględnieniem ich znaczenia oraz modelo-
wanie zmian na terenach zaburzonych glacitektonicznie, zarówno w odniesieniu do obiektów budowlanych, jak i samego 
terenu. 

Słowa kluczowe: grunty zaburzone glacitektonicznie, monitoring geodezyjny, przemieszczenia pionowe, transformacja PCA 


