
789Bull. Pol. Ac.: Tech. 66(6) 2018

Abstract. Modeling interactions between features improves the performance of machine learning solutions in many domains (e.g. recom-
mender systems or sentiment analysis). In this paper, we introduce Exponential machines (ExM), a predictor that models all interactions of
every order. The key idea is to represent an exponentially large tensor of parameters in a factorized format called tensor train (TT). The tensor
train format regularizes the model and lets you control the number of underlying parameters. To train the model, we develop a stochastic
Riemannian optimization procedure, which allows us to fit tensors with ¼ 256 entries. We show that the model achieves state-of-the-art per-
formance on synthetic data with high-order interactions and that it works on par with high-order factorization machines on a recommender
system dataset MovieLens 100 K.

Key words: tensor decomposition, tensor train, factorization machines, Riemannian optimization.

Exponential machines

A. NOVIKOV1, 2*, M. TROFIMOV4, and I. OSELEDETS2, 3

1National Research University Higher School of Economics
2 Institute of Numerical Mathematics RAS

3Skolkovo Institute of Science and Technology
4Federal Research Center “Computer Science and Control” RAS

different initialization schemes and in some experiments
reached better loss values (Sec. 9.2).

● We show that the linear model (e.g. logistic regression)
is a special case of our model with the TT-rank equal 2
(Sec. 6.2).

● We extend the model to handle interactions between func-
tions of the features, not just between the features them-
selves (Sec. 8).

2. Linear model

In this section, we describe a generalization of a class of
machine learning algorithms – the linear model. Let us fix
a training dataset of pairs

½
(x(f), y(f))

¾N
f  = 1 is a d-dimensional

feature vector of f-th object, and y(f) is the corresponding target
variable. Also fix a loss function `(y ̂ , y) : R2 ! R, which takes
as input the predicted value y ̂ and the ground truth value y. We
call a model linear, if the prediction of the model depends on
the features x only via the dot product between the features x
and the d-dimensional vector of parameters w:

 y ̂ linear(x) = hx, wi + b, (1)

where b 2 R is the bias parameter.
One of the approaches to learn the parameters w and b of

the model is to minimize the following loss

f =1

N

∑ `
³D

x(f), w
E
 + b, y(f)

´
 + λ

2
kwk2

2 , (2)

where λ is the regularization parameter. For the linear model
we can choose any regularization term instead of L2, but later

1. Introduction

Machine learning problems with categorical data require mod-
eling interactions between features to solve them. As an example,
consider a sentiment analysis problem – detecting whether a re-
view is positive or negative – and the following dataset: ‘I liked
it’, ‘I did not like it’, ‘I’m not sure’. Judging by the presence of
the word ‘like’ or the word ‘not’ alone, it is hard to understand
the tone of the review. But the presence of the pair of words ‘not’
and ‘like’ strongly indicates a negative opinion.

If the dictionary has d words, modeling pairwise interactions
requires O(d2) parameters and will probably overfit to the data.
Taking into account all interactions (all pairs, triplets, etc. of
words) requires impractical 2d parameters.

In this paper, we show a scalable way to account for all 2d
interactions. Our contributions are:
● We propose a predictor that models all 2d interactions

of d-dimensional data by representing the exponentially
large tensor of parameters in a compact multilinear format
– Tensor Train (TT-format) (Sec. 3). Factorizing the param-
eters into the TT-format leads to a better generalization,
a linear with respect to d number of underlying parameters
and inference time (Sec. 5). The TT-format lets you control
the number of underlying parameters through the TT-rank
– a generalization of the matrix rank to tensors.

● We develop a stochastic Riemannian optimization learning
algorithm (Sec. 6.1). In contrast to SGD and its variation
(Adam), the Riemannian approach worked reliably across

*e-mail: novikov@bayesgroup.ru

Manuscript submitted 2018-04-26, initially accepted for publication 2018-05-16,
published in December 2018.

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 6, 2018
DOI: 10.24425/bpas.2018.125926

INVITED PAPER

790

A. Novikov, M. Trofimov, and I. Oseledets

Bull. Pol. Ac.: Tech. 66(6) 2018

the choice of the regularization term will become important
(see Sec. 6.1).

Several machine learning algorithms can be viewed as a
special case of the linear model with an appropriate choice of
the loss function `(y ̂ , y): least squares regression (squared loss),
Support Vector Machine (hinge loss), and logistic regression
(logistic loss).

3. Our model

Before introducing our model equation in the general case, con-
sider a 3-dimensional example. The equation includes one term
per each subset of features (each interaction)

y ̂ (x) = W000 + W100 x1 + W010 x2 + W001 x3 +
y ̂ (x) = W110 x1x2 + W101 x1x3 + W011 x2x3 +
y ̂ (x) = W111 x1x2x3.

 (3)

Note that all permutations of features in a term (e.g. x1x2 and
x2x1) correspond to a single term and have exactly one associ-
ated weight (e.g. W110).

In the general case, we enumerate the subsets of features
with a binary vector (i1, …, id), where ik = 1 if the k-th feature
belongs to the subset. The model equation looks as follows

 y ̂ (x) = 
i1=0

1

∑  … 
id =0

1

∑ Wi1 … id
k =1

d

Πxk
ik . (4)

Here we use the notation that 00 = 1. The model is parametrized
by a d-dimensional tensor W, which consists of 2d elements.

The model equation (4) is linear with respect to the weight
tensor W. To emphasize this fact and simplify the notation
we rewrite the model equation (4) as a tensor dot product
y ̂ (x) = hX, Wi, where the tensor X is defined as follows

 X i1 … id
 = 

k =1

d

Πxk
ik . (5)

Note that there is no need in a separate bias term, since it is al-
ready included in the model as the weight tensor element W0 … 0
(see the model equation example (3)).

The key idea of our method is to compactly represent the
exponentially large tensor of parameters W in the Tensor Train
format [22].

4. Tensor train

A d-dimensional tensor A is said to be represented in the Tensor
Train (TT) format [22], if each of its elements can be computed
as the following product of d ¡ 2 matrices and 2 vectors

 A i1 … id
 = G1[i1] … Gd[id], (6)

where for any k = 2, …, d ¡ 1 and for any value of ik, Gk[ik] is
an r£r matrix, G1[i1] is a 1£r vector and Gd[id] is an 1£r vector
(see Fig. 1). We refer to the collection of matrices Gk corre-
sponding to the same dimension k (technically, a 3-dimen-
sional array) as the k-th TT-core, where k = 1, …, d. The size
r of the slices Gk[ik] controls the trade-off between the repre-
sentational power of the TT-format and computational effi-
ciency of working with the tensor. We call r the TT-rank of
the tensor A .

An attractive property of the TT-format is the ability to
perform algebraic operations on tensors without materializing
them, i.e. by working with the TT-cores instead of the tensors
themselves. The TT-format supports computing the norm of
a tensor and the dot product between tensors; element-wise sum
and element-wise product of two tensors (the result is a tensor
in the TT-format with increased TT-rank), and some other op-
erations [22].

5. Inference

In this section, we return to the model proposed in Sec. 3 and
show how to compute the model equation (4) in linear time. To
avoid the exponential complexity, we represent the weight tensor
W and the data tensor X (5) in the TT-format. The TT-ranks of
these tensors determine the efficiency of the scheme. During
the learning, we initialize and optimize the tensor W in the TT-
format and explicitly control its TT-rank. The TT-rank of the
tensor X always equals 1. Indeed, the following TT-cores give
the exact representation of the tensor X

Gk[ik] = xk
ik 2 R1£1,  k = 1, …, d

The k-th core Gk[ik] is a 1£1 matrix for any value of ik 2 {0, 1},
hence the TT-rank of the tensor X equals 1.

Now that we have TT-representations of tensors W and X ,
we can compute the model response y ̂ (x) = hX, Wi in linear
time with respect to the number of features d.

Theorem 1. The computational complexity of computing the
model response y ̂ (x) is O(r2d), where r is the TT-rank of the
weight tensor W.

Proof. Let us rewrite the definition of the model response
(4) assuming that the weight tensor W is represented in the
TT- format (6)

Fig. 1. An illustration of the TT-format for a 3£4£4£3 tensor A with
the TT-rank equal 3

G1

i1 = 2

i2 = 4 i3 = 2 i4 = 3

A2423 = 

G2 G3 G4

£ £ £

791

Exponential machines

Bull. Pol. Ac.: Tech. 66(6) 2018

chastic gradient descent applied to the underlying parameters
of the TT-format of the tensor W.

An alternative to the baseline is to perform gradient descent
with respect to the tensor W, that is subtract the gradient from
the current estimate of W on each iteration. The TT-format in-
deed allows to subtract tensors, but this operation increases the
TT-rank on each iteration, making this approach impractical.

To improve upon the baseline and avoid the TT-rank growth,
we exploit the geometry of the set of tensors that satisfy the
TT-rank constraint (7) to build a Riemannian optimization pro-
cedure (Sec. 6.1). We experimentally show the advantage of this
approach over the baseline in Sec. 9.2.

6.1. Riemannian optimization. The set of all d-dimensional
tensors with fixed TT-rank r

Mr = 
½
W 2 R2£…£2: TT-rank(W) = r

¾

forms a Riemannian manifold [13]. This observation allows us
to use Riemannian optimization to solve problem (7). Rieman-
nian gradient descent consists of the following steps which are
repeated until convergence (see Fig. 2 for an illustration):
● Project the gradient ∂L

∂W –on the tangent space of Mr taken at
the point W. We denote the tangent space as TWMr and the
projection as G = PTWMr

µ
∂L
∂W

¶
.

● Follow along G with some step α (this operation increases
the TT-rank).

● Retract the new point W ¡ αG back to the manifold Mr,
that is decrease its TT-rank to r.

We now describe how to implement each of the steps outlined
above.

Projecting a TT-tensor Z on the tangent space of Mr at
a point W can be done in two steps: preprocessing the
tensor W in O (dr3) operations and projecting the tensor Z in

y ̂ (x) = 
i1, …, id

∑ Wi1 … id

µ
d

k=1
∏ xk

ik

¶
 = 

y ̂ (x) = 
i1, …, id

∑ G1[i1] … Gd[id]

µ
d

k=1
∏ xk

ik

¶
.

Let us group the factors that depend on the variable ik,
k = 1, …, d

y ̂ (x) = 
i1, …, id

∑ x1
i1G1[i1] … xd

idGd[id] = 

y ̂ (x) = 
µ

1

i1= 0
∑ x1

i1G1[i1]

¶
 … 

µ
1

id = 0
∑ xd

idGd[id]

¶
 =

y ̂ (x) =  A1
1£r

A2
r£r

 …  Ad
r£1

,

where the matrices Ak for k = 1, …, d are defined as follows

Ak = 
1

ik = 0
∑ xk

ikGk [ik] = Gk [0] + xkGk [1],

The final value y ̂ (x) can be computed from the matrices Ak via
d ¡ 1 matrix-by-vector multiplications and 1 vector-by-vector
multiplication, which yields O (r2d) complexity.

Note that the proof is constructive and corresponds to the
implementation of the inference algorithm. □

The TT-rank of the weight tensor W is a hyper-parameter of
our method and it controls the efficiency vs. flexibility trade-off.
A small TT-rank regularizes the model and yields fast learning
and inference but restricts the set of possible tensors W. A suf-
ficiently large TT-rank allows any value of the tensor W and
effectively leaves us with the full polynomial model without
any advantages of the TT-format.

6. Learning

Learning the parameters of the proposed model corresponds to
minimizing the loss under the TT-rank constraint:

minimize

W
 L(W),

subject to TT-rank(W) = r0 ,
 (7)

where the loss is defined as follows

 L (W) = 
f =1

N

∑ `
³D
X (f), W

E
, y (f)

 ́
 + λ

2
kWk2

F . (8)

Here by the Frobenius norm k¢kF we mean the square root
of sum of squares of the elements

 kWk2
F = 

1

i1= 0
∑  … 

1

id = 0
∑ W 2

i1 … id .

We consider two approaches to solve problem (7). In a base-
line approach, we optimize the objective L (W) with the sto-

Fig. 2. An illustration of one step of the Riemannian gradient descent.
The step-size α is assumed to be 1 for clarity of the figure

TWMr

Mr

Wt

projection

TT-roundWt + 1

– ∂L
∂Wt

792

A. Novikov, M. Trofimov, and I. Oseledets

Bull. Pol. Ac.: Tech. 66(6) 2018

O(dr2TT-rank (Z)2) operations [18]. The TT-rank of the projec-
tion is bounded by a constant that is independent of the TT-rank
of the tensor Z:

TT-rank(PTWMr
(Z)) ∙ 2TT-rank(W) = 2r.

Let us consider the gradient of the loss function (8)

 ∂L
∂W

 = 
f =1

N

∑ ∂`

∂y ̂
X (f) + λW . (9)

Using the fact that PTWMr
(W) = W and that the projection

is a linear operator we get

 PTWMr

µ
∂L
∂W

¶
 = 

f =1

N

∑ ∂`

∂y ̂
PTWMr

³
X (f)́  + λW . (10)

Since the resulting expression is a weighted sum of projections
of individual data tensors X (f), we can project them in par-
allel. Since the TT-rank of each of them equals 1 (see Sec. 5),
the total computational complexity of all N projections is
O(dr 2(r + N)). The TT-rank of the projected gradient is less
than or equal to 2r regardless of the dataset size N.

Note that here we used the particular choice of the regular-
ization term. For terms other than L2 (e.g. L1), the gradient may
have arbitrary large TT-rank.

As a retraction – a way to return back to the manifold
Mr – we use the TT-rounding procedure [22]. For a given
tensor W and rank r the TT-rounding procedure returns a tensor
Wc = TT-round(W, r) such that its TT-rank equals r and the
Frobenius norm of the residual kW ¡ WckF is as small as pos-
sible. The computational complexity of the TT-rounding pro-
cedure is O(dr3).

Since we aim for big datasets, we use a stochastic version of
the Riemannian gradient descent: on each iteration we sample
a random mini-batch of objects from the dataset, compute the
stochastic gradient for this mini-batch, make a step along the
projection of the stochastic gradient, and retract back to the
manifold (Algorithm 1).

The computational complexity of an iteration of the sto-
chastic Riemannian gradient descent consists of O(dr 2M)
operations for inference, O(dr 2(r + M)) operations for gra-
dient projection, and O(dr3) operations for retraction, yielding
O(dr2(r + M)) operations in total.

6.2. Initialization. We found that a random initialization for the
TT-tensor W sometimes freezes the convergence of optimiza-
tion method (see Sec. 9.2). We propose to initialize the optimi-
zation from the solution of the corresponding linear model (1)
or from a random linear model.

The following theorem shows how to initialize the weight
tensor W from a linear model.

Theorem 2. For any d-dimensional vector w and a bias term b
there exist a tensor W of TT-rank 2, such that for any d-dimen-
sional vector w and the corresponding object-tensor X the dot
products hx, wi and hX, Wi coincide.

To prove the theorem, in the rest of this section we show that
the tensor W from Theorem 2 is representable in the TT-format
with the following TT-cores

G1[0] = 
h
1  0

i
, G1[1] = 

h
0  w1

i
,

Gd[0] = 
∙

b
1

¸
, Gd[1] = 

∙
wd

0

¸
,

∀2 ∙ k ∙ d ¡ 1,

Gk[0] = 
∙

1 0
0 1

¸
, Gk[1] = 

∙
0 wk

0 0

¸
,

 (11)

and thus the TT-rank of the tensor W equals 2.
We start the proof with the following lemma:

Lemma 1. For the TT-cores (11) and any p = 1, …, d ¡ 1 the
following invariance holds:

 G1[i1] … Gp[ip] = 

h
1  0

i
, if  ∑ p

q = 1 iq = 0,
h
0  0

i
, if  ∑ p

q = 1 iq ¸ 2,
h
0  wk

i
, if  ∑ p

q = 1 iq = 1,
 and  ik = 1.

Proof. We prove the lemma by induction. Indeed, for p = 1 the
statement of the lemma becomes

 G1[i1] = 

h
1  0

i
, if  i1 = 0,

h
0  w1

i
, if  i1 = 1,

which holds by definition of the first TT-core G1[i1].
Now suppose that the statement of Lemma 1 is true for some

p ¡ 1 ¸ 1. If ip = 0, then Gp[ip] is an identity matrix and G1[
i1] … Gp[ip] = G1[i1] … Gp ¡ 1[ip ¡ 1]. Also, ∑p

q =1 iq = ∑p ¡1
q =1 iq, so

the statement of the lemma stays the same.

A. Novikov, M. Trofimov, and I. Oseledets

Algorithm 1 Riemannian optimization

Input: Dataset {(x(f),y(f))}N
f=1, desired TT-rank r0, number

of iterations T , mini-batch size M, learning rate α , regular-
ization strength λ
Output: W that approximately minimizes (7)
Train linear model (2) to get the parameters w and b
Initialize the tensor W0 from w and b with the TT-rank equal
r0
for t := 1 to T do

Sample M indices h1, . . . ,hM ∼ U({1, . . . ,N})
Dt := ∑M

j=1
∂�
∂ ŷX

(h j) +λW t−1

Gt := PTWt−1Mr (Dt) (10)
W t := TT-round(W t−1 −αGt , r0)

end for

6.2. Initialization We found that a random initialization for
the TT-tensor W sometimes freezes the convergence of op-
timization method (see Sec. 9.2). We propose to initialize
the optimization from the solution of the corresponding linear
model (1) or from a random linear model.

The following theorem shows how to initialize the weight
tensor W from a linear model.

THEOREM 2. For any d-dimensional vector w and a bias
term b there exist a tensor W of TT-rank 2, such that for any
d-dimensional vector x and the corresponding object-tensor X
the dot products 〈x,w〉 and 〈X ,W〉 coincide.

To prove the theorem, in the rest of this section we show that
the tensor W from Theorem 2 is representable in the TT-format
with the following TT-cores

G1[0] =
[

1 0
]
, G1[1] =

[
0 w1

]
,

Gd [0] =

[
b
1

]
, Gd [1] =

[
wd

0

]
,

∀ 2 ≤ k ≤ d −1

Gk[0] =

[
1 0
0 1

]
, Gk[1] =

[
0 wk

0 0

]
,

(11)

and thus the TT-rank of the tensor W equals 2.
We start the proof with the following lemma:

LEMMA 1. For the TT-cores (11) and any p = 1, . . . ,d −1
the following invariance holds:

G1[i1] . . .Gp[ip] =

[
1 0

]
, if ∑p

q=1 iq = 0,[
0 0

]
, if ∑p

q=1 iq ≥ 2,[
0 wk

]
, if ∑p

q=1 iq = 1,

and ik = 1.

Proof. We prove the lemma by induction. Indeed, for p = 1 the
statement of the lemma becomes

G1[i1] =

[
1 0

]
, if i1 = 0,[

0 w1

]
, if i1 = 1,

which holds by definition of the first TT-core G1[i1].
Now suppose that the statement of Lemma 1 is true for

some p− 1 ≥ 1. If ip = 0, then Gp[ip] is an identity matrix
and G1[i1] . . .Gp[ip] = G1[i1] . . .Gp−1[ip−1]. Also, ∑p

q=1 iq =

∑p−1
q=1 iq, so the statement of the lemma stays the same.
If ip = 1, then there are 3 options:

• If ∑p−1
q=1 iq = 0, then ∑p

q=1 iq = 1 and

G1[i1] . . .Gp[ip] =
[

1 0
]

Gp[1] =
[

0 wp

]
.

• If ∑p−1
q=1 iq ≥ 2, then ∑p

q=1 iq ≥ 2 and

G1[i1] . . .Gp[ip] =
[

0 0
]

Gp[1] =
[

0 0
]
.

• If ∑p−1
q=1 iq = 1 with ik = 1, then ∑p

q=1 iq ≥ 2 and

G1[i1] . . .Gp[ip] =
[

0 wk

]
Gp[1] =

[
0 0

]
.

Which is exactly the statement of Lemma 1.

Proof of Theorem 2. The product of all TT-cores can be repre-
sented as a product of the first p = d − 1 cores times the last
core Gd [id] and by using Lemma 1 we get

Wi1...id = G1[i1] . . .Gd−1[id−1]Gd [id]

=

b, if ∑d
q=1 iq = 0,

0, if ∑d
q=1 iq ≥ 2,

wk, if ∑d
q=1 iq = 1,

and ik = 1.

The elements of the obtained tensor W that correspond to inter-
actions of order ≥ 2 equal to zero; the weight that corresponds
to xk equals to wk; and the bias term W0...0 = b.

The TT-rank of the obtained tensor equal 2 since its TT-cores
are of size 2×2.

7. Order regularization

In this section, we propose a regularization scheme that encour-
ages the model to shrink the coefficients of the high-order terms.
In the loss function (8), coefficients of terms of different order
are equally regularized by the L2 penalty. Instead, we propose
to make the strength of the regularization to be some predefined
number β > 1 (a hyperparameter) raised to the power of the
order of the term, e.g. in the case of 3 features

L(W) =
N

∑
f=1

�
(
〈X (f),W〉, y(f)

)
+

λ
2
(W2

000 +βW2
001+

βW2
010 +βW2

100 +β 2W2
011 +β 2W2

101 +β 2W2
110+

β 3W2
111)

(12)

4 Bull. Pol. Ac.: Tech. XX(Y) 2018

793

Exponential machines

Bull. Pol. Ac.: Tech. 66(6) 2018

If ip = 1, then there are 3 options:

● If ∑p ¡1
q =1 iq = 0, then ∑ p

q = 1 iq = 1 and

G1[i1] … Gp[ip] = 
h

1  0
i
Gp[1] = 

h
0  wp

i
.

● If ∑ p ¡ 1
q = 1 iq ¸ 2, then ∑ p

q = 1 iq ¸ 2 and

G1[i1] … Gp[ip] = 
h

0  0
i
Gp[1] = 

h
0  0

i
.

● If ∑p ¡1
q =1 iq = 1 with ik = 1, then ∑ p

q = 1 iq ¸ 2 and

G1[i1] … Gp[ip] = 
h

0  wk

i
Gp[1] = 

h
0  0

i
.

Which is exactly the statement of Lemma 1. □

Proof of Theorem 2. The product of all TT-cores can be rep-
resented as a product of the first p = d ¡ 1 cores times the last
core Gd[id] and by using Lemma 1 we get

Wi1 … id = G1[i1] … Gd  ¡ 1[id  ¡ 1]Gd[id] =

Wi1 … id = 

b, if  ∑ d
q = 1 iq = 0,

0, if  ∑ d
q = 1 iq ¸ 2,

wk , if  ∑ d
q = 1 iq = 1,

 and  ik = 1.

The elements of the obtained tensor W that correspond to inter-
actions of order ¸2 equal to zero; the weight that corresponds
to xk equals to wk; and the bias term W0 … 0 = b.

The TT-rank of the obtained tensor equal 2 since its TT-
cores are of size 2£2. □

7. Order regularization

In this section, we propose a regularization scheme that en-
courages the model to shrink the coefficients of the high-order
terms. In the loss function (8), coefficients of terms of different
order are equally regularized by the L2 penalty. Instead, we pro-
pose to make the strength of the regularization to be some pre-
defined number β > 1 (a hyperparameter) raised to the power
of the order of the term, e.g. in the case of 3 features

L(W) = 
f =1

N

∑ `
³D
X (f), W

E
, y(f)

´
 + λ

2 (W 2
000 +

L(W) + βW 2
001 + βW 2

010 + βW 2
100 + β2W 2

011 +

L(W) + β2W 2
101 + β2W 2

110 + β3W 2
111)

 (12)

In the general case, the loss under this regularization looks
as follows

L(W) = 
f =1

N

∑ `
³D
X (f), W

E
, y(f)

´
 +

L(W) + λ
2

µ

i1, …, id

∑ β i1 + … + idW 2
i1 … id

¶
.
 (13)

Order regularization can be incorporated into the learning
procedure by noting that the new regularization term is the
Frobenius of the weighted parameter tensor k

Exponential Machines

In the general case, the loss under this regularization looks
as follows

L(W) =
N

∑
f=1

�
(
〈X (f),W〉, y(f)

)
+

λ
2

(
∑

i1,...,id

β i1+...+idW2
i1...id

) (13)

Order regularization can be incorporated into the learning
procedure by noting that the new regularization term is the
Frobenius of the weighted parameter tensor ‖B�W‖2

F , where
the tensor of weights B has rank-1 structure

Bi1...id =
d

∏
k=1

β ik .

When β = 1, order regularization coincides with the original
L2 penalty, but increasing β > 1 leads to better stability and
generalization in our experiments (see Sec. 9.3).

8. Extending the model
In this section, we extend the proposed model to handle polyno-
mials of any functions of the features. As an example, consider
the logarithms of the features in the 2-dimensional case:

ŷ log(x) =W00 +W01x1 +W10x2 +W11x1x2

+W20 log(x1)+W02 log(x2)

+W12 x1 log(x2)+W21 x2 log(x1)

+W22 log(x1) log(x2).

In the general case, to model interactions between ng func-
tions g1, . . . ,gng of the features we redefine the object-tensor as
follows:

Xi1...id =
d

∏
k=1

c(xk, ik),

where

c(xk, ik) =

1, if ik = 0,
g1(xk), if ik = 1,
. . .

gng(xk), if ik = ng,

The weight tensor W and the object-tensor X are now consist
of (ng + 1)d elements. After this change to the object-tensor
X , learning and inference algorithms will stay unchanged com-
pared to the original model (4).

Categorical features. Our basic model handles categorical
features xk ∈{1, . . . ,K} by converting them into one-hot vectors
xk,1, . . . ,xk,K . The downside of this approach is that it wastes the
model capacity on modeling non-existing interactions between
the one-hot vector elements xk,1, . . . ,xk,K which correspond to
the same categorical feature. Instead, we propose to use one
TT-core per categorical feature and use the model extension
technique with the following function

c(xk, ik) =

{
1, if xk = ik or ik = 0,
0, otherwise.

This allows us to cut the number of parameters per categorical
feature from 2Kr2 to (K +1)r2 without losing any representa-
tional power.

9. Experiments
We release a Python implementation of the proposed algorithm1.
For the operations related to the TT-format, we use the T3F
library [20] which is built on top of TenosorFlow library [1].

9.1. Datasets The datasets used in the experiments are

1. UCI [10] Car dataset is a classification problem with 1728
objects and 21 binary features (after one-hot encoding). We
randomly split the data into 864 training and 864 test ob-
jects. For simplicity, we binarized the labels: we picked
the first class (‘unacc’) and made a one-versus-rest binary
classification problem from the original Car dataset.

2. Synthetic data. We generated 100000 train and 100000 test
objects with 30 features. Each entry of the data matrix X
was independently sampled from {−1,+1} with equal prob-
abilities 0.5. We also uniformly sampled 20 subsets of fea-
tures (interactions) of order 6: j1

1, . . . , j1
6, . . . , j20

1 , . . . , j20
6 ∼

U{1, . . . ,30}. We set the ground truth target variable to a
deterministic function of the input: y(x) = ∑20

z=1 εz ∏6
h=1 x jzh

,
and sampled the weights of the interactions from the uniform
distribution: ε1, . . . ,ε20 ∼ U(−1,1).

3. MovieLens 100K. MovieLens 100K is a recommender sys-
tem dataset with 943 users and 1682 movies [11]. We fol-
lowed [3] in preparing the features and in turning the problem
into binary classification. For users, we treated age (rounded
to decades), living area (the first digit of the zipcode), gender,
and occupation as categorical features. For movies, we used
the release year (rounded to decades) and genres. Original
ratings were binarized using 5 as a threshold. This results in
21200 positive samples, half of which were used for training
(with the equal amount of sampled negative examples) and
the rest were used for testing.

9.2. Comparing optimizers and initialization schemes In
this experiment, we compare two approaches to training the
model: Riemannian optimization vs. the Adam optimization
method [15], which is a variation of the stochastic gradient
descent (SGD) with adaptive learning rates (for details on op-
timization methods, see Sec. 6). In all our experiments, plain
SGD is highly inferior to both Riemannian approach and Adam,
so we exclude SGD from the figures.

We also compare two ways of randomly initializing the
weight tensor W : 1) filling its TT-cores with independent Gaus-
sian noise; 2) initializing W to represent a linear model with
random coefficients sampled from a standard Gaussian (see
Sec. 6.2).

In this and later experiments, we tune the TT-rank and regu-
larization strength of the model, as well as the learning rate for
both Riemannian and SGD optimizers with respect to the vali-

1https://github.com/Bihaqo/exp-machines

Bull. Pol. Ac.: Tech. XX(Y) 2018 5

 ¯ Wk2
F, where

the tensor of weights

Exponential Machines

In the general case, the loss under this regularization looks
as follows

L(W) =
N

∑
f=1

�
(
〈X (f),W〉, y(f)

)
+

λ
2

(
∑

i1,...,id

β i1+...+idW2
i1...id

) (13)

Order regularization can be incorporated into the learning
procedure by noting that the new regularization term is the
Frobenius of the weighted parameter tensor ‖B�W‖2

F , where
the tensor of weights B has rank-1 structure

Bi1...id =
d

∏
k=1

β ik .

When β = 1, order regularization coincides with the original
L2 penalty, but increasing β > 1 leads to better stability and
generalization in our experiments (see Sec. 9.3).

8. Extending the model
In this section, we extend the proposed model to handle polyno-
mials of any functions of the features. As an example, consider
the logarithms of the features in the 2-dimensional case:

ŷ log(x) =W00 +W01x1 +W10x2 +W11x1x2

+W20 log(x1)+W02 log(x2)

+W12 x1 log(x2)+W21 x2 log(x1)

+W22 log(x1) log(x2).

In the general case, to model interactions between ng func-
tions g1, . . . ,gng of the features we redefine the object-tensor as
follows:

Xi1...id =
d

∏
k=1

c(xk, ik),

where

c(xk, ik) =

1, if ik = 0,
g1(xk), if ik = 1,
. . .

gng(xk), if ik = ng,

The weight tensor W and the object-tensor X are now consist
of (ng + 1)d elements. After this change to the object-tensor
X , learning and inference algorithms will stay unchanged com-
pared to the original model (4).

Categorical features. Our basic model handles categorical
features xk ∈{1, . . . ,K} by converting them into one-hot vectors
xk,1, . . . ,xk,K . The downside of this approach is that it wastes the
model capacity on modeling non-existing interactions between
the one-hot vector elements xk,1, . . . ,xk,K which correspond to
the same categorical feature. Instead, we propose to use one
TT-core per categorical feature and use the model extension
technique with the following function

c(xk, ik) =

{
1, if xk = ik or ik = 0,
0, otherwise.

This allows us to cut the number of parameters per categorical
feature from 2Kr2 to (K +1)r2 without losing any representa-
tional power.

9. Experiments
We release a Python implementation of the proposed algorithm1.
For the operations related to the TT-format, we use the T3F
library [20] which is built on top of TenosorFlow library [1].

9.1. Datasets The datasets used in the experiments are

1. UCI [10] Car dataset is a classification problem with 1728
objects and 21 binary features (after one-hot encoding). We
randomly split the data into 864 training and 864 test ob-
jects. For simplicity, we binarized the labels: we picked
the first class (‘unacc’) and made a one-versus-rest binary
classification problem from the original Car dataset.

2. Synthetic data. We generated 100000 train and 100000 test
objects with 30 features. Each entry of the data matrix X
was independently sampled from {−1,+1} with equal prob-
abilities 0.5. We also uniformly sampled 20 subsets of fea-
tures (interactions) of order 6: j1

1, . . . , j1
6, . . . , j20

1 , . . . , j20
6 ∼

U{1, . . . ,30}. We set the ground truth target variable to a
deterministic function of the input: y(x) = ∑20

z=1 εz ∏6
h=1 x jzh

,
and sampled the weights of the interactions from the uniform
distribution: ε1, . . . ,ε20 ∼ U(−1,1).

3. MovieLens 100K. MovieLens 100K is a recommender sys-
tem dataset with 943 users and 1682 movies [11]. We fol-
lowed [3] in preparing the features and in turning the problem
into binary classification. For users, we treated age (rounded
to decades), living area (the first digit of the zipcode), gender,
and occupation as categorical features. For movies, we used
the release year (rounded to decades) and genres. Original
ratings were binarized using 5 as a threshold. This results in
21200 positive samples, half of which were used for training
(with the equal amount of sampled negative examples) and
the rest were used for testing.

9.2. Comparing optimizers and initialization schemes In
this experiment, we compare two approaches to training the
model: Riemannian optimization vs. the Adam optimization
method [15], which is a variation of the stochastic gradient
descent (SGD) with adaptive learning rates (for details on op-
timization methods, see Sec. 6). In all our experiments, plain
SGD is highly inferior to both Riemannian approach and Adam,
so we exclude SGD from the figures.

We also compare two ways of randomly initializing the
weight tensor W : 1) filling its TT-cores with independent Gaus-
sian noise; 2) initializing W to represent a linear model with
random coefficients sampled from a standard Gaussian (see
Sec. 6.2).

In this and later experiments, we tune the TT-rank and regu-
larization strength of the model, as well as the learning rate for
both Riemannian and SGD optimizers with respect to the vali-

1https://github.com/Bihaqo/exp-machines

Bull. Pol. Ac.: Tech. XX(Y) 2018 5

 has rank-1 structure

Exponential Machines

In the general case, the loss under this regularization looks
as follows

L(W) =
N

∑
f=1

�
(
〈X (f),W〉, y(f)

)
+

λ
2

(
∑

i1,...,id

β i1+...+idW2
i1...id

) (13)

Order regularization can be incorporated into the learning
procedure by noting that the new regularization term is the
Frobenius of the weighted parameter tensor ‖B�W‖2

F , where
the tensor of weights B has rank-1 structure

Bi1...id =
d

∏
k=1

β ik .

When β = 1, order regularization coincides with the original
L2 penalty, but increasing β > 1 leads to better stability and
generalization in our experiments (see Sec. 9.3).

8. Extending the model
In this section, we extend the proposed model to handle polyno-
mials of any functions of the features. As an example, consider
the logarithms of the features in the 2-dimensional case:

ŷ log(x) =W00 +W01x1 +W10x2 +W11x1x2

+W20 log(x1)+W02 log(x2)

+W12 x1 log(x2)+W21 x2 log(x1)

+W22 log(x1) log(x2).

In the general case, to model interactions between ng func-
tions g1, . . . ,gng of the features we redefine the object-tensor as
follows:

Xi1...id =
d

∏
k=1

c(xk, ik),

where

c(xk, ik) =

1, if ik = 0,
g1(xk), if ik = 1,
. . .

gng(xk), if ik = ng,

The weight tensor W and the object-tensor X are now consist
of (ng + 1)d elements. After this change to the object-tensor
X , learning and inference algorithms will stay unchanged com-
pared to the original model (4).

Categorical features. Our basic model handles categorical
features xk ∈{1, . . . ,K} by converting them into one-hot vectors
xk,1, . . . ,xk,K . The downside of this approach is that it wastes the
model capacity on modeling non-existing interactions between
the one-hot vector elements xk,1, . . . ,xk,K which correspond to
the same categorical feature. Instead, we propose to use one
TT-core per categorical feature and use the model extension
technique with the following function

c(xk, ik) =

{
1, if xk = ik or ik = 0,
0, otherwise.

This allows us to cut the number of parameters per categorical
feature from 2Kr2 to (K +1)r2 without losing any representa-
tional power.

9. Experiments
We release a Python implementation of the proposed algorithm1.
For the operations related to the TT-format, we use the T3F
library [20] which is built on top of TenosorFlow library [1].

9.1. Datasets The datasets used in the experiments are

1. UCI [10] Car dataset is a classification problem with 1728
objects and 21 binary features (after one-hot encoding). We
randomly split the data into 864 training and 864 test ob-
jects. For simplicity, we binarized the labels: we picked
the first class (‘unacc’) and made a one-versus-rest binary
classification problem from the original Car dataset.

2. Synthetic data. We generated 100000 train and 100000 test
objects with 30 features. Each entry of the data matrix X
was independently sampled from {−1,+1} with equal prob-
abilities 0.5. We also uniformly sampled 20 subsets of fea-
tures (interactions) of order 6: j1

1, . . . , j1
6, . . . , j20

1 , . . . , j20
6 ∼

U{1, . . . ,30}. We set the ground truth target variable to a
deterministic function of the input: y(x) = ∑20

z=1 εz ∏6
h=1 x jzh

,
and sampled the weights of the interactions from the uniform
distribution: ε1, . . . ,ε20 ∼ U(−1,1).

3. MovieLens 100K. MovieLens 100K is a recommender sys-
tem dataset with 943 users and 1682 movies [11]. We fol-
lowed [3] in preparing the features and in turning the problem
into binary classification. For users, we treated age (rounded
to decades), living area (the first digit of the zipcode), gender,
and occupation as categorical features. For movies, we used
the release year (rounded to decades) and genres. Original
ratings were binarized using 5 as a threshold. This results in
21200 positive samples, half of which were used for training
(with the equal amount of sampled negative examples) and
the rest were used for testing.

9.2. Comparing optimizers and initialization schemes In
this experiment, we compare two approaches to training the
model: Riemannian optimization vs. the Adam optimization
method [15], which is a variation of the stochastic gradient
descent (SGD) with adaptive learning rates (for details on op-
timization methods, see Sec. 6). In all our experiments, plain
SGD is highly inferior to both Riemannian approach and Adam,
so we exclude SGD from the figures.

We also compare two ways of randomly initializing the
weight tensor W : 1) filling its TT-cores with independent Gaus-
sian noise; 2) initializing W to represent a linear model with
random coefficients sampled from a standard Gaussian (see
Sec. 6.2).

In this and later experiments, we tune the TT-rank and regu-
larization strength of the model, as well as the learning rate for
both Riemannian and SGD optimizers with respect to the vali-

1https://github.com/Bihaqo/exp-machines

Bull. Pol. Ac.: Tech. XX(Y) 2018 5

i1 … id = 
d

k=1
∏β ik.

When β = 1, order regularization coincides with the original
L2 penalty, but increasing β > 1 leads to better stability and
generalization in our experiments (see Sec. 9.3).

8. Extending the model

In this section, we extend the proposed model to handle polyno-
mials of any functions of the features. As an example, consider
the logarithms of the features in the 2-dimensional case:

y ̂ log(x) = W00 + W01x1 + W10 x2 + W11x1x2 +

y ̂ log(x) = W20 log(x1) + W02 log(x2) + 

y ̂ log(x) = W12 x1log(x2) + W21 x2log(x1) + 

y ̂ log(x) = W22 log(x1) log(x2).

In the general case, to model interactions between ng functions
g1, …, gng of the features we redefine the object-tensor as follows:

X i1 … id = 
d

k=1
∏ c(xk, ik),

where

c(xk, ik) = 

1, if ik = 0,
g1(xk), if ik = 1,

¢¢¢
gng(xk), if ik = ng,

The weight tensor W and the object-tensor X are now con-
sist of (ng + 1)d elements. After this change to the object-tensor
X, learning and inference algorithms will stay unchanged com-
pared to the original model (4).

Categorical features. Our basic model handles categorical fea-
tures xk 2 {1, …, K} by converting them into one-hot vectors
xk, 1, …, xk, K. The downside of this approach is that it wastes the
model capacity on modeling non-existing interactions between
the one-hot vector elements xk, 1, …, xk, K which correspond to
the same categorical feature. Instead, we propose to use one
TT-core per categorical feature and use the model extension
technique with the following function

c(xk, ik) = 
1, if  xk = ik or ik = 0,

0, otherwise.

This allows us to cut the number of parameters per categorical
feature from 2Kr2 to (K + 1)r2 without losing any represen-
tational power.

794

A. Novikov, M. Trofimov, and I. Oseledets

Bull. Pol. Ac.: Tech. 66(6) 2018

9. Experiments

We release a Python implementation of the proposed algorithm1.
For the operations related to the TT-format, we use the T3F
library [20] which is built on top of TensorFlow library [11].

9.1. Datasets. The datasets used in the experiments are:
1. UCI [10] Car dataset is a classification problem with 1728

objects and 21 binary features (after one-hot encoding). We
randomly split the data into 864 training and 864 test objects.
For simplicity, we binarized the labels: we picked the first
class (‘unacc’) and made a one-versus-rest binary classifica-
tion problem from the original Car dataset.

2. Synthetic data. We generated 100 000 train and 100 000
test objects with 30 features. Each entry of the data matrix
X was independently sampled from {–1, +1} with equal
probabilities 0.5. We also uniformly sampled 20 subsets of
features (interactions) of order 6: j1

1, …, j6
1, …, j1

20, …, j6
20 »

» U{1, …, 30}. We set the ground truth target variable to
a deterministic function of the input: y(x) = ∑20

z = 1 εz ∏6
h = 1 xjh

z,
and sampled the weights of the interactions from the uniform
distribution: ε1, …, ε20 » U(–1, 1).

3. MovieLens 100 K. MovieLens 100 K is a recommender
system dataset with 943 users and 1682 movies [11]. We
followed [3] in preparing the features and in turning the
problem into binary classification. For users, we treated age
(rounded to decades), living area (the first digit of the zip-
code), gender, and occupation as categorical features. For
movies, we used the release year (rounded to decades) and
genres. Original ratings were binarized using 5 as a thresh-
old. This results in 21 200 positive samples, half of which
were used for training (with the equal amount of sampled
negative examples) and the rest were used for testing.

1 https://github.com/Bihaqo/exp-machines

9.2. Comparing optimizers and initialization schemes. In this
experiment, we compare two approaches to training the model:
Riemannian optimization vs. the Adam optimization method
[15], which is a variation of the stochastic gradient descent
(SGD) with adaptive learning rates (for details on optimiza-
tion methods, see Sec. 6). In all our experiments, plain SGD is
highly inferior to both Riemannian approach and Adam, so we
exclude SGD from the figures.

We also compare two ways of randomly initializing the weight
tensor W: 1) filling its TT-cores with independent Gaussian
noise; 2) initializing W to represent a linear model with random
coefficients sampled from a standard Gaussian (see Sec. 6.2).

In this and later experiments, we tune the TT-rank and regu-
larization strength of the model, as well as the learning rate for
both Riemannian and SGD optimizers with respect to the vali-
dation loss on the last iteration by the grid search. We exclude
optimization runs that diverged or encountered NaN values.

We report that while for some experiments and parameter
settings the Adam optimization method worked on par with
the Riemannian approach, Riemannian optimization is more
robust to the initialization choice and is superior on the syn-
thetic dataset (Fig. 3).

We also report that the proposed initialization from a random
linear model outperforms initialization from a fully random
TT-tensor on both UCI Car and the Movielens dataset and on
the synthetic dataset when using L2 regularization. A possible
explanation, is that by initializing the model in such a way
that high-order terms dominate we may force the optimizer
to focus on high-order terms at the beginning; with linear ini-
tialization, optimization starts with figuring right values for
low-order (linear) terms. It seems better to start with fitting
a simpler (linear) model and only then to correct the predic-
tions with higher-order terms. This also explains why using
full initialization outperforms the linear initialization on the
synthetic dataset with order regularization: on this dataset linear
models cannot achieve AUC higher than 0.5 and it is beneficial

Fig. 3. A comparison between Riemannian optimization (triangle markers) and Adam applied to the underlying parameters of the TT-format
(no markers). ‘Order reg’ corresponds to using the order regularization (see Sec. 7) and choosing the parameter β by grid-search w.r.t. validation
performance; ‘L2 reg’ corresponds to using L2 regularization. ‘Full init’ corresponds to initializing the model with a TT-tensor with random TT- cores;

‘linear init’ corresponds to initializing the TT-tensor such that the model is linear with random coefficients. See details in Sec. 9.2 and 9.3

a) UCI Car dataset b) Movielens 100 K dataset c) Synthetic dataset dataset

795

Exponential machines

Bull. Pol. Ac.: Tech. 66(6) 2018

to consider higher-order interactions from the beginning of the
optimization.

9.3. Order regularization. In this experiment, we assess the
influence of order regularization on the learning process. We
report that order regularization improves the validation AUC,
especially when used with full initialization (a random TT-
tensor), which includes high-order terms (Fig. 3).

9.4. Comparison to other approaches. On the synthetic dataset
with high-order interactions we compared Exponential Machines
(the proposed method) with scikit-learn implementation [23] of
logistic regression, random forest, and kernel SVM; FastFM
implementation [2] of 2-nd order Factorization Machines; our
implementation of high-order Factorization Machines2; and
a feed-forward neural network implemented in TensorFlow [1].
We used 6-th order FM with the Adam optimizer [15] for which
we had chosen the best rank (20) and learning rate (0.003)
based on the validation loss after the first 50 iterations. We
tried several feed-forward neural networks with ReLU activa-
tions and up to 4 fully-connected layers and 128 hidden units.
We compared the models based on the Area Under the Curve
(AUC) metric since it is applicable to all methods and is robust
to unbalanced labels. We report that our model works on par
with high-order Factorization Machines and outperforms all the
baselines in the case of limited training time budget (yielding
0.86 test AUC in 312 seconds, see Table 1).

Table 1
A comparison between models on synthetic data with high-order

interactions (Sec. 9.4). We report the inference time on
100 000 test objects in the last column

Method Test AUC Training
time (s)

Inference
time (s)

Log. reg. 0.50 0.4 0.0
RF 0.55 21.4 6.5
Neural Network 0.50 47.2 0.1
SVM RBF 0.50 2262.6 5380
SVM poly. 2 0.50 1152.6 4260
SVM poly. 6 0.56 4090.9 3774
2-nd order FM 0.50 638.2 0.5
6-th order FM 0.57 549 3
6-th order FM 0.86 6039 3
6-th order FM 0.96 38918 3
ExM rank 8 0.76 48 0.2
ExM rank 12 0.86 312 0.2
ExM rank 16 0.92 720 0.2
ExM rank 20 0.96 4056 0.3

On the MovieLens 100 K dataset we used the categorical
features representation described in Sec. 8. Our model obtained
0.783 test AUC with the TT-rank equal 3 in 131 seconds; lo-
gistic regression obtained 0.782; our implementation of 3-rd
order FM obtained 0.782; and the implementation from [3] ob-
tained 0.786 with 3-rd order FM on the same data.

2 https://github.com/geffy/tffm

Fig. 4. The influence of the TT-rank on the test AUC for the MovieLens
100 K dataset

9.5. TT-rank. The TT-rank is one of the main hyperparameters
of the proposed model. Two possible strategies can be used to
choose it: grid-search or DMRG-like algorithms (see Related
Work, Sec. 10). In our experiments, we opted for the former
and observed that the model is fairly robust to the choice of
the TT-rank (see Fig. 4), but a too small TT-rank can hurt the
accuracy (see Table 1).

10. Related work

Kernel SVM is a flexible non-linear predictor and, in particular,
it can model interactions between features when used with the
polynomial kernel [6]. As a downside, it scales at least quadrati-
cally with the dataset size [6] and overfits on highly sparse data.

Factorization Machine (FM) [24] is a general predictor that
models pairwise interactions. FM overcomes the problems of
polynomial SVM by restricting the rank of the weight matrix,
which leads to a linear number of parameters and generalizes
better on sparse data. FM running time is linear with respect
to the number of nonzero elements in the data, which allows
scaling to billions of training entries on sparse problems.

For high-order interactions FM uses CP-format [7, 12] to
represent the tensor of parameters. The choice of the tensor
factorization is the main difference between the high-order FM
and Exponential Machines. The TT-format comes with two ad-
vantages over the CP-format: first, the TT-format allows for
Riemannian optimization; second, the problem of finding the
best TT-rank r approximation to a given tensor always has
a solution and can be solved in polynomial time. We found
Riemannian optimization superior to the SGD baseline (Sec. 6)
that was used in several other models parametrized by a tensor
factorization [24, 16, 21]. Note that CP-format also allows for
Riemannian optimization, but only for 2-order tensors (and
thereafter 2-order FM).

796

A. Novikov, M. Trofimov, and I. Oseledets

Bull. Pol. Ac.: Tech. 66(6) 2018

A number of works used full-batch or stochastic Riemannian
optimization for data processing tasks [19, 27, 29, 31]. The last
work [31] is especially interesting in the context of our method,
since it improves the convergence rate of stochastic Riemannian
gradient descent and is directly applicable to our learning pro-
cedure. For an overview of applications of tensor methods and
Riemannian optimization for large scale data analysis, see [8, 9].

In a concurrent work, a model similar to Exponential Ma-
chines was proposed which, however, relies on the trigonometric
basis (cos(π/2 x), sin(π/2 x)) in contrast to polynomials (1, x)
used in Exponential Machines (see Sec. 8 for an explanation on
how to change the basis) [26]. They also proposed a different
learning procedure inspired by the DMRG algorithm [25],
which allows to automatically choose the ranks of the model,
but is hard to adapt to the stochastic regime. One of the possible
ways to combine strengths of the DMRG and Riemannian ap-
proaches is to do a full DMRG sweep once in a few epochs of
the stochastic Riemannian gradient descent to adjust the ranks.

Another concurrent work focused on the theoretical prop-
erties of the model presented in this paper: they showed the
connection between this model and recurrent neural networks
and used it to prove that RNNs are exponentially more expres-
sive than shallow networks [14].

Other relevant works include the model that approximates
the decision function with a multidimensional Fourier series
whose coefficients lie in the TT-format [28]; and models that
are similar to FM but include squares and other powers of the
features: Tensor Machines [30] and Polynomial Networks [17].
Tensor Machines also enjoy a theoretical generalization bound.

Another relevant work boosted the efficiency of FM and
Polynomial Networks by casting their training as a low-rank
tensor estimation problem, thus making it multi-convex and
allowing for efficient use of Alternative Least Squares types of
algorithms [4]. Note that Exponential Machines are inherently
multi-convex.

11. Discussion

We presented a predictor that models all interactions of every
order. To regularize the model and to make the learning and
inference feasible, we represented the exponentially large tensor
of parameters in the Tensor Train format. To train the model,
we used Riemannian optimization in the stochastic regime
and report that it outperforms a popular baseline based on the
stochastic gradient descent. We found that training process is
sensitive to initialization and proposed an initialization strategy
based on the solution of the corresponding linear problem and
an initialization that corresponds to a random linear model. The
solutions developed in this paper for the stochastic Riemannian
optimization may suit other machine learning models parame-
trized by tensors in the TT-format.

Acknowledgements. Sections 7, 8, and 9.3 were supported by
Russian Science Foundation (project №17-71-20072). The rest
of the study was supported by the Ministry of Education and
Science of the Russian Federation (grant №14.756.31.0001).

References
 [1] M. Abadi et al., “Tensorflow: Large-scale machine learning on

heterogeneous systems”, 2015. Software available from tensor-
flow.org.

 [2] I. Bayer, “FASTFM: A library for factorization machines”,
Journal of Machine Learning Research, 2016.

 [3] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata, “Higher-order
factorization machines”, Advances in Neural Information Pro-
cessing Systems 29 (NIPS), 2016.

 [4] M. Blondel, M. Ishihata, A. Fujino, and N. Ueda, “Polynomial
networks and factorization machines: New insights and efficient
training algorithms”, In Advances in Neural Information Pro-
cessing Systems 29 (NIPS). 2016.

 [5] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel
classifiers with online and active learning”, The Journal of Ma-
chine Learning Research, 6, 1579–1619, 2005.

 [6] B.E. Boser, I.M. Guyon, and V.N. Vapnik. “A training algorithm
for optimal margin classifiers”, In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152, 1992.

 [7] J.D. Caroll and J.J. Chang, “Analysis of individual differences
in multidimensional scaling via n-way generalization of eck-
artyoung decomposition”, Psychometrika, 35, 283–319, 1970.

 [8] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. Mandic, “Tensor networks for dimensionality reduction and
large-scale optimization: Part 1 low-rank tensor decomposi-
tions”, Foundations and Trends® in Machine Learning, 9(4‒5),
249–429, 2016.

 [9] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M.
Sugiyama, and D. Mandic, “Tensor networks for dimension-
ality reduction and large-scale optimization: Part 2 applications
and future perspectives”, Foundations and Trends® in Machine
Learning, 9(6), 431–673, 2017.

 [10] D. Dheeru and E.K. Taniskidou, “UCI machine learning repos-
itory”, 2017.

 [11] F.M. Harper and A.J. Konstan, “The movielens datasets: History
and context”, ACM Transactions on Interactive Intelligent Sys-
tems (TiiS), 2015.

 [12] R.A. Harshman, “Foundations of the parafac procedure: models
and conditions for an explanatory multimodal factor analysis”,
UCLA Working Papers in Phonetics, 16, 1–84, 1970.

 [13] S. Holtz, T. Rohwedder, and R. Schneider, “On manifolds of tensors
of fixed tt-rank”, Numerische Mathematik, pages 701‒731, 2012.

 [14] V. Khrulkov, A. Novikov, and I. Oseledets, “Expressive power
of recurrent neural networks”, In International Conference on
Learning Representations (ICLR), 2018.

 [15] D. Kingma and J. Ba. Adam, “A method for stochastic optimiza-
tion”, In International Conference on Learning Representations
(ICLR), 2015.

 [16] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lem-
pitsky. “Speeding-up convolutional neural networks using
fine-tuned cp-decomposition. In International Conference on
Learning Representations (ICLR), 2014.

 [17] R. Livni, S. Shalev-Shwartz, and O. Shamir. “On the computa-
tional efficiency of training neural networks”, In Advances in
Neural Information Processing Systems 27 (NIPS), 2014.

 [18] C. Lubich, I. V. Oseledets, and B. Vandereycken, “Time inte-
gration of tensor trains”, SIAM Journal on Numerical Analysis,
pages 917–941, 2015.

 [19] G. Meyer, S. Bonnabel, and R. Sepulchre, “Regression on fixe-
drank positive semidefinite matrices: a Riemannian approach”,
The Journal of Machine Learning Research, 593–625, 2011.

797

Exponential machines

Bull. Pol. Ac.: Tech. 66(6) 2018

 [20] A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. Os-
eledets, “Tensor train decomposition on tensorflow (t3f)”, arXiv
preprint arXiv:1801.01928, 2018.

 [21] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Ten-
sorizing neural networks”, In Advances in Neural Information
Processing Systems 28 (NIPS). 2015.

 [22] I. V. Oseledets, “Tensor-train decomposition”, SIAM J. Scientific
Computing, 33(5), 2295–2317, 2011.

 [23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in python”,
Journal of Machine Learning Research, 12, 2825–2830, 2011.

 [24] S. Rendle. “Factorization machines”, In Data Mining (ICDM),
2010 IEEE 10th International Conference on, pages 995–1000,
2010.

 [25] U. Schollwöck, “The density-matrix renormalization group in the
age of matrix product states”, Annals of Physics, 326(1), 96–192,
2011.

 [26] E. Stoudenmire and D. J. Schwab, “Supervised learning with
tensor networks”, In Advances in Neural Information Processing
Systems 29 (NIPS). 2016.

 [27] M. Tan, I.W. Tsang, L. Wang, B. Vandereycken, and S.J. Pan,
“Riemannian pursuit for big matrix recovery”, In Proceedings
of The 31st International Conference on Machine Learning
(ICML), 2014.

 [28] S. Wahls, V. Koivunen, H.V. Poor, and M. Verhaegen. “Learning
multidimensional fourier series with tensor trains”, In Signal and
Information Processing (GlobalSIP), 2014 IEEE Global Confer-
ence on, pages 394–398. IEEE, 2014.

 [29] Z. Xu and Y. Ke. “Stochastic variance reduced Riemannian ei-
gensolver”, arXiv preprint arXiv:1605.08233, 2016.

 [30] J. Yang and A. Gittens, “Tensor machines for learning targetspe-
cific polynomial features”, arXiv preprint arXiv:1504.01697,
2015.

 [31] H. Zhang, S.J. Reddi, and S. Sra. Riemannian, “SVRG: Fast
stochastic optimization on riemannian manifolds”, Advances in
Neural Information Processing Systems 29 (NIPS), 2016.

