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PAWEŁ SZCZUREK2

1 Institute of Electromechanical Energy Conversion, Cracow University of Technology
Warszawska 24, 31-155 Kraków, Poland

e-mails: pemazgaj@cyfronet.pl, {zszular/michal.sierzega}@pk.edu.pl

2 Laboratory of magnetic measurements, Stalprodukt SA
Wygoda 69, 32-700 Bochnia, Poland

e-mail: pawel.szczurek@stalprodukt.pl

(Received: 21.09.2018, revised: 30.11.2018)

Abstract: The main purpose of the paper is to present a method which allows taking into
account the anisotropic properties of dynamo steel sheets. An additional aim is to briefly
present anisotropic properties of these sheets which are caused by occurrences of some
textures. In order to take into account textures occurring in dynamo sheets, a certain sheet
sample is divided into elementary segments. Two matrix equations, describing changes
of the magnetic field, are transformed to one non-linear algebraic equation in which the
field strength components are unknown. In this transformation the flux densities assigned
to individual elementary segments are replaced by functions of flux densities of easy
magnetization axes of all textures occurring in the given dynamo sheet. The procedure
presented in the paper allows determining one non-linear matrix equation of the magnetic
field distribution; in this equation all textures occurring in a dynamo sheet are included.
Information about textures occurring in typical dynamo sheets may be used in various
approaches regarding the inclusion of anisotropic properties of these sheets, but above all,
the presented method can be helpful in calculations of the magnetic field distribution in
anisotropic dynamo sheets.
Key words: crystallographic texture, dynamo steel sheet, iron crystal, magnetic anisotropy,
magnetic field

1. Introduction

Different magnetic measurements carried out using the Epstein frame and Rotational Single
Sheet Testers have shown that the majority of the dynamo sheets have certain anisotropic features
[1–3]. It has also been confirmed by crystallographic tests carried out on samples of several
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selected dynamo sheets from different manufacturers [4]. The reason for this is that the iron
grains in these sheets create certain textures, i.e. some groups of these grains have privilege
crystallographic orientations with respect to the rolling direction of the given dynamo sheet. So,
flux densities in particular directions on the dynamo sheet plane change their values in a different
way. Anisotropic properties of the dynamo sheets are especially visible comparing hysteresis
loops measured along both the rolling and the transverse direction of the given dynamo sheet.
Fig. 1 shows the measured hysteresis loops of two different dynamo sheets. Values of the coercive
force and of the remanence differ even up to 35 percent with respect to values of these parameters
measured for the rolling direction.

(a) (b)

Fig. 1. Hysteresis loops of two different dynamo sheets measured along both the rolling and the transverse
directions: M530-50A – South Korea (a); M530-50A – Czech Republic (b)

Several papers present some proposals how to take into considerations the anisotropic prop-
erties of dynamo sheets. The so-called elliptical model is widely described in [5] and the model
formulated on the co-energy density is discussed in [6–8], however, these models concern non-
hysteresis materials. In some studies the magnetic anisotropy of electrical steel sheets has been
taken into account using the reluctivity or permeability tensor [9, 10]. The anisotropic proper-
ties of dynamo sheets can be relatively easily taken into account in the model of the rotational
magnetization which is presented in [11]. In this approach an assumed number of specified di-
rections are determined on the plane of the given dynamo sheet sample, and to each direction
a certain hysteresis is assigned, which differs from the hysteresis of the whole anisotropic sheet
sample. However, creating this model of the magnetic anisotropy there was assumed that the iron
crystals have only one easy magnetization axis. Some researchers have considered the hysteresis
modeling of anisotropic materials assuming that these materials have only fiber texture [12] and
they suggested to take into consideration different textures occurring in the tested anisotropic
materials. Due to the anisotropic properties of the dynamo sheets, the issue of including textures
in calculations of a magnetic field is a still valid problem, especially when the magnetization
processes have a rotational character.
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2. Crystallographic structure of dynamo sheets

Dynamo steel sheets are produced as non-oriented sheets, because these sheets should have
isotropic magnetic properties. However, the dynamo sheets can have a significant number of
different texture type, unlike transformer sheets where the so-called Goss texture decides about
magnetic properties of these sheets. An occurrence of a certain texture means that an amount
of iron grains has a privilege crystallographic orientation, usually with respect to the rolling
direction, in the given electrical steel sheet; texture types are most often determined using the
so-called pole figures [13]. It is understood that including all texture types, which may occur in
the tested dynamo sheet, in numerical calculations of a magnetic field is practically impossible.
In order to simplify this problem it has been assumed that all textures can be reduced to one
of three basic texture types: cube-on-face texture {100}, cube-on-edge texture {110}, and the
so-called cube-on-vertex texture {111} (Fig. 2). As magnetic measurements and crystallographic
studies have shown, grains of the individual textures are distributed symmetrically with respect
to the rolling direction [3, 14]; this is the result of a technological process. Dominant textures
of several chosen dynamo sheets, manufactured in different countries, are shown in Table 1; the
parameter “Direction angle” denotes the angle between the rolling direction and one of three easy
magnetization axes of cubic shaped iron crystals.

Fig. 2. Examples of the basic textures occurring in dynamo sheets

It is worth underlining that the magnetic properties of the given dynamo sheet depend on
both the percentage share of the given texture and on the arrangement of the given texture in the
tested dynamo sheet. The percentage share of some textures can be up to over thirty percent with
reference to volume of the given dynamo sheet sample.

The influence of the individual texture type on the flux density changes is presented in Fig. 3,
which shows hodographs of the flux density for individual textures during rotation of the field
strength vector. The flux density hodographs are calculated for some angles between the chosen
easy magnetization axis and the rolling direction; it was assumed that in an individual case only
one texture type occurs in the tested sheet sample.
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Table 1. Dominant types of textures in dynamo sheets
Dynamo

sheet Texture (*) Share Direction
angle

Dynamo
shhet Texture (*) Share Direction

angle

M400-
50A
(Russia)

{100}⟨027⟩ 33 16 M530-
50A
(South
Korea)

{100}⟨049⟩ 23 24
{100}⟨057⟩ 10 36 {100}⟨011⟩ 9 45
{110}⟨332⟩ 29 47 {110}⟨233⟩ 34 25
{111}⟨123⟩ 14 30 {111}⟨112⟩ 34 0
{111}⟨145⟩ 14 15

M800-
50A
(Sweden)

{100}⟨049⟩ 24 24

M530-
50A
(Czech
Republic)

{100}⟨049⟩ 19 24 {100}⟨011⟩ 8 45
{100}⟨011⟩ 6 45 {110}⟨111⟩ 16 35
{110}⟨111⟩ 25 35 {111}⟨347⟩ 41 15
{111}⟨123⟩ 28 30 {111}⟨011⟩ 11 0
{111}⟨112⟩ 22 0

*) For the given texture the parameters u, v, w denote coordinates of the vector which is parallel to the rolling
direction; these parameters are determined with respect to the coordinate system of the given texture.

(a) (b)

(c)

Fig. 3. Hodographs of the flux density determined for
individual textures: cube-on-face texture {100} (a);
cube-on-edge texture {110} (b); cube-on-face vertex

{111} (c)
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3. Basic equations of the magnetic field distribution

In order to formulate equations of the magnetic field distribution, a sample of the given dynamo
sheet is divided into elementary segments which have the same crystallographic structure. Each
field strength component is assigned to only one branch of the division grid consisting of edges of
the elementary segments (Fig. 4(a)). Due to non-linear and anisotropic properties of the dynamo
sheets, each elementary segment has to be divided into four subsegments, because the field
strength and the flux density change their values in the given subsegment differently to other
subsegments. So, the components of the flux density are assigned as it is shown in Fig. 4(b); it
was assumed that the magnetic field in dynamo sheets has two-dimensional character. The flux
density components that are assigned to the left bottom and right upper subsegments should be
taken into account in order to unambiguously determine the magnetic field distribution.

(a) (b)

Fig. 4. Division of a sheet sample on elementary segments and subsegments (a), example of description
of the field strength and flux density components (b); superscripts denote the consecutive numbers of the

components

On the basis of Maxwell’s equations in their integral form, relating to the magnetic field, the
matrix equations describing the distribution of the magnetic field can be formulated; it is widely
described in [15]. These equations have the following matrix form:

AmHm + ApHp = SJJex , (1)

CbxBbx + CbyBby + CuxBux + CuyBuy = 0, (2)

where: Hm, Hp are the column vectors of the field strength components Hm, Hp; Am, Ap are the
matrixes of distances between vertexes of the division grid, SJ denotes the matrix of surfaces
of the meshes related to division of the sheet sample, Jex is the column vector of the current
density values of the external currents, Bbx, Bby, Bux, Buy are the column vectors of flux density
components Bbx , Bby , Bux , Buy , Cbx, Cby, Cux, Cuy denote the matrixes of segment face areas
which are penetrated by magnetic fluxes with the corresponding components; Am, Cux, Cuy are
the square matrixes.

Magnetization processes are caused by changes of the field strength in particular segments
[16], so these two equations have to be transformed into one matrix equation in which the column
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vector Hp is unknown. The flux density components should be written as appropriate functions of
the corresponding components of the field strengths Hm, Hp . When the magnetization processes
are related to movements of domain walls then these processes should be considered along the
easy magnetization axes of the iron grains of the individual textures occurring in the tested
dynamo sheet.

4. Changes of the flux density along easy magnetization axes

In order to take into account textures, values of the field strengths of all the easy magnetization
axes should be saved as functions of the field strength components that are associated with the
branches of the elementary segments (Fig. 4). As previously mentioned, each texture is distributed
symmetrically with respect to the rolling direction (Fig. 2), therefore the field strengths should
be determined for the three axes of easy magnetization of both parts of individual textures. For
the first part of the cube-on-face texture {100} (Fig. 5(a)) of the bottom subsegments it can be
written as follows:

Hfb1a = fh f 1am Mbm Hm + fh f 1ap Mbp Hp , (3a)
Hfb2a = fh f 2am Mbm Hm + fh f 2ap Mbp Hp , (3b)

and for the second part of this texture:

Hfb1b = fh f 1bm Mbm Hm + fh f 1bp Mbp Hp , (3c)
Hfb2b = fh f 2bm Mbm Hm + fh f 2bp Mbp Hp , (3d)

where: Hfb1,2a,b are the column vectors of the field strength values of the easy magnetization axes
(f , f represent the cube-on-face texture, b, b represent the bottom subsegments, 1, 2 are the first,
and second easy magnetization axes, respectively, a, a, b, b are the parts of the considered texture
symmetrically distributed with respect to the rolling direction), Mbm, Mbp are the matrixes that
assign field strength components of the easy magnetization axes to the appropriate components
Hm, Hp , fh f 1,2 a,mp are the appropriate trigonometric relationships that allows us to save the field
strength of easy magnetization axes as functions of the field strength components of the division
grid. Please notice that the third easy magnetization axis of the iron crystals is perpendicular to
the sheet plane, so the field strength of this axis is equal to zero.

Relationships determining the field strengths of the easy magnetization axes of the cube-on-
edge texture {110} as functions of the field strength components Hm, Hp have a similar form as
previous relations, because considering this texture, changes of the magnetic field strength along
the second and third easy magnetization axis are the same (Fig. 5(c)). In order to take into account
the influence of the cube-on-vertex texture {111} on magnetization processes, the field strengths
for all the easy magnetization axes of this texture should be saved separately. For the first part of
the cube-on-vertex texture {111} of the bottom subsegments it can be saved as (Fig. 5(c)):

Hvb1a = fhv1am Mbm Hm + fhv1ap Mbp Hp , (4a)
Hvb2a = fhv2am Mbm Hm + fhv2ap Mbp Hp , (4b)
Hvb3a = fhv3am Mbm Hm + fhv3ap Mbp Hp , (4c)
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(a) (b)

(c)

Fig. 5. Determination of the field strength in easy
magnetization axes as dependences on the field
strength components Hm, Hp ; cube-on-face tex-
ture {100} (a); cube-on-edge texture {110} (b);

cube-on-face vertex {111} (c)

and for the second part of this texture:

Hvb1b = fhv1bm Mbm Hm + fhv1bp Mbp Hp , (4d)
Hvb2b = fhv2bm Mbm Hm + fhv2bp Mbp Hp , (4e)
Hvb3b = fhv3bm Mbm Hm + fhv3bp Mbp Hp , (4f)

where v, v denote the cube-on-vertex texture {111}. The matrixes Mbm, Mbp have the same form
in each relationship because they determine which components of the field strengths Hm, Hp

refer to the individual subsegments. A similar form have relationships concerning the upper right
subsegments. The number of elements of the column vector containing field strengths of the easy
magnetization axes is equal to the number of elementary segments.

In the next step, flux densities ba of the easy magnetization axes of all textures should be
written as non-linear functions of the field strengths of these axes in the form:

ba = ba sat fn(ha), (5)

where: ba sat denotes the saturation flux density of the given axis of the easy magnetization (edges
of the cubic), fn(ha) is a non-linear function of the field strength ha of this axis; field strengths
ha are dependent on the field strength components Hm, Hp .

The saturation flux density ba sat associated with the given easy magnetization axis of the
considered texture is directly proportional to the percentage share of this texture with respect
to the whole volume of the given sheet sample. However, it should be strongly emphasized
that saturation flux densities of individual axes of easy magnetization do not have a constant
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value unlike approaches which have assumed that iron crystals have only one axis of the easy
magnetization. In a general case, the saturation flux densities ba sat are the functions of the angle
between the chosen easy magnetization axis and the direction of the field strength occurring on
the given subsegment; this problem is widely described in [4]. The relationships in form (5)
for the individual easy magnetization axis of all subsegments can be written using appropriate
column vectors, e.g. considering easy magnetization axes 2 of the cube-on-face texture {100} for
the left bottom subsegment it can be saved as:

Bfb2a = Bf b sat 2a ∗ Fn(Hfb 2a), (6)

where: Bfb sat 2a is the column vector of the saturation flux densities bf b sat 2a referring to the given
easy magnetization axis, “*” denotes the multiplication of two column vectors.

For all the easy magnetization axes of all textures in the bottom and upper subsegments the
last relationship can be written as follows:

Btb1,2,3 a,b = Btb sat1,2,3 a,b ∗ Fn(Ht b 1,2,3 a,b), (7a)

Btu1,2,3 a,b = Btu sat1,2,3 a,b ∗ Fn(Ht u 1,2,3 a,b), (7b)

where: t denotes the type of texture, b, u refer to the left bottom subsegment and right upper
subsegment, respectively. The flux densities in easy magnetization axes are dependent on the field
strength component Hm, Hp , because column vectors Ht b1, 2, 3a, b, Ht u1, 2, 3a, b are determined as
functions of the vectors Hm, Hp.

5. Equations of the magnetic field

Remembering that column vectors Bbx, Bby, Bux, Buy in Eq. (2) should be replaced by
appropriate functions of the vectors Hm, Hp, the flux densities of the individual easy magnetization
axes of all textures are projected onto the sheet plane and then the components Bbx , Bby , Bux ,
Buy of the corresponding column vectors occurring in Eq. (2) are determined (Fig. 6). These
components are nonlinear functions of the field strength components Hm, Hp . Assuming that in
the tested dynamo sheet only there basic textures occur, the column vector Bbx can be saved as
follows:

Bbx = fbx f 1aMbxBfb1a + fbx f 1bMbxBfb1b + fbx f 2aMbxBfb2a + fbx f 2bMbxBfb2b+

+ fbxe1aMbxBeb1a + fbxe1bMbxBeb1b + 2 fbxe2aMbxBeb2a + 2 fbxe2bMbxBeb2b+

+ fbxv1aMbxBvb1a + fbxv1bMbxBvb1b + fbxv2aMbxBvb2a + fbxv2bMbxBvb2b+

+ fbxv3aMbxBvb3a + fbxv3bMbxBvb3b ,

(8)

where: functions type fbx f ,e,v1,2,3a,b are the trigonometric dependences which allow us to de-
termine the projections of the flux densities in easy magnetization axes on the flux density
components Bbx of the left bottom subsegments of the dynamo sheet. The first line of the last
equation concerns two easy magnetization axes of the cube-on-face texture; in this case the third
axis of iron crystals is perpendicular to the sheet plane. A similar case applies to the cube-on-
edge texture, because changes of the flux density with respect to axis 2 and 3 are the same. It is
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necessary to stress that quite often two textures of the same type occur in a given dynamo sheet;
the difference between them is related to the angle between chosen easy magnetization axis and
the rolling direction.

(a) (b)

(c)

Fig. 6. Determination of the flux density components
assigned to subsegments as a function of the field

strength values in easy magnetization axes

The column vectors Bby, Bux, Buy have the similar form as Bbx, and they depend on the vectors
Hm, Hp. The vector Hm, can be eliminated using (1), so (2) can be transformed to the form which
contains only the column vector Hp. The final nonlinear matrix equation can be solved using the
Newton–Raphson method for the assumed values of the current inducing the magnetic field. It is
well known that the changes of the magnetic field depend on the eddy currents occurring in the
dynamo sheets and vice versa. In this case a separate division grid for the eddy currents should
be created and these grids should be connected with each other.

6. Conclusions

The anisotropic properties of the dynamo sheets are the result of the occurrence of some
textures in these sheets. These properties depend on both the texture type and the percentage
share of the given texture with respect to the whole volume of the dynamo sheet sample. In order
to take into account these properties, changes of the flux density along each easy magnetization
axis of all textures should be included in the equations determining the magnetic field distribution
in the dynamo sheet sample.

This paper proposes the method how to formulate one matrix non-linear equation that allows
one to calculate the magnetic field distribution in a given dynamo sheet. In this purpose, the
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flux densities of easy magnetization axes of all textures are saved as functions of the field
strength components which are assigned to branches of the division grid. These flux densities
are projected on the sheet plane, and as a result the flux density components which are assigned
to the elementary subsegments can be written as an appropriate function of the field strength
components that are assigned to branches of the division grid. The validation of the correctness
of the magnetic field equation requires consideration of eddy currents which, in turn, influence
the magnetic field distribution in electric steel sheets.
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