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Parallel adaptive computation of some time-dependent
materials-related microstructural problems
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Abstract. Some materials-related microstructural problems calculated using the phase-field method are presented. It is well
known that the phase field method requires mesh resolution of a diffuse interface. This makes the use of mesh adaptivity
essential especially for fast evolving interfaces and other transient problems. Complex problems in 3D are also computationally
challenging so that parallel computations are considered necessary. In this paper, a parallel adaptive finite element scheme
is proposed. The scheme keeps the level of node and edge for 2D and level of node and face for 3D instead of the complete
history of refinements to facilitate derefinement. The information is local and exchange of information is minimized and also less
memory is used. The parallel adaptive algorithms that run on distributed memory machines are implemented in the numerical
simulation of dendritic growth and capillary-driven flows.
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1. Introduction

Materials processing is one of the oldest of the applied
sciences. From thousand years ago, people already knew
about casting and metallurgy. But up to now, many prob-
lems in materials processing are still open from a physical
point of view. For example, the effects of dendritic growth
to the macroscopic properties such as the alteration of
microstructure by the presence of melt flow during so-
lidification, or the capillary-driven effects in the sintering
of powders, etc. These problems involve multiphase flows
with or without phase change. The mathematical descrip-
tions of these multiphase-flow problems can be catego-
rized into two types, sharp-interface models and diffuse-
interface models. Diffuse-interface models can be traced
back to Maxwell, Gibbs, Van der Waals [1] and Korteweg
[2], and in a more modern setting by Cahn & Hilliard [3].

During the last two decades, significant progress has
been made in the computation of dendritic solidification
without convection. Simulations have been performed us-
ing techniques such as the phase-field method [4–7], level
set method [8,9] and explicit interface tracking methods
[10,11]. The extension of these methods to include the ef-
fect of melt flow during the solidification are relatively
recent. Tönhardt and Amberg [12] and Beckermann et
al. [13] consider the solid phase as rigid and stationary.
They used the phase-field method to simulate the two-
dimensional dendritic growth into an undercooled liquid
and set the flow velocity in the solid phase to zero. Becker-
mann et al. introduced a mixture formulation and an aux-
iliary interfacial stress term into the momentum equation
to ensure the correction of the shear stress at the inter-
face and hold the solid in place. Al-Rawahi and Tryggva-

son [14] used the front tracking method to simulate the
dendritic growth into an undercooled liquid. They used
a fixed mesh for the temperature equation, in which the
temperature boundary condition on the interface is ap-
plied explicitly and the heat source is found directly from
the temperature gradient near the interface. They used
another mesh for velocity and pressure, which exist in
the fluid phase only. This leads to remeshing problems.
The level set method, Osher et al. [15], is an alternative
method to handle interface tracking. It was first used by
Zhang et al. [16] to simulate the solidification of molten
droplets on a cold substrate. Later, Kim et al. [9] and Gi-
bou et al. [17] applied the level set method to simulate
the dendritic growth. They used the level set method to
keep track of the front and solved for the diffusion field
using an implicit time discretization method.

Capillary-driven flows involve two immiscible liquids
or a liquid and air separated by a deformable interface in
which the dynamics of the interface is largely influenced
by capillary forces. A contact of these fluids with a third
phase, usually a solid surface, gives rise to a phenomenon
called wetting. Apart from being a generic phenomenon
in nature and technology, wetting is pertinent to numer-
ous materials processes such as liquid phase sintering in
powder metallurgy.

Liquid phase sintering is a technological process that
combines a particulate solid and a softer powder that acts
as a binder, melts at a lower temperature and enhances
material movement during the sintering process. One of
the oldest and most successful liquid phase systems is a
cemented tungsten carbide with cobalt additive used for
cutting and machining tools. Tungsten carbide is known
to be hard and brittle while cobalt is relatively soft and
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ductile. The two metal powders which have typical fine
grade sizes of about 1–10 microns in diameter are mixed
and pressed, then heated until the cobalt binder melts.
The liquid cobalt wets the solid grains and due to capil-
lary forces, the microstructure undergoes rearrangement.
Simultaneously, mass diffusion is present as well as grain
growth that all contribute to pore elimination leading to
densification. Some important factors influence the densi-
fication of the compact microstructure such as the amount
of liquid present, particle size, solubility of the solid in liq-
uid, contact angle, dihedral angle, etc. [18]. A long stand-
ing issue in powder metallurgy is to control and predict
the shape of the finished, sintered part, from the pressed
powder shape.

The wetting of a liquid on a solid can be classified
into two types: total wetting, when the liquid spreads
completely; and partial wetting, when the liquid at equi-
librium rests on the solid with a contact angle θe [19].
Both are characterized by the spreading parameter S =
σSM − (σSL + σLM ), where the σ’s are surface tensions
at the solid/medium (medium is either air or another liq-
uid), solid/liquid, liquid/medium interfaces, respectively.
S > 0 corresponds to total wetting and S < 0 corresponds
to partial wetting.

A difference between the phase-field method and the
other methods for the simulation of dendritic solidification
and capillary-driven flows is that the important physical
mechanisms, such as curvature, anisotropy and kinetics
effect, are implicitly incorporated in the phase-field equa-
tions. Also, by solving a diffuse interface on a fixed, or
adaptively refined mesh, it avoids the need for applying
temperature boundary conditions on the moving inter-
face. It turns out that when we compute the heat fluxes
from the temperature nodal values, it shall not have any
problem with the discretization error that may otherwise
affect the energy solution [20]. A very attractive feature of
diffuse interface methods is that similar methodology can
be used to simulate all the different free surface problems
in materials problems, from phase change to capillarity.

The limitation of the phase-field method is the require-
ment of mesh resolution of the diffuse interface. For fast
evolving interfaces, the use of mesh adaptivity maybe con-
sidered essential. Also, in many transient problems the
regions of interest occur only in certain parts of the do-
main. With a given accuracy, the computational cost can
be greatly reduced if we adapt the mesh, and available
computational resources are more concentrated on regions
where the solution changes rapidly. In many cases both re-
finement and derefinement are needed. While refinement
tries to keep the solution accurate enough, dynamic dere-
finement makes the computation as efficient as possible by
making sure that computational resources are not wasted
or unnecessarily used. For the same reason of reducing
the computational and storage requirements, the adap-
tive computation can be done in a parallel computing en-
vironment. In fact, some transient problems are way too
complex to solve without the use of parallel and/or adap-

tive computation. However, the design and implementa-
tion of an efficient and reliable parallel adaptive algorithm
remains difficult because there are many issues that must
be resolved especially in the parallel implementation.

2. Parallel-adaptive implementation

A combination of parallel and adaptive computation in-
troduces issues that must be resolved. For a parallel solver
to be efficient, the total workload must be evenly dis-
tributed to each processor which is done by partitioning
the mesh in such a way that each processor takes the same
number of elements and communication between proces-
sors should be kept minimum. The communication be-
tween processors and exchange of data can also be made
efficient by having a sound data management [21] as well
as keeping less information to be shared with other pro-
cessors. Since computational power of individual proces-
sors can be increased with increasing demand, focusing
more on ways of improving communication between pro-
cessors offers a great deal of efficiency. Without adaptiv-
ity, the mesh does not change and exchange of informa-
tion is limited only on the data on the partition boundary.
Mesh repartitioning is also unnecessary as well as mesh
migration. The inclusion of adaptivity, however, which is
done in parallel often requires the mesh to be reparti-
tioned to keep a balanced workload. Mesh migration is
unavoidable. Moreover, the standard use of adaptive re-
finement/derefinement also requires keeping the history of
refinements, to facilitate derefinement and maintain the
nestedness of the mesh [22]. But this greatly increases the
communication cost because it is an added information
that has to be shared between processors and also re-
quires some memory to keep the information. In this pa-
per, however, we propose a scheme that does not keep the
history of refinement but keeps a local information about
the node and edge level. This information can be used to
track back to the previous level of mesh refinement, i.e.,
it is used to identify which nodes, edges or faces to be re-
moved and generate another set of information to be used
for the next level of derefinement.

There are several papers on parallel algorithms for the
finite element method. Most of them tackles one or more
of the following issues: mesh partitioning and repartition-
ing [23–28], load balancing and mesh migration [24,25,27–
29], and data structures [21,27,30] . Several authors have
also addressed both parallel and adaptive computation
[27,31–34]. However, derefinement has not been consid-
ered in [31,33] which is necessary in some problems like
the examples that will be shown in this paper. Jeong,
et al. [32] studied fluid flow on 3D dendritic growth on
an adaptive finite element grids implemented in paral-
lel. In their work, hexahedral elements were used. Waltz
[34] presented a parallel adaptive refinement algorithm
for 3D tetrahedral unstructured grids. The algorithm has
been parallelized for shared-memory platforms and over-
came the indirect access memory problem by using do-
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main decomposition. Moreover, the scheme was applied
to unsteady flow and the mesh adaption was done serially.
Castanos [27] have studied parallel adaptive unstructured
computation. Rivara’s longest-edge bisection algorithm is
used for 2D and 3D mesh refinements and a refinement
tree is utilized for derefinement.

A tool to solve partial differential equations with adap-
tive finite element method, called femLego, has been de-
veloped by Amberg et al. [35]. The partial differential
equations, boundary conditions, initial conditions, and
methods of solving each equation are all specified in a
Maple worksheet. In this paper, we present an extended
version of femLego that runs on distributed memory. To
illustrate the applicability of the extended version of fem-
Lego, we show some examples from problems in heat and
mass transfer, materials science and free boundaries. A
flowchart of femLego is shown in Fig. 1. The mesh is par-
titioned using the ParMetis library [36]. A Fortran core
code takes care of the matrix assembling which is done in
parallel. A matrix solution is obtained using the Aztec li-
brary [37]. If adaptivity is switched on, the last computed
results are used by an error criterion to indicate regions
of high variation of variables, i.e., regions requiring finer
mesh. A new mesh, adapted to the solution, will be gener-
ated for use at the next step. The new mesh is again parti-
tioned by ParMetis and balanced using a smoothing func-
tion. And the process repeats until final time. To simplify
implementation and coding for refinement/derefinement,
STL (Standard Template Library) C++ [38] is used. Fur-
thermore, MPI (Message Passing Interface) [39] is used in
all interprocessor communication.

As mentioned earlier, the adaptivity is done in parallel
and all elements have corresponding owners. Each proces-
sor contains a refinement/derefinement list. And at each
mesh refinement step, individual elements are marked for
refinement which will be included in the refinement list,
or no change, based on an error indicator calculated from
a given error criterion and the element size h > hmin, the
minimum h allowed. At the next refinement step, elements
containing hanging nodes are marked for refinement. Er-
ror indicators and element sizes are checked again for the
new created elements and then the refinement list is up-
dated. The refinement stops if and only if the refinement
list of all processors is empty.

Level of node-edge scheme. Initially, we assign a level
number to every node, edge of the original mesh. Newly
created nodes and edges from every refinement process are
also assigned a level number. The reason for keeping the
level of nodes and edges is to facilitate derefinement as was
mentioned in the previous section. It is cost effective since
exchange of information between processors is minimized
and less memory is required in keeping the information.
The level of node gives the information which node will be
removed first while the level of edge tells which edge will
be removed first. It should be noted here that in three
dimensions, we use the level of face instead of the level

of edge but have the same purpose, that is, the faces to
be removed and retained when merging simplices can be
decided by their levels. The scheme is presented in two
dimensions for simplicity but extension to a tetrahedral
mesh in three dimensions is straightforward.

Fig. 1. Flow chart of femLego parallel adaptive version

Refinement. The following is set of rules for assigning
the level of nodes and edges.

R-i All original nodes have level 0 and are never marked
for removal.

R-ii All original edges have level 0.
R-iii Newly created nodes have level i+1 where i is the

highest level of a node in the refinement element.
R-iv All new edges created by bisecting an edge have level

j+1 where j is the level of the bisected edge. Otherwise,
new created edges have level 0.

To elaborate further, we refer to Fig. 2a. For a simpler
case we take a 2D initial mesh containing 4 elements. The
figure also shows the node numbers with their levels and
the level of the edges. Assuming for example that based
on the error indicator, element 2 is marked for refinement.
Then we refine element 2 creating node 7 with level 1.
The original edge (edge n2-n3) that is bisected has level
0, thus the new edges (edge n2-n7 and n3-n7) has level 1
and the other edge (edge n4-n7) created has level 0. Note
that node 7 is a hanging node so we also need to refine
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element 1 creating a new edge (edge n1-n7) with level 0.
Similarly, say a new node 8 is created with level 2 by (R-
iii). The edge n3-n4 with level 0 is bisected to create new
edges with level 1. Note again that node 8 is a hanging
node so we are required to refine element 3 creating node
9 which also in turn refining element 4 and finally refining
element n3-n4-n9, see Fig. 2b. In the third level of refine-
ment, let’s say element n3-n7-n8 is marked for refinement.
A new node is created, node 10 with level 3 because node
8 has level 2 and is the highest in the element. The edge
n3-n7 with level 1 is bisected thus giving two new edges
(edge n3-n10 and edge n7-n10) with level 2 while edge n8-
n10 have level 0 by (R-iv). To satisfy conformity again,
element n1-n3-n7 is refined and consequently element n3-
n7-n11, see Fig. 2c.

In the parallel implementation our goal is to attain
grid closure. As the refinement propagates, it may reach
the partition boundary. If an element in the partition
boundary owned by processor P1 is refined. The data class
in P1 is updated and the new information is passed to the
neighboring processors and their data is also updated to
assure data consistency. The new information passed to
each processor may be used for further refinement if for
example the new node that was created in P1 is a hanging
node in the receiving processor. The refinement process
and exchange of information continues until a conforming
grid is obtained. If the new mesh is unbalanced, then we
need to repartition and mesh migration follows.

The coarsening is done in the same manner as in the
refinement process. An individual element is marked for
derefinement based on an error indicator. From the list
of elements to be merged, we create a list of nodes to be
removed. The coarsening stops if and only if the node list
of all processors is empty.

Derefinement. The following are set of rules in the dere-
finement process.

D-i A node is marked for removal only if all the elements
containing the node are marked for derefinement.

D-ii The node with the highest level will be removed first.
D-iii When a node is marked for removal, the edges con-

nected to it with the lowest level will be removed first,
then the remaining edges which come in pair will com-
bine to form a new edge with level j-1 where j is their
previous level.

Now with the refined mesh of Fig. 2c, we should be able
to get back to the previous level of mesh when doing the
derefinement. Let us again assume that based on the er-
ror indicator, the elements containing node 10 and 11 are
marked for derefinement thus node 10 and 11 are marked
for removal. Since node 10 has a higher level it will be
removed first. When removing node 10, 4 elements are
removed and replaced with 2 elements. With the infor-
mation of the level of edges that will be removed, we can
easily reconstruct back to the previous state of the mesh.

By (D-iii), the edges n8-n10 and n10-n11 are removed and
edges n3-n10 and n7-n10 are combined to form one edge
n3-n10 with level 1. The next node to be removed is node
11. Using (D-iii) again, edge n7-n11 will be removed and
edges n1-n11 and n3-n11 will combine to form edge n1-n3
with level 0, see Fig. 2b. For the second level of derefine-
ment, elements containing nodes 8 and 9 are marked for
merging. Node 8 will be removed first by (D-ii) and by (D-
iii), edges n7-n8 and n8-n9 will be removed while edges
n4-n8 and n3-n8 will form a new edge n3-n4 with level 0.
Next, we remove node 9 and edges n3-n9 and n6-n9 while
edges n4-n9 and n5-n9 will form edge n4-n5 with level 0.
We assume still that all elements containing node 7 are
marked for derefinement. Node 7 will be removed along
with edges n1-n7 and n4-n7 and edges n2-n7 and n3-n7
will join to form edge n2-n3 with level 0.

3. Applications
3.1. Modeling solidification microstructure, den-
drite growth. Dendrites are the basic microstructural
form of most crystalline materials. It may form from the
vapor phase (e.g., snowflakes), from solution (e.g., poly-
mer crystal), or by solidification from a melt (e.g., met-
als). The conditions under which the dendrite will grow
are crucial for the final microstructure of the material that
greatly influences its macroscopic properties.

There are several models that can be used to describe
solidification problems. A classical way of describing solid-
ification problems mathematically is the Stefan model. In
this model the diffusion equations describe the transport
of heat between phases, solid and liquid, and the bound-
ary conditions are specified in moving phase interfaces.
Finding the analytical solution for the Stefan problem is
difficult, since the shape of the phases changes in time.
That is why, numerical simulations are widely used since
the last decades.

The phase-field, heat and/or diffusion equations are
derived in a thermodynamically consistent way by consid-
ering the entropy change during solidification. The follow-
ing equation is a modified heat equation in Stefan problem
by using the semisharp method, Amberg [40],

∂θ

∂t
+ (u · ∇) θ = ∇2θ +

∂gδ(φ)
∂t

(1)

where φ is the phase field variable which is +1 in the solid
and −1 in the liquid, gδ(φ) accounts for the change in in-
ternal energy on phase change and should increase from
0 to 1 as φ goes from −1 to +1. The advantage of this
method is that the interface can be identified with the
surface φ = 0 precisely, in that it can be shown that the
correct kinetics is satisfied there.

The phase field evolution equation is written as fol-
lows,

τ
∂φ

∂t
−τ (u · ∇)φ = W 2∇̂2φ− ∂f(φ)

∂φ
− ∂gδ(φ)

∂φ
h(λθ) (2)
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Fig. 2. Refinement/derefinement using level of node and edge

Bull. Pol. Ac.: Tech. 55(2) 2007 233



M. Do-Quang, W. Villanueva, I. Singer-Loginova, and G. Amberg

where W denotes the interface width parameter, τ links
to the kinetic undercooling, and f(φ) accounts for the en-
tropy densities,

f(φ) =
{

(φ − 1)2 for φ > 0
(φ + 1)2 for φ < 0 (3)

and h(λθ) is a function defined in [40] and given by,

h(λθ) =
W 2

2

[(
dφ+

dz

)2

−
(

dφ−

dz

)2
]

. (4)

The function gδ(φ) is a slightly smoothed step function

gδ(φ) =
1
2

(
1 + φ

√
1 + δ2

φ2 + δ2

)
(5)

with δ set to 0.05.
The anisotropy is included in Eq. (2) by writing the

Laplacian ∇̂2φ as a function of the local normal vector n.

∇̂2φ = ∇ ·
(
η2∇φ

)
+

∂

∂φx

(
|∇φ|2η ∂η

∂φx

)
+

∂

∂φy

(
|∇φ|2η ∂η

∂φy

)
+

∂

∂φz

(
|∇φ|2η ∂η

∂φz

)
(6)

η(φx, φy, φz) = (1− 3γ)

(
1 +

4γ

1 − 3γ

φ4
x + φ4

y + φ4
z

|∇φ|4

)
(7)

where γ is the strength of anisotropy.
Amberg also pointed out that the discontinuous con-

dition on the gradient of φ can be written as a source for
an integration over the surface of the interface∫

φ=0

(∇φ · v) dΓ ∼ dφ+

dz
− dφ−

dz
= − τV

W 2
− 1

R
=

λθ

W
(8)

where the symbol V denotes the normal speed of the in-
terface, R is the local radius of curvature, λ is linked to
capillary length.

Fig. 3. Mesh partitioning at time t = 0.093

Fig. 4. The 3D simulated of an anisotropy dendrite growth at
dimensionless time t = 0.033 (A); t = 0.063 (B); t = 0.093

(C); t = 0.113

As a result, the problem consists of solving several cou-
pled time-dependent pde’s which are applied to the whole
domain, without distinction between the phases and con-
sequently, tracking the solid/liquid interface. However,
numerically, this results in a large length scale separa-
tion: the diffuse-interface must be much smaller than a
typical size of dendritic microstructure and at the same
time be highly resolved to get accurate results.

The large scale separation makes the problem appro-
priate for solving with finite element method on adaptive
meshes. The meshes are typically highly non-uniform and
change adaptively to follow the evolution of the interface
and diffusion fields. A typical example of a mesh evolution
for simulation of a 3D dendrite is shown in Fig. 3. Mesh
is refined along the vicinity of the interface. Far from the
interfaces are discretized with large elements. Color ar-
eas shown with every grid correspond to mesh partitions,
which in this case, 4 processors were used.

The dendritic growth presented in Fig. 4 is obtained
under large driving forces. The solid phase grows so fast
that the mesh must be adaptively changed and reparti-
tioned at every time step. The interface arclength as well
as the number of nodes increases parabolically in time.
This impedes choosing an optimal number of processors to
be used in simulations. Figure 5 demonstrates a speedup
function at different computational times. The speedup is
taken as the ratio of computational time in a single pro-
cessor and computational time in a number of processors.
One observes that when the dendrite is in an early stage
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of development (number of nodes is small) performance of
the code is poor – more processors are used than needed.
However, linear speedup for 8 processors is obtained when
the microstructure is well-developed and the number of
nodes approaches 500000.

Fig. 5. A speedup function at different computational times

3.2. Capillary-driven flows. To model a basic wetting
phenomenon, we consider the case of an isothermal, vis-
cous, and incompressible binary fluid consisting of two
components, A and B in a domain Ω. An order parameter,
a phase-field C, analogous to the relative concentration of
the two components can be introduced to characterize the
two different phases. In each bulk phase, C assumes a dis-
tinct constant value that changes rapidly but smoothly in
the interfacial region. For example, C assumes the value
CA = −1 in component A while it takes the value CB = 1
in component B. The transition from CA to CB describes
the interfacial region. With the introduction of a free en-
ergy density, the system can be modelled by a set of equa-
tions: the Cahn-Hilliard equation, modified to account for
fluid motion, and the Navier-Stokes equations with sur-
face tension forcing and forces due to gravity [41],

∂C

∂t
+ (u · ∇)C =

1
Pe

∇2µ =
1
Pe

∇2(Ψ′(C) − Cn2∇2C)

Re
(∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇2u − 1

Ca · Cn
C∇µ

∇ · u = 0.

(9)

where Ψ is a double-well potential and µ is the chemical
potential. The dimensionless physical parameters are the
Reynolds number Re, Capillary number Ca, and Peclet
number Pe given by

Re =
UcLc

ν
, Ca =

2
√

2ρ0νUc

3σ
, Pe =

2
√

2LcUcξ

3κσ
(10)

where ρ0, ν, Uc, κ, σ are the mean density, kinematic vis-
cosity, characteristic velocity, mobility, and surface ten-

sion, respectively. The Reynolds number is the ratio be-
tween the inertial and viscous forces. The Capillary num-
ber gives the ratio between the viscous and surface ten-
sion forces. The Peclet number is the ratio between the
convective and diffusive mass transport. The Cahn num-
ber Cn = ξ/Lc is a dimensionless numerical parameter
that provides a measure of the ratio between the mean-
field thickness ξ and the characteristic length Lc. The
mean-field thickness is directly proportional to the inter-
face thickness [42].

Following Jacqmin [42], two boundary conditions are
set for C. First, the no-flux condition n ·∇φ = 0. Second,
the wetting condition, n · ∇C = −kg′(C)/Cn, where k is
the wetting coefficient which will be discussed later and
g(C) is a local surface energy set to 0.75C − 0.25C3. De-
tails of the nondimensionalization can be seen in [41] and
application to the study of microdroplet deposition can
be found in [43].

The Young’s relation which is only valid when S < 0
can be defined as cos θe = k = S/σLM + 1 where θe is the
equilibrium contact angle of the liquid/medium interface
at a solid surface.

Fig. 6. Wetting of a liquid drop on a solid surface. Concentra-
tion field at dimensionless time t = 0, 10, 200 with Ca = 0.1,
Re = 1.0, Pe = 1.5 · 104, and θe ≈ 25o. The mesh and velocity

field are superimposed in (b) and (c), respectively
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Figure 6 shows a basic wetting phenomena with par-
tial wetting. The parameters are Ca = 1.0, Re = 1.0,
Pe = 104, and k = 0.9063 which corresponds to θe ≈ 25o.
In Fig. 6b, the adaptive mesh is superimposed and shows
fine resolution along the vicinity of the interface. The com-
putation time is found to be 18 times faster using mesh
adaptivity than having a uniform mesh [41]. Figure 6c
shows the near equilibrium state of the wetting and the
velocity field is superimposed exhibiting a symmetric pro-
file with two vortices.

Wettability is the most significant phenomenon in liq-
uid phase sintering [18,44,45]. Some factors affecting wet-
tability include contact angle, particle size, particle shape,
and particle arrangement. In Fig. 7, the compact mi-
crostructure consists of six solid particles (larger spheres)
and thirteen softer drops that are evenly distributed. The
drops spread over the solid grains. Phase deformation, co-
alescence, pore migration and pore elimination take place
which are all important microstructural behaviors in liq-
uid phase sintering.

Fig. 7. Three-dimensional generic sintering with a fixed matrix
of solid particles (larger spheres). Isosurface at dimensionless

time t = 0, 2, 10 with Ca = 0.1, Re = 0.1, and Pe = 104

4. Conclusions
We have presented numerical simulations of some
materials-related microstructural problems using the
phase-field method. In such type of problems, implemen-
tation using parallel and/or adaptive computation is con-
sidered essential. Important issues in combining parallel
and adaptive computation were identified; one of them
is communication cost reduction. We proposed a scheme
to minimize interprocessor communication by keeping the
level of node and edge for 2D and the level of node and face

for 3D instead of the whole history tree to facilitate dere-
finement. The local information on the node and edge level
can be used to track back to the previous level of refine-
ment. The scheme reduces the communication cost since
exchange of information between processors is minimized.
Finally, we have successfully implemented the scheme to
simulate dendritic growth in 3D with a semisharp phase-
field method and wetting dynamics in generic sintering
in which important microstructural behaviours in liquid
phase sintering have been captured.
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