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Abstract. We propose a class of m-crane control systems that generalizes two- and three-dimensional crane systems. We prove that each repre-
sentant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially 
flat. Then we investigate its control properties and derive a control law for tracking control problem.
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have been an inspiration for our study. For better readability, 
we start with the simplest case of 2-crane1 and then we extend 
our considerations to the general case.

2.1. 2-crane. Consider a pendulum of mass µ attached to a cart 
(of mass M ) that moves in the X-direction. The position of 
the cart (measured at the point where the rope is connected 
to the winch) is denoted by d. We assume that the rope is 
wound around the winch, therefore the connection point does 
not change its vertical component and its coordinates are thus 
(d, 0). The forces acting on the mass µ are the tension of the 
rope T and the gravitational force Fg = µg. The tension can 
be projected along the horizontal direction X and the vertical 
direction Z as Tx = T sinθ  and Tz = T cosθ . The cart is subject 
to a friction force cdd ̇, the tension of the rope Tx, and an external 
force F̃  that is controlled. There is a winch (of radius b and 
moment of inertia J ) on the cart, that changes the length of 
the rope r. It is influenced by a friction crr ̇ , tension b2T, and 
external torque C̃ . We neglect the dynamics of the winch itself, 
but we take into account the torque that the movement of the 
winch produces, that serves as a second control in the system. 
The position of the pendulum is expressed with respect to the 
global frame (X, Z) via coordinates (x, z). See Fig. 1.

1. Introduction

Several authors considered crane systems, both two- and three- 
dimensional, and investigated their structural properties [2], flat-
ness [5], motion planning and tracking [1, 16]. Independently 
of the dimension, these systems share common properties that 
can be further generalized. In this article, we propose a class of 
m-crane control systems constituting a multidimensional gen-
eralization of the above-mentioned systems. We describe this 
class, investigate its properties and prove that m-crane systems 
are feedback equivalent to a normal form, more precisely, to the 
second order chained form with drift. For that chained form, we 
prove flatness of differential weight 5m (where m is the number 
of controls). This article is organized as follows. In Section 2, we 
study the m-crane and derive its equations by calculating the zero 
dynamics of a constrained system. In Section 3, we show that 
the system is feedback equivalent to the normal form. Section 4 
presents results considering flatness of m-crane systems. Finally, 
in Section 5 we use the fact that for a control system to be flat 
is equivalent to be dynamically linearizable, to derive a control 
law for the trajectory tracking problem and show, in Section 6, 
simulation results for the 2-crane system. We stress that the 
presented dynamic linearization is exact, in the sense that the 
nonlinearities of the system are fully compensated by a change 
of coordinates and feedback and should not be confused with the 
linear approximation, where nonlinearities are neglected.

2. Modelling the class of m-crane systems

In this section, a model of m-crane systems will be proposed and 
studied. It is a multidimensional generalization of a system that 
is known in the literature as an overhead crane, see [2, 5], which 

Fig. 1. The overhead two dimensional crane control system
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Based on these simple relations we can write the dynamics 
of the system:

 

	 µx ̈  = –T sinθ
	 µz ̈  = –T cosθ + µg
 Md ̈  = –cdd ̇ + F̃ + T sinθ
 Jr ̈  = –crr ̇  ¡ bC̃  + b2T ,

 (1)

that are subject to the following constraints (recall that the con-
nection point of the rope has coordinates (d, 0)):

 
x = rsinθ + d
z = rcosθ .

 (2)

At first, a feedback is designed to remove dissipative terms, 
which are irrelevant to this study

F̃ = cdd ̇  + F

C̃  = 1
b
(–crr ̇  + C ).

While the above set of differential-algebraic equations (1, 2) 
is easy to derive, it is obscure when represented as a control 
system. The reason is that the model is over-represented. First, 
there is a supplementary configuration variable θ that can be 
eliminated from (1) due to the algebraic equations (2). Second, 
the variable T is free (i.e. there is no differential equation for 
it), so it is a driving variable. Third, it seems like there are 
4 degrees of freedom, since there are 4 equations of motion 
but because of the algebraic (holonomic) constraints (2) the 
number of degrees of freedom is actually 3. In order to express 
(1, 2) as a classical mechanical control system of the form 
ξ ̈  = F(ξ, ξ ̇ ) + ∑m

i = 1 Gi(ξ)ui, we will eliminate the holonomic 
constraints. First, we will get rid of the extra variable θ. From 
the constraints (2), we calculate sinθ =  x ¡ d

r  and cosθ =  zr  and 
plug them into (1)

 

	x ̈  = –T x ¡ d
rµ

	z ̈  = –T z
rµ

 + g

 d ̈  =  1
M

F + T x ¡ d
rM

 r ̈  = – 1
J

C +  b2

J
T .

 (3)

System (3) can be considered as a system that evolves on 
the tangent bundle TΞ = 

n
(ξ , ξ ̇ ) : ξ 2 Ξ, ξ ̇  2 Tξ Ξ

o
 of the 

4-dimensional configuration manifold Ξ with coordinates 
ξ = (x, z, d, r) 2 R3£R+ = Ξ and three driving variables 
(free variables, i.e. differentially unconstrained variables) are 
(F, C, T ), and subject to one holonomic constraint acquired 
from (2):

	 ρ(ξ) := (x ¡ d)2 + z2 ¡ r2 = 0, (4)

which describes a cone in R2£R+, translated by d along the 
variable x, the apex being excluded by r > 0.

In this setting, it is immediate to realize what is the role 
of T in the system. This variable is controlled by “the Nature” 
in order to satisfy the constraints of the system. In classical 
mechanics such variables are called Lagrange multipliers and 
are well studied [9]. Although for any T there exists a solution 
of (3), only particular choices of T lead to solutions satisfying 
additionally (4). The driving variable T, interpreted as a con-
trol, forces the solutions of (3) to stay on the submanifold 
Q := 

n
ξ 2 Ξ : ρ(ξ) = 0

o
. It is natural to find this 3-manifold 

and to restrict the motion to it. This is the idea behind various 
methods of  “eliminating Lagrange multipliers” [18]. Although 
there are many natural direct methods, we propose a different 
approach (similar to the one used in [8], pp. 108). It is our 
belief  that it gives an interesting insight into the nature of  the 
problem.

2.2. The constrained system represented as zero dynamics.
For the sake of simplicity, we formulate the following method 
for the case, when control system has a single constraint. Con-
sider a smooth mechanical system

	 ξ ̈  = F(ξ, ξ ̇ ) + 
i =1

m

∑Gi(ξ)ui + a(ξ)λ (5)

where ξ 2 Ξ ½ Rn, the controls u 2 Rm, and λ is a Lagrange 
multiplier to be chosen to fulfill the holonomic constraint

	 ρ(ξ) = 0.  (6)

We can consider the function ρ as an R-valued output of system 
(5) and let us assume that its relative degree with respect to  
λ is well defined and equals two (meaning that the second 
order time-derivative of ρ(ξ(t)) depends explicitly on λ). It  
follows that locally ∂ρ∂ξi

 6= 0 and, without loss of generality, we can  
suppose that ∂ρ∂ξn

  6= 0 (if not, we permute ξ i and ξn) and we put 
w = ρ(ξ ) and z j = ξ j, 1 ∙  j ∙ n ¡ 1. In (w, z)-coordinates the 
system reads

z ̈ j = Fj(w, w ̇ , z, z ̇ ) + 
i=1

m

∑ Gji(w, z)ui + aj(w, z)λ

w ̈  = Fn(w, w ̇ , z, z ̇ ) + 
i=1

m

∑ Gni(w, z)ui + an(w, z)λ ,

for 1 ∙  j ∙ n ¡ 1. The constraint equation ρ(ξ ) = 0 becomes 
w = 0 and implies w ̇  = w ̈  = 0. The relative degree is two, thus 
an(w, z)  6= 0, and λ can be explicitly calculated as a function 
of z and u as

λ = – 1
an

Ã

Fn + 
i=1

m

∑Gni ui

!

j
w = w ̇  = 0

= α(z, z ̇ ) + 
i=1

m

∑β i(z)ui

and plugging it into the remaining equations justifies the fol-
lowing.
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Proposition 1. The zero dynamics of system (5, 6) define the 
constrained system

 z ̈ j = Fj + 
i =1

m

∑Gjiui + aj

Ã
α + 

i =1

m

∑βi ui

!
 = F̃j + 

i =1

m

∑ G̃jiui (7)

whose configuration manifold Q := 
n
ξ 2 Ξ : ρ(ξ ) = 0

o
 is of 

dimension n ¡ 1, and is equipped with coordinates z. For the 
so obtained control system, the dimension of the state space TQ 
is 2n ¡ 2 and the number of controls is m.

To summarize, the method consists of differentiating 
w = ρ(ξ ) two times along the dynamics and calculating 
λ = α(z, z ̇ ) + ∑m

i =1β i(z)ui that forces the system to evolve on 
the manifold Q = 

n
ξ 2 Ξ : ρ(ξ ) = 0

o
 and thus to respect the 

constraint.

2.3. 2-crane control system. Based on the method formulated 
in the previous subsection, the mechanical system of 2-crane 
will be derived. The constraint is w = ρ(ξ ) = (x ¡ d)2 + z2 ¡
r2 = 0 and thus

 

w ̇  = 2
µ
(x ¡ d)(x ̇  ¡ d ̇ ) + zz ̇  ¡ rr ̇

¶
 = 0

w ̈  = 2
µ
(x ̇  ¡ d ̇ )2 + z ̇ 2 ¡ r ̇ 2 + (x ¡ d)(x ̈  ¡ d ̈ ) +

w ̈  + zz ̈  ¡ rr ̈
¶

 = 0

 (8)

implying that the relative degree with respect to T is, indeed, 
two because x ̈ , z ̈  and r ̈  depend explicitly on T. From (4) and (8) 
we calculate r and r ̇  and, using (3), put into the above
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2.3. 2-crane control system Based on the method formulated
in the previous subsection, the mechanical system of 2-crane
will be derived. The constraint is w = ρ(ξ ) = (x−d)2 + z2 −
r2 = 0 and thus

ẇ = 2
(
(x−d)(ẋ− ḋ)+ zż− rṙ

)
= 0 (8)

ẅ = 2
(
(ẋ− ḋ)2 + ż2 − ṙ2 +(x−d)(ẍ− d̈)+ zz̈− rr̈

)
= 0

implying that the relative degree with respect to T is, indeed,
two because ẍ, z̈ and r̈ depend explicitly on T . From (4) and (8)
we calculate r and ṙ and, using (3), put into the above

ẅ =2

((
(x−d)ż− z(ẋ− ḋ)

)2

(x−d)2 + z2 + zg− x−d
M

F+

+

√
(x−d)2 + z2

J
C − ε1(x−d)2 + ε2z2

µM
√
(x−d)2 + z2

T

)
=

=η
(
x, ẋ,z, ż,d, ḋ

)
+ τ1(x,d)F + τ2(x,z,d)C+

+κ(x,z,d)T = 0,

where ε1 = µ +M+ µMb2

J , ε2 = M+ µMb2

J , and η ,τ1,τ2,κ are
smooth functions of the indicated variables. Calculating T as

T =−η + τ1F + τ2C

κ
=−(α +β1F +β2C ) , (9)

and plugging into (3) gives

ẍ = (α +β1F +β2C )
x−d

µ
√
(x−d)2 + z2

z̈ = (α +β1F +β2C )
z

µ
√
(x−d)2 + z2

+g

d̈ =
1
M

F − (α +β1F +β2C )
x−d

M
√
(x−d)2 + z2

.

(10)

Note that since κ �= 0, the tension T is well defined, and
thus the description is global on Q. Indeed, from Proposi-
tion 1 it follows that the constrained system (10) evolves on
the tangent bundle TQ = Q×R3 of the configuration manifold
Q = {(x,z,d)∈R3 : x−d �= 0 and z �= 0}. It is a control-affine
system of the form (7), with m = 2, that is, with two inputs.

Now apply to (10) static invertible feedback given by

u1 =
1
M

F

u2 =
1

µ
√
(x−d)2 + z2

(α +β1F +β2C ) ,

which brings the 2-crane system into the form

ẍ = u2(x−d)

z̈ = u2z+g

d̈ = u1 −u2
µ
M
(x−d).

(11)

2.4. m-Crane While it has been reported that the system with
one additional degree of freedom, (see [5] and Remark 1 be-
low), the so called three dimensional crane (3-crane, for short)
is somehow analogous, it seems that it has never been investi-
gated in details. As it will be shown, the 2-crane and 3-crane
belong to a larger class of systems that will be described in this

section. Therefore, we deliberately skip modeling the 3-crane
and go directly to an arbitrary dimension.

REMARK 1. In the literature (and the colloquial language),
the 2-crane is called the two dimensional crane. Notice, how-
ever, that despite the numbers match, they have different mean-
ing. In fact, the name 2-crane refers to the number of controls
(the m-crane has m controls) while "two-dimensional" refers
to a crane that moves in a plane. We avoid the popular name,
since it is misleading: the term "two dimensional" brings to
mind that the configuration space is 2-dimensional, which is
not the case (it is actually 3-dimensional).

The precedent analysis can be generalized to any number of
dimensions. The model of m-crane consists of a varying-length
rope with a load attached (a pendulum), in an m-dimensional
Euclidean space, hooked on to a platform that moves in the
first m−1 directions (all being controlled). The change of the
length of the pendulum is carried out by a winch mounted on
the platform. The movement of the pendulum in the m− th
direction is influenced by the gravitational acceleration g. The
configuration of the end-point of the pendulum is in an (m−1)-
dimensional sphere of radius r (which can vary) so the system
has 2m−1 configuration, 2(2m−1) states (configurations and
velocities) and m controls. The position of the platform (mea-
sured at the point, where the rope is connected to the winch)
is (d1,d2, . . . ,dm−1), therefore the origin of the sphere has co-
ordinates (d1,d2, . . . ,dm−1,0). Denote by θi the angle in the
(Xi,Xi+1)-plane form Xi axis with the range 0 ≤ θi < 2π for
1 ≤ i ≤ m− 2 and θm−1 being in the range of 0 ≤ θm−1 ≤ π .
The configuration of the end-point of the pendulum is de-
scribed by a Cartesian coordinate system as

x1 −d1 = r cosθ1 = rS1

x2 −d2 = r sinθ1 cosθ2 = rS2

x3 −d3 = r sinθ1 sinθ2 cosθ3 = rS3

...

xm−1 −dm−1 = r
m−2

∏
i=1

sinθi cosθm−1 = rSm−1

xm = r
m−2

∏
i=1

sinθi sinθm−1 = rSm,

(12)

which describes constraints of the system. The equations of
dynamics of the pendulum, the platform, and the winch are:

µmẍi = −T Si for 1 ≤ i ≤ m−1
µmẍm = −T Sm +µmg

µid̈i = −ciḋi + F̃i +T Si for 1 ≤ i ≤ m−1
Jr̈ = −crṙ−bC̃ +b2T

(13)

where µm is the mass of the end-point (load), µ1 . . . ,µm−1 are
mass parameters of the platform in each of m−1 directions (it
may vary depending on the construction), J is the moment of
inertia of the winch.

Similarly, as in the case of the 2-crane, the dissipative terms
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where ε1 = µ + M + µMb2

J
, ε2 = M + µMb2

J
, and η, τ1, τ 2, κ are 

smooth functions of the indicated variables. Calculating T as

 T = – η + τ1F + τ2C

κ
 = – (α + β1F + β2C ),  (9)

and plugging into (3) gives

 

	x ̈  = (α + β1F + β2C )
x ¡ d

µ (x ¡ d)2 + z2

	z ̈  = (α + β1F + β2C )
z

µ (x ¡ d)2 + z2
 + g

	d ̈  =  1
M

F ¡ (α + β1F + β2C )
x ¡ d

M (x ¡ d)2 + z2
.

 (10)

Note that since κ  6= 0, the tension T is well def ined, and thus 
the description is global on Q. Indeed, from Proposition 1 it 
follows that the constrained system (10) evolves on the tan-
gent bundle TQ = Q£R3 of the configuration manifold  
Q = {(x, z, d) 2 R3 : x ¡ d 6= 0 and z 6= 0}. It is a control-affine  
system of the form (7), with m = 2, that is, with two inputs.

Now apply to (10) static invertible feedback given by

u1 =  1
M

F

u2 =   1
µ (x ¡ d)2 + z2

(α + β1F + β 2C ),

which brings the 2-crane system into the form

 

x ̈  = u2(x ¡ d)

z ̈  = u2z + g

d ̈  = u1 ¡ u2
µ
M

(x ¡ d).

 (11)

2.4. m-crane. While it has been reported that the system with 
one additional degree of freedom, (see [5] and Remark 1 below), 
the so called three dimensional crane (3-crane, for short) is 
somehow analogous, it seems that it has never been investigated 
in details. As it will be shown, the 2-crane and 3-crane belong 
to a larger class of systems that will be described in this section. 
Therefore, we deliberately skip modeling the 3-crane and go 
directly to an arbitrary dimension.

Remark 1. In the literature (and the colloquial language), the 
2-crane is called the two dimensional crane. Notice, however, 
that despite the numbers match, they have different meaning. 
In fact, the name 2-crane refers to the number of controls (the 
m-crane has m controls) while “two-dimensional” refers to 
a crane that moves in a plane. We avoid the popular name, since 
it is misleading: the term “two dimensional” brings to mind that 
the configuration space is 2-dimensional, which is not the case 
(it is actually 3-dimensional).

The precedent analysis can be generalized to any number of 
dimensions. The model of  m-crane consists of  a varying-length 
rope with a load attached (a pendulum), in an m-dimensional 
Euclidean space, hooked on to a platform that moves in the first 
m ¡ 1 directions (all being controlled). The change of the length 
of the pendulum is carried out by a winch mounted on the plat-
form. The movement of the pendulum in the m ¡ th direction 
is influenced by the gravitational acceleration g. The configu-
ration of the end-point of the pendulum is in an (m ¡ 1)-dimen-
sional sphere of radius r (which can vary) so the system has 
2m ¡ 1 configuration, 2(2m ¡ 1) states (configurations and 
velocities) and m controls. The position of the platform (mea-
sured at the point, where the rope is connected to the winch) 
is (d1, d2, …, dm ¡ 1), therefore the origin of the sphere has 
coordinates (d1, d2, …, dm ¡ 1, 0). Denote by θ i the angle in the 
(Xi, Xi + 1)-plane form Xi axis with the range 0 ∙ θ i < 2π  for 
1 ∙ i ∙ m ¡ 2 and θm ¡ 1 being in the range of 0 ∙ θm ¡ 1 ∙ π . 
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The configuration of the end-point of the pendulum is described 
by a Cartesian coordinate system as

 

x1 ¡ d1 = rcosθ1 = rS1

x2 ¡ d2 = rsinθ1cosθ2 = rS2

x3 ¡ d3 = rsinθ1sinθ2cosθ3 = rS3

xm ¡ 1 ¡ dm ¡ 1 = r
i =1

m ¡ 2

Π sinθi cosθm ¡ 1 = rSm ¡ 1

xm = r
i =1

m ¡ 2

Π sinθi sinθm ¡ 1 = rSm ,

 (12)

which describes constraints of the system. The equations of 
dynamics of the pendulum, the platform, and the winch are:

 

	 µm x ̈ i = –TSi for 1 ∙  i ∙ m ¡ 1
	µm x ̈ m = –TSm + µmg

	 µi d ̈ i = – ci d i̇ + F̃i + TSi for 1 ∙  i ∙ m ¡ 1
	 Jr ̈  = – cr r ̇  ¡ bC̃  + b2T

 (13)

where µm is the mass of the end-point (load), µ1 …, µm ¡ 1 are 
mass parameters of the platform in each of m ¡ 1 directions 
(it may vary depending on the construction), J is the moment 
of inertia of the winch.

Similarly, as in the case of the 2-crane, the dissipative terms 
can be compensated by an appropriate feedback

F̃i = cid ̇i + Fi

C̃  =  1
b

(–crr ̇  + C ).

From (12) we calculate

Si =  xi ¡ di

r
   for 1 ∙ i ∙ m ¡ 1

Sm =  xm

r

and plug into (13), which gives the system

 

	 µm x  ̈ i = –T xi ¡ di
r  for 1 ∙  i ∙ m ¡ 1

	µm x ̈ m = –T xm
r  + µmg

	 µi d  ̈ i = Fi + T xi ¡ di
r  for 1 ∙  i ∙ m ¡ 1

	 Jr ̈  = – C + b2T

 (14)

that evolves on TΞ, where Ξ = R2m ¡ 1£R+ consists of con-
figurations (x, d, r) 2 Ξ, subject to the holonomic constraint

 
ρ(ξ) = (x1 ¡ d1)

2 + … + (xm ¡ 1 ¡ dm ¡ 1)
2 +

ρ(ξ) + xm
2 ¡ r2 = 0.

 (15)

We identify the zero dynamics, see section 2.2, defined by 
above constraint (15), by calculating

w = ρ(ξ ) = 0

w ̇  =  d
dt
ρ(ξ ) = 0

w ̈  =  d2

dt2 ρ(ξ ) = 0

and we express r, r ̇ , T (using the first, second, and third equa-
tion, respectively) as functions of (x1, …, xm, d1, …, dm ¡ 1) and 
their derivatives. The solution for T is of the form

T = α + 
i = 1

m ¡ 1

∑ βiFi + βmC

and we plug it into (14) to get, for 1 ∙ i ∙ m ¡ 1,

µmx ̈ i = –
Ã

α + 
i = 1

m ¡ 1

∑ β iFi + βmC

!
xi ¡ di

r

µm x ̈ m = –
Ã

α + 
i = 1

m ¡ 1

∑ β iFi + βmC

!
xm

r
 + µm g

µ i d ̈ i = Fi + 
Ã

α + 
i = 1

m ¡ 1

∑ β iFi + βmC

!
xi ¡ di

r
.

We scale the controls by setting ui =  1
µi

Fi and replace the 

last control by um = – 1
µmr

³
α + ∑m ¡ 1

i = 1 β iFi + βmC
´
 = – 1

µmr T .

Thus the m-crane system

 

	 x ̈ i = um(xi ¡ di), for 1 ∙  i ∙ m ¡ 1,
	x ̈ m = um xm + g

	d ̈ i = ui ¡ um
µm
µ i

(xi ¡ di), for 1 ∙  i ∙ m ¡ 1,

 (16)

evolves on TQ = Q£R2m ¡ 1, where Q = {(xi, xm, di) 2 R2m ¡ 1}
is the configuration manifold, equipped with the coordinates 
q = (x1, …, xm, d1, …, dm ¡ 1), and consisting of points that 
respect the constraint (15).

Remark 2. One could ask why the simplest considered example 
is that of the 2-crane. By Section 2.4 it is fairly easy to deduce 
what would be the 1-crane. It is a pendulum in 0-sphere, which 
is a pair of points {– r, r}, where r can vary, and one equation 
of the dynamics Jr ̈  = – crr ̇  ¡ bC̃ , with one control C̃ . This 
system is simply (static) feedback linearizable to the double 
integrator.

3. Equivalence of the m-crane to the second 
order chained form with drift

In this section we will show that the m-crane (16) can be further 
simplified and brought to a normal form, that is the second 
order chained form with a constant drift. For better readabil-
ity, we first explain the normal form for the 2-crane, and then 
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we give it for the general case. Consider 2-crane system (11) 
and introduce a new coordinate s =  µM x + d. The system in 
(s, x, z)-coordinates reads

 

	s ̈  = u1

	x ̈  = u2(x ¡ d) = u2(M
– x ¡ s)

	z ̈  = u2z + g,
 (17)

where M–  = µ + M
M . Until now all transformations have been 

global on Q ¡¡» Rn. Now, we realize that system (17) exhibits 
a singularity at z = 0 since the third equation reads z ̈  = u2z + g, 
is independent of the remaining equations and controls, and its 
linear approximation at z = 0 is not controllable. Therefore we 
restrict our consideration assuming z  6= 0, i.e., now the config-
uration manifold is Q = {(s, x, z) 2 R3 : z  6= 0}. We apply the 
following feedback

 
ũ1 = u1

ũ2 = u2z ,
 (18)

and the system is

s ̈  = ũ1

x ̈  = ũ2
M–x ¡ s

z

z ̈  = ũ2 + g,

and we change the coordinates

z1 =  M–x ¡ s
z

z2 = z

z3 = x,

which results in the following system

z ̈ 1 = α– + β–1ũ1 + β–2 ũ2

z ̈ 2 = ũ2 + g

z ̈ 3 = z1ũ2 ,
where:

α– =  2z ̇
z3 ((M–x ¡ s)z ̇  ¡ (M– x ̇  ¡ s ̇)z) ¡ g M–x ¡ s

z2

β–1 = – 1
z

β–2 = (M– ¡ 1) M–x ¡ s
z2 ,

which, after applying feedback v1 = α– + β–1ũ1 + β–2ũ2, v2 = ũ2, 
results in the normal form

z ̈ 1 = v1

z ̈ 2 = v2 + g

z ̈ 3 = z1v2 .

Throughout this section, the index i satisfies 1 ∙ i ∙ m ¡ 1. In 
order to formulate the general result, define Q+ = {(xi, xm, di) 2
2 R2m ¡ 1 : xm > 0} and Q¡ = {(xi, xm, di) 2 R2m ¡ 1 : xm < 0}.

Proposition 2. The m-crane, given by (16) on Q+ and on Q¡, is 
globally static feedback equivalent to the second order chained 
form with a constant drift vector field:

 

	 z ̈ i = vi

	 z ̈ m = vm + g
	z ̈ m + i = zivm.

 (19)

Proof. First, introduce new m ¡ 1 global coordinates:

si = µm
µ i

xi + di

and keep the m coordinates (x1, …, xm). The transformed sys-
tem in (s, x)-coordinates reads

s ̈ i = ui

x ̈ i = um(µ– i xi ¡ si)

x ̈ m = xmum + g,

where µ– i =   µ i + µm
µ i

.

The normal form (19) is obtained by applying feedback

ũi = ui

ũm = umxm        xm  6= 0,

which yields the following system

s ̈ i = ũi

x ̈ i = ũm
µ– i xi ¡ si

xm

x ̈ m = ũm + g.

Introduce new global coordinates on Q+ and on Q¡ by

zi =  µ
–

i xi ¡ si
xm

zm = xm

zm + i = xi + 1

and the system reads

z ̈ i = α– i + 
j = 1

m

∑β–ij ũj

z ̈ m = ũm + g

z ̈ m + i = zi ũm,

which, after applying feedback vi = α– i + ∑m
j = 1β

–
ij ũj, vm = ũm, 

gives normal form (19). □
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4. Flatness of m-crane

The notion of flatness and of flat systems was proposed and then 
intensively studied in the ’90s by Fliess, Lévine, Martin and 
Rouchon [3, 4], Jakubczyk [7], Pomet [14, 15], Murray [10], 
and others. Despite extensive efforts, a complete characteriza-
tion of flatness is still unknown. Apart from theoretical chal-
lenge, it has attracted a lot of attention because of its applica-
tions in control design, e.g. constructive controllability problem 
and trajectory tracking. Among various (equivalent) formulation 
of the notion of flatness, we will use the following one

Definition 1. The system

	 Σ	:	ζ ̇  = F(ζ, u),  (20)

where ζ 2 X ½ RN and u 2 U ½ Rm, is (locally) f lat at (ζ0, u–0
l), 

where ζ0 2 X and u–0
l = (u, u ̇ , …, u(l)) 2 U £ Rml, for l ¸ –1, if 

there exist m smooth functions (flat outputs) φi = φi(ζ, u, u ̇ , 
…, u(l)), defined in a neighborhood O l of (ζ0, u–0

l), such that 
the state and the controls can be represented as smooth maps 
of φ = (φ1, …, φm) and their finite number of derivatives

ζ = γ (φ, φ ̇ , …, φ(s))

u = δ(φ, φ ̇ , …, φ(s)),

along any trajectory ζ(t) given by a control u(t) that satisfy 
(ζ(t), u(t), u ̇ (t), …, u(l)(t)) 2 O l. If the functions φ = (φ 1,  
…, φm) and the maps γ  and δ  are defined globally, then the 
system is called globally f lat.

In general, flat outputs (if they exist) are not unique and 
a way to systematize them is by their differential weight [17], 
which is the minimal number of derivatives of a flat output φ, 
needed to express ζ  and u. Formally, consider a flat output φ , 
such that

ζ = γ (φ1, φ ̇ 1, …, φ1
(s1), …, φm, φ ̇m, …, φm

(sm))

u = δ(φ1, φ ̇ 1, …, φ1
(s1), …, φm, φ ̇m, …, φm

(sm)),

where sm stands for the highest order of time-derivatives of 
φ i present in γ  or δ . We will call ∑m

i = 1(si + 1) = m + ∑m
i = 1si 

the differential weight of φ. A flat output is called minimal if 
its differential weight is the lowest among all flat output of Σ. 
We define the differential weight of a flat system to be equal 
to the differential weight of its minimal flat output. What is 
more, the differential weight is equal to N + m + r, where r is 
the minimal possible dimension of a precompensator defining 
a dynamic feedback that linearizes the system. Systems that are 
linearizable by static (r = 0) feedback are flat with differential 
weight N + m, for details see [11].

For flat mechanical systems, we may distinguish another 
interesting property that many of them share, namely configu-
ration flatness (config-flat). Note that, in the case of mechanical 
systems, we have ζ = (q, q ̇ ), where N = 2n, with q denoting 

configurations and q ̇  are velocities. We say that a mechanical 
system is config-flat if all flat outputs φ i depend on the config-
uration variables q only. This property was studied by Murray 
et al. in [10].

Now we formulate some general results describing the 
m-crane system. Recall that system (20) is called strongly acces-
sible at ζ  if, for any T > 0 the set of points reachable from ζ  in 
time T has nonempty interior, see e.g. [6, 13].

Proposition 3. The m-crane system (16) is strongly accessible at 
any (q, q ̇ ) 2 TQ±, where Q± = 

n
(xi, xm, di) 2 R2m ¡ 1 : xm  6= 0, 

1 ∙ i ∙ m ¡ 1
o
 = Q+ [ Q¡.

Proof. By Proposition 2, the m-crane is feedback equivalent 
to (19) on Q±. It is well known that the strong accessibility is 
feedback invariant, therefore we will show strong accessibility 
for normal form (19). Denote ζ = (z, z ̇ ) and express system 
(19) as ζ ̇  = F(ζ) + ∑m

i = 1viGi(ζ). It is strongly accessible at 
ζ 2 Z if dimL0(ζ) = dimZ, where the Lie ideal L0 of the sys-
tem is the Lie ideal generated by G1, …, Gm in the Lie algebra 
L = 

n
F, G1, …, Gm

o
LA, see e.g. [6, 13]. In the case of mechan-

ical system (19), Z = TQ± so the condition for strong accessi-
bility is dimL0(ζ) = 2(2m ¡ 1). We will take the following set 
of vector fields 

n
Gi, 

£
Gj, adFGm

¤
, adFGi, 

£
adFGj, adFGm

¤o
, for 

1 ∙ i ∙ m and 1 ∙  j ∙ m ¡ 1, that belong to L0 and show that 
they span TZ at every ζ = (z, z ̇ ) = (q, q ̇ ). We have

F = 
i = 1

2m ¡ 1

∑ z ̇ i
∂
∂zi

 + g ∂
∂z ̇ m

,

and the vector fields

 Gj =  ∂
∂z ̇ j

    for 1 ∙  j ∙ m ¡ 1,

 Gm =  ∂
∂z ̇ m

 + 
i =1

m ¡ 1

∑ zi
∂

∂z ̇ m + i
,

 £
Gj, adFGm

¤
 =  ∂

∂z ̇ m + j
    for 1 ∙  j ∙ m ¡ 1,

 adFGj = – ∂
∂z j     for 1 ∙  j ∙ m ¡ 1,

 adFGm = – ∂
∂zm

 ¡ 
i =1

m ¡ 1

∑ zi
∂

∂zm + i
 + 

i =1

m ¡ 1

∑ z ̇ i
∂

∂z ̇ m + i
,

 £
adFGj, adFGm

¤
 =  ∂

∂zm + j
    for 1 ∙  j ∙ m ¡ 1,

 (21)

indeed, span TZ at every ζ = (z, z ̇ ) = (q, q ̇ ). □

It is straightforward to see that the m-crane system is not 
static feedback linearizable, which we will show for normal 
form (19) whose Lie brackets are given by (21). For mechanical 
systems the distribution D 0 = span

n
Gi, 1 ∙ i ∙ m

o
 is always 

involutive, but D 1 = span
n
Gi, adFGi, 1 ∙ i ∙ m

o
 is not involu-
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tive since 
£
Gj, adFGm

¤
 and 

£
adFGj, adFGm

¤
 2/ D 1. The m-crane 

is not static feedback linearizable; it is, however, linearizable 
via dynamic feedback, as asserts the following result.

Proposition 4. The m-crane system (16) is globally config-flat 
on TQ ±, provided that the control u 2 Rm satisfies um  6= 0, with 
a global flat output φ = (φ1, …, φm) = (x1, …, xm) of minimal 
differential weight 5m.

Remark 3. Notice that 5m = 2(2m ¡ 1) + m + 2 implying that 
the minimal dimension of a linearizing precompensator is 2. It 
follows from the proof below that, indeed, the 2-dimensional 
double preintegration u ̈ m = vm of the control um, dynamically 
linearizes the m-crane.

Proof. First, we show that φ = (φ1, …, φm) = (x1, …, xm) is, 
indeed, a flat output of (16). On Q ±, we have
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minimal possible dimension of a precompensator defining a
dynamic feedback that linearizes the system. Systems that are
linearizable by static (r = 0) feedback are flat with differential
weight N +m, for details see [11].

For flat mechanical systems, we may distinguish another in-
teresting property that many of them share, namely configura-
tion flatness (config-flat). Note that, in the case of mechanical
systems, we have ζ = (q, q̇), where N = 2n, with q denoting
configurations and q̇ are velocities. We say that a mechanical
system is config-flat if all flat outputs φi depend on the config-
uration variables q only. This property was studied by Murray
et al. in [10].

Now we formulate some general results describing the m-
crane system. Recall that system (20) is called strongly acces-
sible at ζ if, for any T > 0 the set of points reachable from ζ
in time T has nonempty interior, see e.g. [6],[13].

PROPOSITION 3. The m-crane system (16) is strongly ac-
cessible at any (q, q̇) ∈ TQ±, where Q± = {(xi,xm,di) ∈
R2m−1 : xm �= 0, 1 ≤ i ≤ m−1}= Q+∪Q−.

Proof. By Proposition 2, the m-crane is feedback equivalent
to (19) on Q±. It is well known that the strong accessi-
bility is feedback invariant, therefore we will show strong
accessibility for normal form (19). Denote ζ = (z, ż) and
express system (19) as ζ̇ = F(ζ ) + ∑m

i=1 viGi(ζ ). It is
strongly accessible at ζ ∈ Z if dimL0(ζ ) = dim Z, where
the Lie ideal L0 of the system is the Lie ideal generated by
G1, . . . ,Gm in the Lie algebra L = {F,G1, . . . ,Gm}LA, see
e.g. [6],[13]. In the case of mechanical system (19), Z =
TQ± so the condition for strong accessibility is dimL0(ζ ) =
2(2m − 1). We will take the following set of vector fields{

Gi, [G j,adF Gm] ,adF Gi, [adF G j,adF Gm]
}

, for 1 ≤ i ≤ m and
1 ≤ j ≤ m− 1, that belong to L0 and show that they span TZ
at every ζ = (z, ż) = (q, q̇). We have

F =
2m−1

∑
i=1

żi
∂

∂ zi
+g

∂
∂ żm

,

and the vector fields

G j =
∂

∂ ż j
for 1 ≤ j ≤ m−1,

Gm =
∂

∂ żm
+

m−1

∑
i=1

zi
∂

∂ żm+i
,

[G j,adF Gm] =
∂

∂ żm+ j
for 1 ≤ j ≤ m−1,

adF G j =− ∂
∂ z j for 1 ≤ j ≤ m−1,

adF Gm =− ∂
∂ zm

−
m−1

∑
i=1

zi
∂

∂ zm+i
+

m−1

∑
i=1

żi
∂

∂ żm+i
,

[adF G j,adF Gm] =
∂

∂ zm+ j
for 1 ≤ j ≤ m−1,

(21)

indeed, span TZ at every ζ = (z, ż) = (q, q̇).

It is straightforward to see that the m-crane system is not
static feedback linearizable, which we will show for normal
form (19) whose Lie brackets are given by (21). For mechan-
ical systems the distribution D0 = span{Gi,1 ≤ i ≤ m} is al-
ways involutive, but D1 = span{Gi,adF Gi,1 ≤ i ≤ m} is not
involutive since [G j,adF Gm] and [adF G j,adF Gm] /∈ D1. The
m-crane is not static feedback linearizable; it is, however, lin-
earizable via dynamic feedback, as asserts the following result.

PROPOSITION 4. The m-crane system (16) is globally
config-flat on TQ±, provided that the control u ∈ Rm satisfies
um �= 0, with a global flat output φ =(φ1, . . . ,φm)= (x1, . . . ,xm)
of minimal differential weight 5m.

REMARK 3. Notice that 5m = 2(2m − 1) + m + 2 imply-
ing that the minimal dimension of a linearizing precompen-
sator is 2. It follows from the proof below that, indeed, the 2-
dimensional double preintegration üm = vm of the control um,
dynamically linearizes the m-crane.

Proof. First, we show that φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is,
indeed, a flat output of (16). On Q±, we have

xi = φi xm = φm di =
umφi−φ̈i

um

ẋi = φ̇i ẋm = φ̇m ḋi =
umφ̇i+φiu̇m−

...
φ i

um
− u̇m(φium−φ̈i)

u2
m

um = φ̈m−g
φm

ui = d̈i +um
µm
µi

(
φi − umφi−φ̈i

um

)
,

(22)
which is well defined for φm = xm �= 0 and um �= 0. Al-
though from the above it is not immediately clear that the
differential weight is 5m, we will show it in a different way.
Since the state space is of dimension 2(2m− 1) it is enough
to show that after the two-fold prolongation of a well-chosen
input the system is static feedback linearizable. The control
to be prolonged is dm := um (this is just a notation, physi-
cally dm is not a component of the position), therefore the
configuration manifold of the extended system is of dimen-
sion 2m with coordinates (x1, . . . ,xm,d1, . . . ,dm) and controls
are (u1, . . . ,um−1,vm), where vm = üm. The dynamics read, for
1 ≤ i ≤ m−1,

ẍi = dm(xi −di)

ẍm = dmxm +g

d̈i = ui −dm
µm

µi
(xi −di)

d̈m = vm.

(23)

It is straightforward to verify that the lineariz-
ability distribution D0

e = span{Ge
i ,1 ≤ i ≤ m} and

D1
e = span{Ge

i ,adFeGe
i ,1 ≤ i ≤ m}, the index e indicat-

ing extended system (23), are involutive and of constant rank.
Thus the extended system is static feedback linearizable.

The m-crane possess a singularity of the control at which the
system ceases to be flat. From (22) we can see that the singular
control is um = 0. Since um has a physical interpretation of the
tension T , its singular value T = 0 corresponds to the case of
a free-fall of the load (completed by an arbitrary movement in

6 Bull. Pol. Ac.: Tech. XX(Y) 2016
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minimal possible dimension of a precompensator defining a
dynamic feedback that linearizes the system. Systems that are
linearizable by static (r = 0) feedback are flat with differential
weight N +m, for details see [11].

For flat mechanical systems, we may distinguish another in-
teresting property that many of them share, namely configura-
tion flatness (config-flat). Note that, in the case of mechanical
systems, we have ζ = (q, q̇), where N = 2n, with q denoting
configurations and q̇ are velocities. We say that a mechanical
system is config-flat if all flat outputs φi depend on the config-
uration variables q only. This property was studied by Murray
et al. in [10].

Now we formulate some general results describing the m-
crane system. Recall that system (20) is called strongly acces-
sible at ζ if, for any T > 0 the set of points reachable from ζ
in time T has nonempty interior, see e.g. [6],[13].

PROPOSITION 3. The m-crane system (16) is strongly ac-
cessible at any (q, q̇) ∈ TQ±, where Q± = {(xi,xm,di) ∈
R2m−1 : xm �= 0, 1 ≤ i ≤ m−1}= Q+∪Q−.

Proof. By Proposition 2, the m-crane is feedback equivalent
to (19) on Q±. It is well known that the strong accessi-
bility is feedback invariant, therefore we will show strong
accessibility for normal form (19). Denote ζ = (z, ż) and
express system (19) as ζ̇ = F(ζ ) + ∑m

i=1 viGi(ζ ). It is
strongly accessible at ζ ∈ Z if dimL0(ζ ) = dim Z, where
the Lie ideal L0 of the system is the Lie ideal generated by
G1, . . . ,Gm in the Lie algebra L = {F,G1, . . . ,Gm}LA, see
e.g. [6],[13]. In the case of mechanical system (19), Z =
TQ± so the condition for strong accessibility is dimL0(ζ ) =
2(2m − 1). We will take the following set of vector fields{

Gi, [G j,adF Gm] ,adF Gi, [adF G j,adF Gm]
}

, for 1 ≤ i ≤ m and
1 ≤ j ≤ m− 1, that belong to L0 and show that they span TZ
at every ζ = (z, ż) = (q, q̇). We have

F =
2m−1

∑
i=1

żi
∂

∂ zi
+g

∂
∂ żm

,

and the vector fields

G j =
∂

∂ ż j
for 1 ≤ j ≤ m−1,

Gm =
∂

∂ żm
+

m−1

∑
i=1

zi
∂

∂ żm+i
,

[G j,adF Gm] =
∂

∂ żm+ j
for 1 ≤ j ≤ m−1,

adF G j =− ∂
∂ z j for 1 ≤ j ≤ m−1,

adF Gm =− ∂
∂ zm

−
m−1

∑
i=1

zi
∂

∂ zm+i
+

m−1

∑
i=1

żi
∂

∂ żm+i
,

[adF G j,adF Gm] =
∂

∂ zm+ j
for 1 ≤ j ≤ m−1,

(21)

indeed, span TZ at every ζ = (z, ż) = (q, q̇).

It is straightforward to see that the m-crane system is not
static feedback linearizable, which we will show for normal
form (19) whose Lie brackets are given by (21). For mechan-
ical systems the distribution D0 = span{Gi,1 ≤ i ≤ m} is al-
ways involutive, but D1 = span{Gi,adF Gi,1 ≤ i ≤ m} is not
involutive since [G j,adF Gm] and [adF G j,adF Gm] /∈ D1. The
m-crane is not static feedback linearizable; it is, however, lin-
earizable via dynamic feedback, as asserts the following result.

PROPOSITION 4. The m-crane system (16) is globally
config-flat on TQ±, provided that the control u ∈ Rm satisfies
um �= 0, with a global flat output φ =(φ1, . . . ,φm)= (x1, . . . ,xm)
of minimal differential weight 5m.

REMARK 3. Notice that 5m = 2(2m − 1) + m + 2 imply-
ing that the minimal dimension of a linearizing precompen-
sator is 2. It follows from the proof below that, indeed, the 2-
dimensional double preintegration üm = vm of the control um,
dynamically linearizes the m-crane.

Proof. First, we show that φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is,
indeed, a flat output of (16). On Q±, we have

xi = φi xm = φm di =
umφi−φ̈i

um

ẋi = φ̇i ẋm = φ̇m ḋi =
umφ̇i+φiu̇m−

...
φ i

um
− u̇m(φium−φ̈i)

u2
m

um = φ̈m−g
φm

ui = d̈i +um
µm
µi

(
φi − umφi−φ̈i

um

)
,

(22)
which is well defined for φm = xm �= 0 and um �= 0. Al-
though from the above it is not immediately clear that the
differential weight is 5m, we will show it in a different way.
Since the state space is of dimension 2(2m− 1) it is enough
to show that after the two-fold prolongation of a well-chosen
input the system is static feedback linearizable. The control
to be prolonged is dm := um (this is just a notation, physi-
cally dm is not a component of the position), therefore the
configuration manifold of the extended system is of dimen-
sion 2m with coordinates (x1, . . . ,xm,d1, . . . ,dm) and controls
are (u1, . . . ,um−1,vm), where vm = üm. The dynamics read, for
1 ≤ i ≤ m−1,

ẍi = dm(xi −di)

ẍm = dmxm +g

d̈i = ui −dm
µm

µi
(xi −di)

d̈m = vm.

(23)

It is straightforward to verify that the lineariz-
ability distribution D0

e = span{Ge
i ,1 ≤ i ≤ m} and

D1
e = span{Ge

i ,adFeGe
i ,1 ≤ i ≤ m}, the index e indicat-

ing extended system (23), are involutive and of constant rank.
Thus the extended system is static feedback linearizable.

The m-crane possess a singularity of the control at which the
system ceases to be flat. From (22) we can see that the singular
control is um = 0. Since um has a physical interpretation of the
tension T , its singular value T = 0 corresponds to the case of
a free-fall of the load (completed by an arbitrary movement in
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minimal possible dimension of a precompensator defining a
dynamic feedback that linearizes the system. Systems that are
linearizable by static (r = 0) feedback are flat with differential
weight N +m, for details see [11].

For flat mechanical systems, we may distinguish another in-
teresting property that many of them share, namely configura-
tion flatness (config-flat). Note that, in the case of mechanical
systems, we have ζ = (q, q̇), where N = 2n, with q denoting
configurations and q̇ are velocities. We say that a mechanical
system is config-flat if all flat outputs φi depend on the config-
uration variables q only. This property was studied by Murray
et al. in [10].

Now we formulate some general results describing the m-
crane system. Recall that system (20) is called strongly acces-
sible at ζ if, for any T > 0 the set of points reachable from ζ
in time T has nonempty interior, see e.g. [6],[13].

PROPOSITION 3. The m-crane system (16) is strongly ac-
cessible at any (q, q̇) ∈ TQ±, where Q± = {(xi,xm,di) ∈
R2m−1 : xm �= 0, 1 ≤ i ≤ m−1}= Q+∪Q−.

Proof. By Proposition 2, the m-crane is feedback equivalent
to (19) on Q±. It is well known that the strong accessi-
bility is feedback invariant, therefore we will show strong
accessibility for normal form (19). Denote ζ = (z, ż) and
express system (19) as ζ̇ = F(ζ ) + ∑m

i=1 viGi(ζ ). It is
strongly accessible at ζ ∈ Z if dimL0(ζ ) = dim Z, where
the Lie ideal L0 of the system is the Lie ideal generated by
G1, . . . ,Gm in the Lie algebra L = {F,G1, . . . ,Gm}LA, see
e.g. [6],[13]. In the case of mechanical system (19), Z =
TQ± so the condition for strong accessibility is dimL0(ζ ) =
2(2m − 1). We will take the following set of vector fields{

Gi, [G j,adF Gm] ,adF Gi, [adF G j,adF Gm]
}

, for 1 ≤ i ≤ m and
1 ≤ j ≤ m− 1, that belong to L0 and show that they span TZ
at every ζ = (z, ż) = (q, q̇). We have

F =
2m−1

∑
i=1

żi
∂

∂ zi
+g

∂
∂ żm

,

and the vector fields

G j =
∂

∂ ż j
for 1 ≤ j ≤ m−1,

Gm =
∂

∂ żm
+

m−1

∑
i=1

zi
∂

∂ żm+i
,

[G j,adF Gm] =
∂

∂ żm+ j
for 1 ≤ j ≤ m−1,

adF G j =− ∂
∂ z j for 1 ≤ j ≤ m−1,

adF Gm =− ∂
∂ zm

−
m−1

∑
i=1

zi
∂

∂ zm+i
+

m−1

∑
i=1

żi
∂

∂ żm+i
,

[adF G j,adF Gm] =
∂

∂ zm+ j
for 1 ≤ j ≤ m−1,

(21)

indeed, span TZ at every ζ = (z, ż) = (q, q̇).

It is straightforward to see that the m-crane system is not
static feedback linearizable, which we will show for normal
form (19) whose Lie brackets are given by (21). For mechan-
ical systems the distribution D0 = span{Gi,1 ≤ i ≤ m} is al-
ways involutive, but D1 = span{Gi,adF Gi,1 ≤ i ≤ m} is not
involutive since [G j,adF Gm] and [adF G j,adF Gm] /∈ D1. The
m-crane is not static feedback linearizable; it is, however, lin-
earizable via dynamic feedback, as asserts the following result.

PROPOSITION 4. The m-crane system (16) is globally
config-flat on TQ±, provided that the control u ∈ Rm satisfies
um �= 0, with a global flat output φ =(φ1, . . . ,φm)= (x1, . . . ,xm)
of minimal differential weight 5m.

REMARK 3. Notice that 5m = 2(2m − 1) + m + 2 imply-
ing that the minimal dimension of a linearizing precompen-
sator is 2. It follows from the proof below that, indeed, the 2-
dimensional double preintegration üm = vm of the control um,
dynamically linearizes the m-crane.

Proof. First, we show that φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is,
indeed, a flat output of (16). On Q±, we have

xi = φi xm = φm di =
umφi−φ̈i

um

ẋi = φ̇i ẋm = φ̇m ḋi =
umφ̇i+φiu̇m−

...
φ i

um
− u̇m(φium−φ̈i)

u2
m

um = φ̈m−g
φm

ui = d̈i +um
µm
µi

(
φi − umφi−φ̈i

um

)
,

(22)
which is well defined for φm = xm �= 0 and um �= 0. Al-
though from the above it is not immediately clear that the
differential weight is 5m, we will show it in a different way.
Since the state space is of dimension 2(2m− 1) it is enough
to show that after the two-fold prolongation of a well-chosen
input the system is static feedback linearizable. The control
to be prolonged is dm := um (this is just a notation, physi-
cally dm is not a component of the position), therefore the
configuration manifold of the extended system is of dimen-
sion 2m with coordinates (x1, . . . ,xm,d1, . . . ,dm) and controls
are (u1, . . . ,um−1,vm), where vm = üm. The dynamics read, for
1 ≤ i ≤ m−1,

ẍi = dm(xi −di)

ẍm = dmxm +g

d̈i = ui −dm
µm

µi
(xi −di)

d̈m = vm.

(23)

It is straightforward to verify that the lineariz-
ability distribution D0

e = span{Ge
i ,1 ≤ i ≤ m} and

D1
e = span{Ge

i ,adFeGe
i ,1 ≤ i ≤ m}, the index e indicat-

ing extended system (23), are involutive and of constant rank.
Thus the extended system is static feedback linearizable.

The m-crane possess a singularity of the control at which the
system ceases to be flat. From (22) we can see that the singular
control is um = 0. Since um has a physical interpretation of the
tension T , its singular value T = 0 corresponds to the case of
a free-fall of the load (completed by an arbitrary movement in
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minimal possible dimension of a precompensator defining a
dynamic feedback that linearizes the system. Systems that are
linearizable by static (r = 0) feedback are flat with differential
weight N +m, for details see [11].

For flat mechanical systems, we may distinguish another in-
teresting property that many of them share, namely configura-
tion flatness (config-flat). Note that, in the case of mechanical
systems, we have ζ = (q, q̇), where N = 2n, with q denoting
configurations and q̇ are velocities. We say that a mechanical
system is config-flat if all flat outputs φi depend on the config-
uration variables q only. This property was studied by Murray
et al. in [10].

Now we formulate some general results describing the m-
crane system. Recall that system (20) is called strongly acces-
sible at ζ if, for any T > 0 the set of points reachable from ζ
in time T has nonempty interior, see e.g. [6],[13].

PROPOSITION 3. The m-crane system (16) is strongly ac-
cessible at any (q, q̇) ∈ TQ±, where Q± = {(xi,xm,di) ∈
R2m−1 : xm �= 0, 1 ≤ i ≤ m−1}= Q+∪Q−.

Proof. By Proposition 2, the m-crane is feedback equivalent
to (19) on Q±. It is well known that the strong accessi-
bility is feedback invariant, therefore we will show strong
accessibility for normal form (19). Denote ζ = (z, ż) and
express system (19) as ζ̇ = F(ζ ) + ∑m

i=1 viGi(ζ ). It is
strongly accessible at ζ ∈ Z if dimL0(ζ ) = dim Z, where
the Lie ideal L0 of the system is the Lie ideal generated by
G1, . . . ,Gm in the Lie algebra L = {F,G1, . . . ,Gm}LA, see
e.g. [6],[13]. In the case of mechanical system (19), Z =
TQ± so the condition for strong accessibility is dimL0(ζ ) =
2(2m − 1). We will take the following set of vector fields{

Gi, [G j,adF Gm] ,adF Gi, [adF G j,adF Gm]
}

, for 1 ≤ i ≤ m and
1 ≤ j ≤ m− 1, that belong to L0 and show that they span TZ
at every ζ = (z, ż) = (q, q̇). We have

F =
2m−1

∑
i=1

żi
∂

∂ zi
+g

∂
∂ żm

,

and the vector fields

G j =
∂

∂ ż j
for 1 ≤ j ≤ m−1,

Gm =
∂

∂ żm
+

m−1

∑
i=1

zi
∂

∂ żm+i
,

[G j,adF Gm] =
∂

∂ żm+ j
for 1 ≤ j ≤ m−1,

adF G j =− ∂
∂ z j for 1 ≤ j ≤ m−1,

adF Gm =− ∂
∂ zm

−
m−1

∑
i=1

zi
∂

∂ zm+i
+

m−1

∑
i=1

żi
∂

∂ żm+i
,

[adF G j,adF Gm] =
∂

∂ zm+ j
for 1 ≤ j ≤ m−1,

(21)

indeed, span TZ at every ζ = (z, ż) = (q, q̇).

It is straightforward to see that the m-crane system is not
static feedback linearizable, which we will show for normal
form (19) whose Lie brackets are given by (21). For mechan-
ical systems the distribution D0 = span{Gi,1 ≤ i ≤ m} is al-
ways involutive, but D1 = span{Gi,adF Gi,1 ≤ i ≤ m} is not
involutive since [G j,adF Gm] and [adF G j,adF Gm] /∈ D1. The
m-crane is not static feedback linearizable; it is, however, lin-
earizable via dynamic feedback, as asserts the following result.

PROPOSITION 4. The m-crane system (16) is globally
config-flat on TQ±, provided that the control u ∈ Rm satisfies
um �= 0, with a global flat output φ =(φ1, . . . ,φm)= (x1, . . . ,xm)
of minimal differential weight 5m.

REMARK 3. Notice that 5m = 2(2m − 1) + m + 2 imply-
ing that the minimal dimension of a linearizing precompen-
sator is 2. It follows from the proof below that, indeed, the 2-
dimensional double preintegration üm = vm of the control um,
dynamically linearizes the m-crane.

Proof. First, we show that φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is,
indeed, a flat output of (16). On Q±, we have

xi = φi xm = φm di =
umφi−φ̈i

um

ẋi = φ̇i ẋm = φ̇m ḋi =
umφ̇i+φiu̇m−

...
φ i

um
− u̇m(φium−φ̈i)

u2
m

um = φ̈m−g
φm

ui = d̈i +um
µm
µi

(
φi − umφi−φ̈i

um

)
,

(22)
which is well defined for φm = xm �= 0 and um �= 0. Al-
though from the above it is not immediately clear that the
differential weight is 5m, we will show it in a different way.
Since the state space is of dimension 2(2m− 1) it is enough
to show that after the two-fold prolongation of a well-chosen
input the system is static feedback linearizable. The control
to be prolonged is dm := um (this is just a notation, physi-
cally dm is not a component of the position), therefore the
configuration manifold of the extended system is of dimen-
sion 2m with coordinates (x1, . . . ,xm,d1, . . . ,dm) and controls
are (u1, . . . ,um−1,vm), where vm = üm. The dynamics read, for
1 ≤ i ≤ m−1,

ẍi = dm(xi −di)

ẍm = dmxm +g

d̈i = ui −dm
µm

µi
(xi −di)

d̈m = vm.

(23)

It is straightforward to verify that the lineariz-
ability distribution D0

e = span{Ge
i ,1 ≤ i ≤ m} and

D1
e = span{Ge

i ,adFeGe
i ,1 ≤ i ≤ m}, the index e indicat-

ing extended system (23), are involutive and of constant rank.
Thus the extended system is static feedback linearizable.

The m-crane possess a singularity of the control at which the
system ceases to be flat. From (22) we can see that the singular
control is um = 0. Since um has a physical interpretation of the
tension T , its singular value T = 0 corresponds to the case of
a free-fall of the load (completed by an arbitrary movement in
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,

 (22)

which is well defined for φm = xm  6= 0 and um  6= 0. Although 
from the above it is not immediately clear that the differential 
weight is 5m, we will show it in a different way. Since the state 
space is of dimension 2(2m ¡ 1) it is enough to show that after 
the two-fold prolongation of a well-chosen input the system 
is static feedback linearizable. The control to be prolonged is 
dm := um (this is just a notation, physically dm is not a com-
ponent of the position), therefore the configuration manifold 
of the extended system is of dimension 2m with coordinates 
(x1, …, xm, d1, …, dm) and controls are (u1, …, um ¡ 1, vm), 
where vm = u ̈ m. The dynamics read, for 1 ∙ i ∙ m ¡ 1,

 

x ̈ i = dm(xi ¡ di)

x ̈ m = dm xm + g

d ̈ i = ui ¡ dm
µm
µ i

(xi ¡ di)

d ̈ m = vm .

 (23)

It is straightforward to verify that the linearizability distribu-
tion De

0 = span
n
Gi

e, 1 ∙ i ∙ m
o
 and De

1 = span
n
Gi

e, adF eGi
e, 

1 ∙ i ∙ m
o
, the index e indicating extended system (23), are 

involutive and of constant rank. Thus the extended system is 
static feedback linearizable. □

The m-crane possess a singularity of the control at which the 
system ceases to be flat. From (22) we can see that the singular 
control is um = 0. Since um has a physical interpretation of the 
tension T, its singular value T = 0 corresponds to the case of 
a free-fall of the load (completed by an arbitrary movement 

in all di-directions), which is to deduce from the equations of 
m-crane system (16) by setting um = 0 and thus implying x ̈ i = 0, 
x ̈ m = g, d ̈ i = ui.

5. Derivation of a control law and trajectory 
generator for the m-crane

In this section, we derive a cascade controller for m-crane sys-
tem (16) that solves a trajectory tracking problem. The inner 
controller is a dynamic feedback controller that linearizes the 
original system by prolonging it and then transforming the pro-
longed system into a linear system in the Brunovský canonical 
form with controllability indices (4, 4, …, 4), i.e., m indepen-
dent chains of integrators of length 4 each. The outer control-
ler is a simple linear feedback that tracks desired trajectories 
designed by a generator proposed in Section 5.2. below.

5.1. Control law. In order to derive the dynamic linearization 
feedback for system (16), first, we prolong it by vm = u ̈ m to 
obtain system (23), where dm = um (see the proof of Propo-
sition 4), and then, second, we find a static feedback that lin-
earizes (23). The latter can be done by observing that the flat 
output φ = (φ1, …, φm) = (x1, …, xm) is a linearizing output for 
(23) and therefore a linearizing controller is

 
ui = av–i + bv–m + ci   for 1 ∙  i ∙ m ¡ 1
vm = bmv–m + cm ,

 (24)

where a, b, bm, ci, for 1 ∙ i ∙ m, are functions of φ, φ ̇ , φ ̈ , φ(3) 
given by

a = – φm

φ ̈ m ¡ g
    b =   φmφ ̈ i

(φ ̈ m ¡ g)2

ci = 
2φm

(3)µφ ̇mφ ̈ i + φmφi
(3)
¶

(g ¡ φ ̈ m)
2  + 

2φi
(3)φ ̇m + φ ̈ iφ ̈ m

g ¡ φ ̈ m
 +  

ci + 
2φmφm

(3)2φ ̈ i
(g ¡ φ ̈ m)

3  + 
µ
µm

µi
 + 1

¶
φ ̈ i 

bm =  1
φm

 

cm = 
2φ ̇ m2(φ ̈ m ¡ g)

φm
3

 ¡ 
φ ̈ m(φ ̈ m ¡ g) + 2φm

(3)φ ̇ m

φm
2

.

System (23) (equivalently, system (16) after prolongation), with 
controller (24), is mapped into the Brunovský canonical form by 
choosing linear coordinates as φi

( j), for j = 0, 1, 2, 3, in which 
it takes the form

	 φ i
(4) = v–i ,   for 1 ∙  i ∙ m. (25)
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Now, for this linear system (25), the outer cascade is designed 
to track desired trajectories φd = (φ1d, …, φmd) by taking

 
v–i = φid

(4) + ki1(φid
(3) ¡ φ i

(3)) + ki2(φ ̈ id ¡ φ ̈ i) +
v–i + ki3(φ ̇ id ¡ φ ̇ i) + ki4(φid ¡ φi)  for 1 ∙  i ∙ m

 (26)

where kij, with j = 1, 2, 3, 4, are control gains. By plugging 
(26) into (25), the error dynamics of the closed-loop system 
are obtained as

ei
(4) + k1ei

(3) + k2e ̈ i + k3e ̇ i + k4ei = 0,    for 1 ∙ i ∙ m,

where ei = φ id ¡ φ i. Appropriately chosen gains (for example 
using the pole placement method) ensure that the error dynam-
ics are asymptotically stable. Note that, as will be apparent later, 
our reference trajectories are defined on a finite time interval 
[t0, tf ], therefore our solution requires that the system starts 
“sufficiently close” to the reference trajectories, in order to be 
able to almost approach them before the experiment ends, that 
is, before tf . Although this assumption is theoretically limiting, 
we claim that from practical point of view is easy to be satisfied.

The original control system (13) is controlled by F̃i and 
C̃  and the control law (26) is expressed in terms for v–i’s. To 
relate them notice that, first, (24) relates v–i’s with ui’s (recall 
that vm = u ̈ m), second, F̃i = ci d ̇i + Fi and C̃  =  1

b (–crr ̇  + C ), 
and third, control inputs Fi and C  can be calculated in terms 
of ui’s as:

 
Fi = µ i ui

C = 
µmrdm ¡ α ¡ ∑m ¡ 1

i = 1 β iFi

βm
,
 (27)

where 1 ∙ i ∙ m ¡ 1, with

r = 
i  = 1

m ¡ 1

∑ (xi ¡ di)
2 + xm

2 ,

α = ∑
m ¡ 1
i  = 1 (x ̇ i ¡ d ̇i)

2 + x ̇ m2 + xmg
κ  ¡

α ¡ 
(∑m ¡ 1

i  = 1 (x ̇ i ¡ d ̇i)(xi ¡ di) + xmx ̇ m)
2

r2κ
,

β i = – xi ¡ di

µ iκ
,

βm =   r
Jκ

,

κ = 
∑m ¡ 1

i  = 1 (xi ¡ di)
2(µm + µ i + b2µmµ i) + xm

2µ i(J + b2µm)

rJµmµ i
.

5.2. Trajectory generator. We apply a method presented in 
[8] to design reference trajectories φ(t) = (φ1d(t), …, φmd(t)) 
in the space of flat outputs. We state the problem of generating 
a reference trajectory φ(t) as the problem of finding a solution 
of the reference system φid

(4) = v–id, for 1 ∙ i ∙ m. In other words, 

to find a reference trajectory φ id(t) starting, at the initial time 
t0, from a given value φ id(t0), together with given values of 
the successive time-derivatives φ ̇ id(t0), φ ̈ id(t0), φ id

(3)(t0) as well 
as that of the reference control v–id(t0) and arriving, at the final 
time tf , at a given final configuration φ id(tf) (with given values 
φ ̇ id(tf), φ ̈ id(tf), φ id

(3)(tf)), and v–id(tf). We thus, for each compo-
nent φi(t) of φ(t), fix 5 initial conditions (φid(t0), φ ̇ id(t0), φ ̈ id(t0),
φ id

(3)(t0), φ id
(4)(t0)) and 5 final conditions (φ id(tf), φ ̇ id(tf), φ ̈ id(tf), 

φ id
(3)(tf), φ id

(4)(tf)), where φ id
(4)(t0) = v–id(t0), φ id

(4)(tf) = v–id(tf). 
We will design each reference trajectory φ id(t) in the space of 
polynomials of degree 9, with 10 coefficients aik for 0 ∙ k ∙ 9 
calculated based on the initial and final conditions.

The polynomial φ id(t) is given by

	 φid(t) = 
k = 0

9

∑aik

µ
t ¡ t0

tf  ¡ t0

¶k
, (28)

and its derivatives by

	 φid
(k)(t) =  1

(tf  ¡ t0)k
l = k

9

∑ l!
(l ¡ k)!

ail

µ
t ¡ t0

tf  ¡ t0

¶l ¡  k
. (29)

The coefficients aik are computed by equating the successive 
derivatives of φ id at t0 and tf  to the initial and the final con-
ditions, respectively. In order to simplify these calculations, 
note that, the first 5 coefficients (ai0, …, ai4) can be calculated 
directly

 aij = 
(tf  ¡ t0) j

j!
φid

( j)
(t0), for 0 ∙  j ∙ 4, (30)

and the remaining ai5, …, ai9 are given by the system of linear 
equation

	 φid
(k)(tf) =   1

(tf  ¡ t0)k
l = k

9

∑ l!
(l ¡ k)!

ail, for 0 ∙ k ∙ 4. (31)

Notice that we solve equations (28‒31) independently for each 
i = 1, …, m. To summarize, there are 10m coefficients aik in 
total, 5m to be calculated from (30) and the remaining 5m can 
be calculated by solving m linear systems given by (31).

6. Simulation results

The simulation model corresponds to the small laboratory crane 
(schematic drawing is presented in Fig. 1), that is characterized 
by parameters given in Table 1.

Table 1 
Parameters of the simulated 2-crane system

M = 1.2 [kg ] µ = 0.15 [kg ]

J = 0.065 [kgm2] b = 0.02 [m ]

g = 9.81  m
s2
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A control problem considered in the simulations concerns 
trajectory tracking of the load for the 2-crane case described by 
(1) or, equivalently, by (11), where the position of the load is 
given by (x, z) = (x1, x2). By Proposition 4, (φ1, φ 2) = (x, z) are 
the flat outputs of the 2-crane system (11). In order to achieve 
the trajectory tracking problem, we combine cascade controller 
(24, 26) and trajectory generator (28‒31). Since reference tra-
jectories are (φ1d(t), φ2d(t)) = (xd(t), zd(t)) and thus describe 
the time-evolution of the load, we will choose successive deriv-
atives of x(t) and z(t), at t0 and tf , to vanish, which guarantees 
that the crane will carry the load smoothly with the zero velocity 
and acceleration at the initial and final position and with the 
zero initial and final controls (rest-to-rest trajectory).

So for the desired trajectory, initial conditions (t0 = 0) are 
taken as

xd(t0) = 0.28

x ̇ d(t0) = x ̈ d(t0) = xd
(3)(t0) = xd

(4)(t0) = 0

zd(t0) = 0.3

z ̇ d(t0) = z ̈ d(t0) = zd
(3)(t0) = zd

(4)(t0) = 0

and final conditions (tf  = 30) are taken as

xd(tf) = 0.78

x ̇ d(tf) = x ̈ d(tf) = xd
(3)

(tf) = xd
(4)

(tf) = 0

zd(tf) = 1

z ̇ d(tf) = z ̈ d(tf) = zd
(3)

(tf) = zd
(4)

(tf) = 0,

The reference trajectory is calculated using (28‒31) as

xd(t) = xd(t0) + D
µ

126t5

t5
f

 ¡ 420t6

t6
f

 + 540t7

t7
f

 ¡ 315t8

t8
f

 + 70t9

t9
f

¶

zd(t) = zd(t0) + Z
µ

126t5

t5
f

 ¡ 420t6

t6
f

 + 540t7

t7
f

 ¡ 315t8

t8
f

 + 70t9

t9
f

¶
,

where D = xd(tf) ¡ xd(t0) and Z = zd(tf) ¡ zd(t0).
We conducted two simulations, with nominal parameters 

(scenario S1), and with parametrical uncertainties of 20% on the 
cart and load masses, winch radius and winch’s moment of iner-
tia (scenario S2). Results are presented in Fig. 2 and Fig. 3 for, 
respectively, S1 and S2. In both cases we assume 10% errors 
on the initial position , that is x(t0) = 0.308 and z(t0) = 0.33.

In the simulation scenario S1, the closed-loop system pres-
ents results satisfactory for most practical applications, that is, 
the tracking error converges around 0 in less than 4 seconds, 
after that time the reference trajectory is tracked with trajec-
tory tracking error lower than 10–3 m, while after 15 s the error 
reaches 10–10 m. It can be seen that the angle θ evolves smoothly 
as expected, although the transient state observed during the 
initial time of around 5 s is oscillatory with an amplitude of 
oscillations of circa 0.02 rad. The control force and torque pro-

Fig. 2. Simulation results for 2-crane system (S1)
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duce smooth and bounded control signals. It is significant in the 
context of implementation in a real-life system. What is more, 
the control force F tends to 0, while C  converges to a con-
stant value that defying the gravitational force. In simulation 
scenario S2, the system also shows fast error convergence, but 
comparing to S1, it is slower of around 3 seconds, what can 
be observed especially in the graph of the angle θ. It is worth 
noting that as a result of parametric uncertainties being present 
in simulation scenario S2, the errors converge to values around 
10–4 m. Oscillations of higher amplitude may be observed on 
the plot of the control torque C , while the plot of the control 
force F remains very similar to S1. For analyzed scenarios S1 
and S2, the presented controller shows robustness with respect 
to uncertainties of coefficients and, simultaneously, it can also 
handle uncertain measurements of the cart position as well as 
of the cable length.

7. Summary

In this work, a generalization of crane control systems, called 
m-crane, was proposed. This generalization has allowed us 
to explore many control properties that are shared by rep-
resentatives of this class. Among others, it was proven, that 
m-crane systems are strongly accessible and, which is espe-
cially important in applications, differentially flat (with dif-
ferential weight 5m). Next we used this last property to solve 

trajectory tracking problem, that was illustrated by simulations. 
The geometrical approach to characterize the class of control 
systems presented in this article can be extended further to 
classification of systems that are linearizable via a two-fold 
prolongation.
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