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Abstract: The purpose of this paper is to show possibility and advantages of initial control
plane reproduction for an adaptive fuzzy controller. Usually the fuzzy control is used when
the object is not very well known. Yet the truth is, however, that some, at least general
information about the object, is available. Usually, in such a case, optimization algorithms
are used to tune the control structure. The purpose of this article is to show how to find
a starting point that is closer to optimum than a statistically random point, and this way to
obtain better results in a shorter time.
Key words: control plane reproduction, DC drive, fuzzy controller tuning, Petri layer

1. Introduction

Since the 60s when Lofti Zadeh [1] introduced fuzzy sets to control theory, many researchers
have intensively exploited this branch of knowledge [2–6]. Fuzzy sets allow one to control objects
which are controlled by humans yet their analytical description is uncertain or hard to define, and
therefore they are not easy to control. The fuzzy approach allows one to implement knowledge of
human experts into computer systems using linguistic description. On the other hand, all kinds
of optimization algorithms allow tuning of control systems of unknown objects, causing many to
choose this tool for controlled tuning. At the same time the knowledge about the systems grows
rapidly and mathematical descriptions of more and more complicated phenomena and objects are
almost common knowledge. Because of that we find it is useful to utilize as many information
about the object as possible to improve a starting point of various algorithms.
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For that purpose we modeled a two-mass system containing two DC motors connected with an
elastic shaft described in the next section. We assume that we possess knowledge about the motors,
which nowadays is obvious, but have very poor information about the shaft. For the purpose of
controlling such an object we described a controller in the section Adaptive neuro-fuzzy controller
with transition Petri layer. Normally, having limited data about the object and using an adaptive
system, we would start by zeroing the weight coefficient matrix. In this case however, we start
with a controller tuned as a classical IP controller for the system with stiff connection. In line
with logic, a 1-mass system is closer to a 2-mass system than nothing.

The reproduction of a control function from an IP controller on a fuzzy controller is described
in section 3.2. Some of numerical issues are also mentioned. Section 4 describes the Particle
Swarm Optimization of adaptation parameters for an adaptive controller. Sections 6 and 7 present
simulation and experimental results. Section 8 explains the purpose of Petri layer usage. The
whole work is summed up in the last section.

2. Two mass system

For the purpose of this research a classical, separately excited DC motor with a cascade control
structure has been used as the motor, and the same motor in a generation mode as the load. The
excitation (Ψf ) is constant. The machine is described by the undermentioned equations in p.u.

Tem
dia
dt
= −ia + Kt

(
ua − Ψfω1

)
, (1)

T1
dω1

dt
= Ψf ia − TL , (2)

where: Tem is the electromagnetic time constant, T1 is the mechanical time constant of the machine,
TL is the load torque, ia is the armature current, Kt is the gain factor of the motor, ua is the armature
voltage, Ψf is the excitation flux.

The cascade control system shown in Fig. 1 contains two control loops, each inner loop
contains a current controller and current measurement. Its purpose is to compensate the electro-
magnetic time (Tem) constant. A classical IP controller tuned with a symmetry criterion is used as

Fig. 1. Control system scheme
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a current controller. The outer loop – speed control loop – contains a speed controller and a speed
measurement system. Its purpose is to compensate the mechanical time constant (T1) – the biggest
time constant in the system. During the research, in the first step, the classical IP speed controller
tuned with a modulus criterion has been used. Afterwards, this speed controller is substituted for
the proposed fuzzy adaptive controller.

The system in the mechanical part contains two DC motors. One is a controlled drive, and
the other works as a load machine, where the resistor is powered with generated energy. The
machines are connected via a long shaft wherein elasticity of the shaft is non-negligible. The
block diagram is presented in Fig. 2. The mathematical description includes Equations (3)–(5)
[7, 8].

Fig. 2. Control system scheme

where: Te is the electromagnetic torque, TL is the load torque, Tt is the torsional torque, Tf 1, Tf 2
represent the friction torque in the 1st and 2nd machine, T1, T2 are the time constants of the 1st and
2nd motor, ω1, ω2 represent the mechanical speed of the 1st and 2nd motor, Kc is the elasticity
coefficient of flexible joints, D is the damping coefficient of flexible joints.

T1
dω1

dt
= Te − Tt − Tf 1 , (3)

T2
dω2

dt
= Tt − TL − Tf 2 , (4)

dTt
dt
= D

d (ω1 − ω2)
dt

+ Kc (ω1 − ω2) , (5)

where: Kc is the stiffness constant, D is the damping factor of the shaft, Tf 1, Tf 2 stand for the
friction torque of the motor and load.
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3. Adaptive neuro-fuzzy controller with transition Petri layer

For the purpose of this research, an adaptive fuzzy (IP) controller with the transition Petri
layer (TPL) has been used. The solution can easily be extended to a higher number of inputs [9].
Input variables can be selected in accordance with the circumstances. The neuro-fuzzy inference
system consists of 6 basic layers, the TPL is implemented between the first two layers and an
adaptation algorithm. A schematic diagram of the controller is presented in Fig. 3. The layers of
the controller are described below. In order to obtain a non-adaptive neuro fuzzy controller, the
adaptation parameters (Equation (10)) need to be zeroed.

Fig. 3. Schematic diagram of the controller with Petri transition layers

3.1. Input layer

The input layer (Lin), normalizes input signals as in (6). The considered range of each of the
variables is limited (satin_k ). Scaling factors (Kin_k ) cause the range of input values to fit the
desired limited range of the expected value of the variable. Scaling factors for this research were
chosen as nominal values, considering the model that we desire as an object to follow. This means,
for ink = e(k), Kin = 1 since the tracking error equal to a nominal value or bigger is treated here
as a maximal value. For ∆e(k), Σe(k) we analyzed the step response of the model and obtained
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maximal values of this parameters during normal operation of the system. Of course any lower
value can be chosen, to obtain a more demanding system.

Linout = max
[
min
[
(Kinink ) , satink

]
, −satink

]
, (6)

where: ink = [e(k), ∆e(k), Σe(k), u(k − 1), x(k), . . .].

3.2. Transition Petri layer

Transition Petri layers (TPLs) identify the sector of the input variable, in which the variable
is currently located. This layer selects appropriate membership functions and rules based on the
identified area of the control plane. The reason is the desire to reduce the numerical effort of the
controller with a large number of fuzzy sets. The TPL has the same mathematical influence on
the algorithm output value as the concurrent Petri layer [10, 11, 12] but an additional advantage
of lower computational cost is introduced [9, 13].

In Fig. 4 an example of a control plane and the consequences of TPL application in the
neuro-fuzzy system with two inputs and three type-I triangular membership functions for each
input is shown, it is easy to imagine such a solution for any other type or shape of function or
higher dimension, yet the figure would be blurred. Since only two membership functions (for each
input) are active, instead of four quadrants of the control plane, only one needs to be analyzed to
obtain all information. This means that during each iteration only 4 (22) out of 9 (32) rules need
to be calculated. Increasing the number of membership functions (for each input) to lmf , and the
number of inputs to lin, results in the need of determination of 2lin instead of lm f lin rules and the
adaptation of the same number of weight coefficients. For 3 inputs and 5 membership functions

Fig. 4. Control plane for 2 input controller with triangular membership functions with TPL
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per input, using a transition layer that activates only 2 functions per input, we have 23 instead of
53 rules that are calculated in each iteration.

Triangular membership functions have a finite medium, for any input value only two adjacent
membership functions per each input are active in the non-zero level. The application of the TPL
accepting these active functions will cause no change in an output control signal, yet smaller
computational effort. This way more membership functions or dimensions may be implemented
at the same computational cost. On the other hand, a more complicated control plane may be
implemented at lower computational effort, so that the task time in a real life object may be
shorter. This is important especially for complex control systems and for the control of rapidly
changeable signals such as currents.

3.3. Fuzzyfication layer
In the fuzzyfication layer (Lfuz) according to Formula (7) the membership function activation

level is calculated for the current input values. The undermentioned formula describes a triangular
membership function (Fig. 5).

Lfuzout = max
min


Lkin

fuzin
− akin

jset

bkin
jset
− akin

jset

,
ckin
jset
− Lkin

fuzin

ckin
jset
− bkin

jset

 , 0
 kin=1...l
jset=1... j

. (7)

Fig. 5. Triangular membership function

The used triangular membership functions were distributed uniformly over the considered
variable range. Markings in the formula: kin is the number of inputs, jset is the number of
membership functions (for the TPL only the rules identified by the layer as the active ones are
calculated), l is the number of inputs, j is the number of membership functions in set corresponding
with the considered input, a, b, c are the triangular membership function parameters as in Fig. 5.

3.4. Inference layer
The inference layer determines the firing levels of individual rules multiplied by the corre-

sponding weight coefficient. The rule base consists of expressions as follows [14, 15]:

Rkin1,kin2
: if

(
Rin1 is µin1

set1 (in1)
)

and
(
Rin2 is µin2

set2 (in2)
)

than
(
y = f

(
µin1

set1 (in1) , µin2
set2 (in2)

))
. (8)

The t-norm prod was used as an output function in this work.
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3.5. Defuzyfiaction layer
The deffuzyfication layer (Ldef) evaluates the output of the fuzzy system. In the presented

case a classical singleton deffuzyfication algorithm was used, the algorithm is described by the
(9) [14, 16]. The undermentioned formula is designed for two input systems, for a larger number
of inputs the number of dimensions will increase.

u(k) =

∑
in1=1...kin1
in2=1...kin2

Rkin1, kin2
ωkin1, k in2

∑
in1=1...kin1
in2=1...kin2

Rkin1, kin2

. (9)

3.6. Adaptation algorithm
The value of the change of weight coefficients in each iteration is described by Equation (10):

wi
j (k + 1) = wi

j (k) + Lrulesout
i
j (k) · [kem · em (k) + k∆m · ∆em (k)] , (10)

where em (reference model tracking error) is calculated as the difference between the reference
model signal and the measured motor speed (em = ωmod − ω1). An inertial second order object,
(11), with parameters ωr = 30, ξ = 1 was used as a reference model. These values were
chosen arbitrarily, as a consensus between good outcome dynamics of the system, and physical
possibilities of the real object. This reference model represents desired dynamics of the whole
system and is a design parameter under physical constraints.

G (s) =
ω2
r

s2 + 2 · ξ · ωr · s + ω2
r

. (11)

In each iteration of the algorithm, each weighting coefficient is changed by the value dependent
on the current tracking error of the model. It is important to limit the maximum values of the
weighting coefficients and/or to incorporate a limit on the controller output, for example by
stopping the process of adaptation. Weight coefficients should be limited in such a way as to
allow for reaching the maximum desired output signal value. A detailed description of the control
structure with a reference model was also presented in [13]. In the case of PTL usage, only the
coefficients corresponding with active functions are being adapted.

4. Methodology of settings selection – reproduction of the control plane

The idea of control plane reproduction is based on the assumption of prior knowledge about
the object, and knowledge about the fuzzy system. For the purpose of this research, where the
authors want to show the reduction of computational effort due to Petri layer introduction, it is
assumed that the plant can be controlled by a classical IP controller, thus this control function
of the controllers is reproduced on the fuzzy controller. This method may be found particularly
applicable for the objects, where adaptation algorithms are used, yet a designer has some general
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information about the object. Thus, the initial weight coefficient matrix, that defines the control
plane, is not zeroed. This will certainly limit initial fluctuations caused by rapid adaptation in
early stages of system operation [11].

Fig. 6. Projection of the control plane of IP controller on fuzzy controller

This kind of research are planned in the near future. Obviously, the control function is not
only limited to the plane or linear control, the source of information is arbitrary, yet not always it
is possible to reproduce the function identically due to mathematical issues that will be discussed
later.

The first things that need to be considered are the limitations for the system. Usually the output
of controllers needs to be limited for the proper and safe operation of objects. For example, as
used in this study, the speed controller in the outer loop of the cascade control structure for the
DC motor generates reference torque/current that needs to be limited due to the safety reasons. In
this study the ia limit is set as 1.5, the structure operates in the p.u. system. For the IP controller
this means that the limit for the integrator as well as output limitation of the fuzzy system need to
adopt this value. As the repercussion of this limitation we need to consider limitations of input
signals. Since, when e(k) = 1 and ∆e(k) = −1 the output of summation would be 0. Also,
if e(k) = 3 and ∆e(k) = −1 the summation block will give +2, yet due to the limitation the
output would be +1.5. Therefore, the limitation of the inputs of the fuzzy controller should adopt
a double value of the output limit.

Rn,m = µ
1
n · µ2

m · wn,m , (12)

wn,m = b1
1Kde + b2

2Ke , (13)

where: Kde and Ke are the parameters of the base IP controller, b1
1 and b2

2 are the positions of
membership function cores.

To reproduce a control plane of a classical controller the weight coefficient matrix must be
calculated according to a source controller. The source controller is tuned according to prior
knowledge. In this case the speed controller for a DC motor was tuned using a criterion of sym-
metry. For each rule in the rule base the output value of the source controller corresponding with
the cores of component membership functions needs to be calculated. In triangular membership
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Functions (7) the core is a point at input value equal to bkin
jset

, for two input controllers the output of
the source controller needs to be calculated for combinations of in1 = b1

1 and in2 = b2
2. In general,

since the fuzzy controller with triangular membership functions can be considered as a group of
linear controllers with smooth transitions, we want to set each individual part (rule) to be as close
to the source controller as possible.

Fig. 7. Control surface of IP controller

It is very important to understand that not always perfect reproduction is possible due to
computational restrictions. It is shown in Figs. 8 and 9. The mentioned computational restric-
tions origin in finite bit representation of fractions. An example for that might be the equation
sin(π/4) − cos(π/4) that analytically should be 0, yet for MATLAB it is –1.1102e–16 due to the
finite expansion of a sine function into series. In this research parameters for the source controller
are analytically computed, the number of decimal places results from the calculation possibilities.
Nevertheless, as it is shown in the abovementioned figures the difference between the source
controller and final fuzzy controller with a reproduced control plane is small, and not significant,
faced with the fact that it is an initial plane for an adaptive controller.

Fig. 8. Difference between control surface of IP con-
troller and fuzzy controller with 7×7 fuzzy functions

with reproducted controll surface

Fig. 9. Difference between control surface of IP con-
troller and fuzzy controller with 13×13 fuzzy func-

tions with reproducted controll surface
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5. Optimization process of adaptation coefficients for certain initial weight
coefficients matrix

Since input scaling factors are reproduced based on a source controller and the matrix of initial
weight coefficients is zeroed or reproduced from the source controller, the remaining parameters
to be determined are adaptation coefficients (kem and k∆em in Equation (10)).

For determination of these parameters MATLAB built in a Particle Swarm Optimization
(PSO) [17, 18], algorithm was used. The swarm size was set to 20. Function tolerance was
1e − 4. Inertia range was set as [0.1, 1.5]. Initial swarm span as a default – 2000, max iterations
– 200, were never reached. The maximum number of stall iterations – 5, combined with function
tolerance was the reason to stop the algorithm. There were no time constraints. The minimum
adaptive neighborhood size – 0.25. The self-adjustment as well social adjustment of weight were
equal to a default – 1.49. For reproducibility the random number generation was set to the default
in each iteration.

For both cases of initial weights many optimizations have been conducted, where boundaries
of search space were variable. For both cases 10 different local minima have been found and
presented in the table below. The cost function was chosen as ISE (ωmod − ω1).

Table 1. Summary of adaptation parameters after PSO and resulting ISE values

IP 1 2 3 4 5 6 7 8 9 10

AD_P 9.29 1000.00 98.11 2.47 736.87 2.47 1.86 1.44 95.72 0.98

AD_D 3.48 347.04 29.30 0.24 265.40 0.24 0.22 0.26 27.69 0.22

ISE 2.96 1.46 1.68 1.48 2.68 1.59 0.73 1.75 1.63 1.39

ZERO 1 2 3 4 5 6 7 8 9 10

AD_P 95.72 1.41 1.46 976.03 707.28 2.05 2.33 1.37 87.78 0.96

AD_D 27.69 0.21 0.61 343.16 156.26 0.23 0.20 0.23 24.16 0.28

ISE 1.54 1.54 18.36 2.81 3.19 1.83 1.16 2.69 1.58 2.22

As it is seen globally, the best (bold) result was found for the case, where the initial matrix
was reproduced from an IP controller, as well as the globally worst (italic) case was determined
for the case with a zeroed initial matrix. What is more important, for each case (1, 2,. . . ) the
boundaries were set the same for both cases of the initial matrix, however, in the 1st case the
outcome for the reproduced plane was worse than for the zeroed one. 10 globally best outcomes
were highlighted in bold font, and the worse ones with italic.

The conclusion, according to intuition (by inference), is, in general, that starting the adaptation
with a reproduced initial control plane gives better outcomes than starting with zeroed coefficients.
Nevertheless, a proper choice of search boundaries is also important. So, as it might be obvious,
any kind of prior knowledge about the process might and should be used during the tuning process.

In Fig. 10, the adaptation process of the best obtained cases of a PSO algorithm for the case
with the reproduced (a, c, e) and zeroed (b, d, f) matrix of initial weight coefficients, has been
presented. In all the cases a fuzzy controller with 2 inputs and 7 fuzzy membership functions per
input was used.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Points in adaptation coefficients space (a, b); best values of adaptation coefficients in each iteration
(c, d); best ISE value for each iteration (e, f). Cases (a, c, e) are the cases, where initial weight coefficient

matrix is reproduced from IP controller, cases (b, d, f) are for the case where initial matrix was zeroed

6. Results

Underneath chosen simulation results are presented. Firstly, transients of a reference (IP)
controller versus a fuzzy controller (with and without the Petri layer) with a reproduced control
plane are presented in Fig. 11. Afterwards, a system with the above fuzzy controller and fuzzy
adaptive controllers with and without the Petri layer are shown (Fig. 12). In final Fig. 13, transients
of the motor using a classical IP controller, fuzzy adaptive controller with adaptation coefficients
optimized for an initial weight coefficient matrix reproduced from the classical IP controller,
and a fuzzy adaptive controller with adaptation coefficients optimized for a zeroed initial weight
coefficient matrix, are presented. All fuzzy controllers used for the simulations are ones optimized
in the above section (with 2 inputs and 7 fuzzy membership functions per input).
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Fig. 11. Transients of reference model speed (black),
motor speed using IP controller (red), fuzzy con-
troller (green) and fuzzy controller with Petri layer

(blue)

Fig. 12. Transients of reference model speed (black),
motor speed using fuzzy controller (red), fuzzy
adaptive controller (green) and fuzzy adaptive con-

troller with Petri layer (blue)

(a) (b)

(c) (d)

Fig. 13. Transients of reference model speed (black), motor speed using classical IP controller (green), fuzzy
adaptive controller with adaptation coefficients optimized for initial weight coefficient matrix reproduced
from classical IP controller (red) and fuzzy adaptive controller with adaptation coefficients optimized for

zeroed initial weight coefficient matrix (blue)
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As it is shown in Fig. 11, both fuzzy controllers with and without the Petri layer coincide
perfectly and show slightly worse performance than the source IP controller. That is due to
the inaccuracy described in the section Methodology of settings selection. This issue might be
resolved by a bigger size base of rules or more fortunate composition of source and considered
controller parameters.

Fig. 12 shows the transients of motor speed in the system with a fuzzy controller versus an
adaptive fuzzy controller with and without the Petri layer. Again, the adaptive fuzzy controller
with and without the Petri layer coincide perfectly, which confirms that the Petri layer does
not affect an output control function. What is clearly seen, the adaptive controllers show better
performance than the base controller. Only a parameter that might be considered as worse is
a bigger number of oscillations when approaching reference speed. Nevertheless, the settlement
time and amplitude of this oscillations are visibly smaller.

Fig. 13 shows the performance of a classical IP controller, fuzzy adaptive controller with
adaptation coefficients optimized for an initial weight coefficient matrix reproduced from the
classical IP controller and a fuzzy adaptive controller with adaptation coefficients optimized for
an initial weight coefficient matrix set at zero.

As it is visible, adaptive controllers with optimized adaptation parameters show better per-
formance than basic IP controllers. What is more, the controller optimized for the initial weight
coefficient matrix reproduced from the IP controller shows better performance than the one with
a matrix set at zero.

7. Experimental results

The experimental setup has been presented in Fig. 14. The shunt DC motor is fed with
a Mentor DC drive, which is controlled by the STM32 Discovery board. The generic code for
a microcontroller is created using the MATLAB Simulink environment.

Fig. 14. Experimental setup

For experimental purposes the system presented in the experimental setup section was used.
Fig. 15 shows the experimental results, as it is seen, the weight coefficients (c) change during the
operation to obtain better fitting towards optimal function, minimizing the ISE quality indicator,
yet since their initial values are reproduced from a basic controller which was properly tuned,
the changes are small. The mentioned controller has 11 membership functions per each of
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2 inputs, only few chosen weight coefficients are shown in the figure. The non-adaptive fuzzy
controllers with and without a transition layer work identically. The adaptive controller offers best
performance, and the original IP controller is the worst.

(a) (b)

(c)

Fig. 15. Measured and reference speed (a); difference of real and measured speed (b) for different systems
and chosen weight coefficients during operation of adaptive fuzzy system with transition layer (c)

The improvement of computational effort caused by the Petri transition layer has been consid-
ered in [9, 12]. In that paper authors proved that Petri layer implementation limits computational
complexity of a control algorithm, and thus shortens the time of calculations.

8. Summary

For the purpose of this research a 2-mass system with an elastic shaft connecting two DC
motors in MATLAB Simulink SimPowerSystem has been modeled. The classical cascade control
structure has been used. The investigated controller worked in the outer control loop as a speed
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controller. Firstly, the classical IP controller has been implemented and treated as the base. It
showed poor quality of control but ensured stable work of the system. Than the control function
of the above-mentioned controller was reproduced on a fuzzy controller, and later on an adaptive
fuzzy controller. We proved that it is possible to copy the control function, with some accuracy,
from the base controller to the fuzzy controller.

Later on, the fuzzy controller was expanded with an adaptation algorithm. It was shown that
the adaptive controller gives better results than the classical controller when full information
about the process is unavailable. The adaptive controller was optimized using a PSO algorithm
for two cases, the reproduced weight coefficient matrix and a the weight coefficient matrix set at
zero. It turned out, which is in line with logic, that the system with the pre-tuned control function
provides a better outcome.

The use of the PTL was caused by another fact in line with logic, the more rules the better
possible fitting of the control function to desired one, but also more computational complexity.
Incorporation of the PTL allows one to limit the rapid increase in computational complexity along
with a higher number of rules.
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