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Abstract: This paper presents the application of Flexible Alternating Current Transmis-
sion System (FACTS) devices based on heuristic algorithms in power systems. The work
proposes the Autonomous Groups Particle Swarm Optimization (AGPSO) approach for
the optimal placement and sizing of the Static Var Compensator (SVC) to minimize the
total active power losses in transmission lines. A comparative study is conducted with
other heuristic optimization algorithms such as Particle Swarm Optimization (PSO), Time-
varying Acceleration Coefficients PSO (TACPSO), Improved PSO (IPSO), Modified PSO
(MPSO), and Moth-Flam Optimization (MFO) algorithms to confirm the efficacy of the
proposed algorithm. Computer simulations have been carried out on MATLAB with the
MATPOWER additional package to evaluate the performance of the AGPSO algorithm on
the IEEE 14 and 30 bus systems. The simulation results show that the proposed algorithm
offers the best performance among all algorithms with the lowest active power losses and
the highest convergence rate.
Key words: active power losses minimization, AGPSO, FACTS, MFO, PSO, SVC

1. Introduction

In recent years, the demand for electricity has increased dramatically as a result of eco-
nomic and population growth. Nevertheless, the expansion of transmission and power generation
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is limited due to finite resources and environmental restrictions. This leads to the overloading
of certain transmission lines and inappropriate performance of the electrical network, which
in turn affects the power system stability and security [1]. Flexible Alternating Current Trans-
mission System (FACTS) devices provide a felicitous solution for a robust performance of the
power system networks by controlling the power flow and regulating the bus voltages of the
electrical power systems. This reduces the power system losses and improves the voltage profile.
In addition, the optimal implementation of FACTS controllers in the power system networks
increases the capacity of networks without the expensive construction of new transmission sys-
tems [2–4]. FACTS devices are based on high-speed power electronics components that are
connected to the electrical networks to increase controllability and maximize the capacity of
the transferred power with a fast time response taking into consideration the power system
constraints [5, 6]. According to the connection mode of FACTS controllers in the power sys-
tem networks, there are three main categories: a) series controllers such as thyristor switched
series capacitor (TSSC) and thyristor-controlled series capacitor (TCSC), that are utilized to
control the active power flow and enhance the transient stability, b) shunt controllers as static
synchronous compensator (STATCOM) and static var compensator (SVC), which are used to
adjust the buses voltage and control the reactive power flow, c) extensive controllers such as
unified power flow controller (UPFC), which is a hybrid of the other two categories [7]. In
order to attain the maximum advantages through the implementation of FACTS devices, ap-
propriate rating devices must be situated at optimal locations. Several optimization techniques
have been applied for the allocation of FACTS controllers, which can be classified as linear,
analytical programming, and heuristic search methods. The optimal placement and proper pa-
rameter sizing of FACTS devices is a complex optimization problem. Heuristic search meth-
ods are the fastest, reliable and efficient techniques for these problems [8, 9]. Many heuristic
techniques have been exercised to obtain the favorable setting of FACTS devices [10–13]. In
[10], a hybrid algorithm combining JAYA blended with moth flame is proposed to reduce the
transmission losses of the power system networks through installation of a SVC and TCSC.
Although the proposed technique has outperformed the comparative algorithms, the heavy load-
ing condition has not been investigated. Reference [12] suggested a harmony search technique
for optimal setting of the SVC controller to enhance the voltage stability. The location of the
SVC is predefined by using the L-index. However, the convergence rate of the proposed method
is quite slow. In [13], a modified PSO algorithm has been introduced to determine the opti-
mum location and parameters of a STATCOM in order to minimize voltage deviations under
normal operating conditions. Nevertheless, the proposed algorithm depends on constant ac-
celeration coefficients, which reduce the ability of particles to explore and exploit the entire
search space.

The main challenges of the conventional PSO algorithm are slow convergence rate and local
minima trapping. Consequently, the application of the conventional PSO to FACTS allocation
fails to achieve the global solution. In this work, the problems of the classical PSO algorithm are
addressed through the implementation of a new improved particle swarm optimization algorithm
known as the Autonomous Group Particle Swarm Optimization (AGPSO) technique. In contrast
to the traditional PSO method, the AGPSO approach provides several autonomous strategies
for particle behavior that result in better exploitation and exploration of the search space, as
explained in Section 4. This paper aims to optimize the placement and size of SVC based on the
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AGPSO technique in order to minimize the active power losses in the electrical power system.
The proposed approach can find the best solution with significantly fewer iterations and a high
convergence rate compared to other optimization algorithms.

The remainder of this article has the following structure: Section 2 describes the modeling
of SVC devices. Section 3 presents the problem formulation. Section 4 describes the proposed
AGPSO methodology. The results obtained are analyzed in Section 5. Finally, the conclusion is
presented in Section 6.

2. Static VAR Compensator (SVC) modeling

The SVC is one of the shunt-connected FACTS controllers, which is widely utilized for
the reactive power compensation in the transmission power systems. The output of the SVC
can be regulated to exchange inductive or capacitive current to control a specific power system
parameter [6, 14]. In this paper, the SVC is modeled as a reactive power injection device. The
structure of the SVC is shown in Fig. 1. It consists of a capacitor bank connected in parallel to
a thyristor-controlled reactor. The reactive power output of the SVC can be expressed as given
below:

Qi = −V 2
i × Bsvc , (1)

where Vi is the voltage magnitude of the i-th bus and Bsvc represents the susceptance of the SVC.
The value of Bsvc can be controlled by adapting the firing angle of the thyristors as given in
reference [15]:

Bsvc =

xl − (2π − 2α + sin(2α))
(

xl
π

)
xl xc

, (2)

where xl and xc are the reactance of the reactor and capacitor, respectively, and α represents the
firing angle of the thyristors.

Fig. 1. Schematic diagram of SVC
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3. Problem formulation

3.1. Objective function

This paper is intended to reduce the active power losses in the transmission lines, which can
be expressed as follows:

pL =
NT∑
m=1

Gl

[
V 2
i + V 2

j − 2ViVj cos δi j )
]
, (3)

where NT is the total number of transmission lines, Vi and Vj are the voltage magnitudes of the
buses i and j, respectively, at ends of the m−th line, δi j is the voltage angle difference between
bus i and bus j, and Gl is the conductance of the m−th line.

3.2. Constrains

The optimization problem is subjected to the following constraints:

PGi − PDi −

N∑
j−1

ViVj

[
Gi j cos(δi j ) + Bi j sin(δi j )

]
= 0, (4)

QGi −QDi −

N∑
j=1

ViVj

[
Gi j sin(δi j ) − Bi j cos(δi j )

]
= 0, (5)

Vi_min ≤ Vi ≤ Vi_max , (6)
Si j ≤ Si_max , (7)

Qmin
svc ≤ Qsvc ≤ Qmax

svc , (8)

where PGi, PDi are the active power generated and demanded at bus i, QGi , QDi are the reactive
power generated and demanded at bus i, N is the total number of buses, Si j is the apparent power
flow inline i− j, Si j_max is the thermal limit of line i − j, Gi j and Bi j are the transfer conductance
and susceptance between bus i and bus j, respectively and Qmin

svc , Qmax
svc are the maximum and

minimum reactive power offered by the SVC device.

4. Autonomous Groups Particle Swarm Optimization (AGPSO)
methodology

The PSO algorithm has been widely applied to the allocation of FACTS devices due to its less
tuned user control parameters, uncomplicated implementation, and low computational costs [16].
However, the PSO algorithm is suffering from a slow convergence rate and sensitivity to fall
into local optima [13, 17]. In this section, the Autonomous Groups Particle Swarm Optimization
(AGPSO) is proposed to overcome these drawbacks. A brief overview of the conventional PSO
is presented in the following subsection.
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4.1. Standard Particle Swarm Optimization technique

PSO is an optimization algorithm that mimics the navigation and foraging of a bird flock
or a fish school that uses swarm individuals (particles) motion around the search space to find
the best solution. Particle motion is influenced by the achieved personal best position of the
particle and the overall best position of the swarm. Each particle is defined by two vectors: the
position vector and the velocity vector [18,19]. Position of each particle changes at every iteration
according to the updated velocity as given below:

vl+1
i = ωvli + c1r1

(
pbesti − xli

)
+ c2r2

(
gbest − xli

)
, (9)

xl+1
i = xli + v

l
i L, (10)

ωl = ωmax −
(
ωmax − ωmin

L

)
l, (11)

where l is the current iteration, and L is the maximum iteration, vl+1
i is the velocity vector of

the particle i in the iteration l + 1, ω is the inertia weight constant c1 and c2 are acceleration
coefficients, r1 and r2 are random parameters, pbest and gbest are the best particle position and
best global position respectively, xl+1

i is the position vector of particle i in iteration l + 1, ωmax,
ωmin are the maximum and minimum values of the inertia weight constant.

4.2. AGPSO algorithm

According to the PSO algorithm, two parameters play a major role in controlling the behavior
of the particles in the search space, namely cognitive and social coefficients (c1 and c2). When
the social coefficient c2 is relatively higher than the cognitive coefficient c1, then the particles
search the problem space more globally. In contrast, when c1 is relatively greater than c2, then
the particles have a high local exploration capability [20]. In the traditional PSO algorithm, these
parameters are considered as fixed values. Consequently, personal and social behavior for all
particles reacts in the same manner, leading to the aforementioned disadvantages of the classical
PSO technique. According to reference [21], the AGPSO approach provides variable values for
c1 and c2 at each iteration. This leads to the generation of a variety of particle behaviors to
overcome falls in local optima and increase the convergence speed of the optimization process.
The individuals (particles) are divided into four autonomous groups inspired by the termite colony,
each of which has a mathematical model for updating the values of the constants c1 and c2 as
given in Table 1.

In this work, the third root and cubic functions are allocated to the acceleration coefficient
models of the AGPSO groups as shown in Table 1. For the first and second groups, the values
of c1 and c2 are updated according to the third root and cubic functions, respectively. Whereas,
those values for the third group are updated according to the third root function for c1 and the
cubic function for c2 and vice versa for the fourth group [21]. Fig. 2 shows the values of the time-
varying accelerator coefficients c1 and c2 which have been adapted using various functions with
different curvatures, intersection points, and slopes that allow a high diversity of the action of the
particles during the optimization procedure. This leads to a better balance between exploitation
and exploration of the search space.
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Table 1. Update scheme of c1 and c2

Groups of particles Update model of c1 Update model of c2

Group 1 1.95 −
2l1/3

L1/3
2l1/3

L1/3 + 0.05

Group 2
−2l3

L3 + 2.5
2l3

L3 + 0.5

Group 3 1.95 −
2l1/3

L1/3
2l3

L3 + 0.5

Group 4
−2l3

L3 + 2.5
2l1/3

L1/3 + 0.05

(a) (b)

(c) (d)

Fig. 2. Update strategies of c1 and c2: (a) first group; (b) second group; (c) third group; (d) fourth group

The flowchart of the AGPSO algorithm is as shown in Fig. 3. Firstly, all individuals are
randomly initialized in the search space. Then, the particles are randomly divided into four
predefined autonomous groups. For each iteration, the fitness, pbest of each particle, and gbest
of the swarm are calculated. For all particles, the coefficients c1 and c2 are updated using
the mathematical model for each group. After that, the new values accelerator coefficients are
substituted in (9) and (10) to determine the velocities and positions of particles. Then, the inertia
weight is calculated from (11). If the termination criteria are satisfied, then the optimal solution
is obtained. Otherwise, go to the next iteration.
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Start

Specify The PSO parameters

Initialize  position and 
velocity of particles of PSO 

Update inertia weight ω
according to Eq. (11)

Termination criteria 
satisfied?

Yes

No

Divide particles randomly into 
four  autonomous groups

Calculate the fitness of each particle

Calculate personal best (xbest) and 
update global best (gbest)

Update c1 and c2 according to particle’s
group criteria as in Table (1)

Update particle's velocity vi
according to Eq. (9)

Update particle's position xi
according to Eq. (10)

Optimal solution is obtained

Stop   

Fig. 3. Flowchart of the AGPSO algorithm

5. Simulation results and discussion

In order to recognize the effectiveness and applicability of the AGPSO technique, the IEEE 14
and 30 bus systems have been tested to find the optimal placement and size of the SVC controller.
The bus and line data of the standard IEEE 14 and 30 bus systems can be found in [22]. The
findings obtained are compared to Time-varying Acceleration Coefficients PSO (TACPSO) [21],
Improved PSO (IPSO) [23], Modified PSO (MPSO) [24] and Moth-Flam Optimization (MFO)
algorithms [25]. The parameters of the PSO algorithms are listed in Table 2.

Table 2. Parameters of PSO algorithms

Parameters TACPSO MPSO IPSO AGPSO PSO

Inertial weight 0.4−0.9 0.4−0.9 0.4−0.9 0.4−0.9 0.4−0.9

Updating of c1 0.5 + 2e−(4l/L)2 2.55 +
(
−2.05

L

)
l 2.5 + 2

(
l
L

)2
− 2

(
2l
L

)2

Table 1
2

Updating of c2 2.2 + 2e−(4l/L)2 1.25 +
(

l
L

)
0.5 − 2

(
l
L

)2
+ 2

(
2l
L

)2
2

r1 0−1 0−1 0−1 0−1 0−1

r2 0−1 0−1 0−1 0−1 0−1

For all algorithms, the population size is selected as 50 search agents (particles for PSO algo-
rithms and moth for MFO) and the maximum number of iterations is 200. In order to demonstrate
the effect of the SVC on the active power losses and voltage profile under heavy loading condi-
tions, the total reactive load is modified to 30 MVAR at buses 14 and 26 for the IEEE 14 and 30
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bus systems, respectively. For both systems, all PV bus voltages are maintained within the range of
0.95–1.1 p.u., whilst all PQ bus voltages are kept within the range of 0.95–1.05 p.u. The limits of
the reactive power of the selected SVC are ±100 MVAR. The MVA base is taken as 100 for both
tested systems. The software that implements algorithms is developed in the MATLAB 2018b
environment with an additional Matpower package and simulated on an 8 GB RAM, 2.8 GHz
core i7 processor. Power flow calculations are carried out using the Newton–Raphson method to
obtain the bus voltages and power losses of all tested systems. It is worth mentioning that the
total real power losses of the IEEE 14 bus system before and after modification are 13.3933 MW
and 14.4373 MW, respectively. Fig. 4 illustrates the active power loss curves of all algorithms
for IEEE 14 bus system. As can be seen, without installing the SVC in the IEEE 14 bus power
network, the total active power losses are 14.4373 MW. On the other hand, using the SVC based
on the AGPSO algorithm reduces the active power losses of the tested system to 13.3323 MW.
The optimal setting of the SVC is 29.1658 MVAR connected to bus 14.

Fig. 4. Convergence curves of all algorithms for the tested IEEE 14 bus system

As evident from Fig. 4, the AGPSO algorithm exhibits the best performance during the
optimization process. The AGPSO algorithm finds a solution close to the global optima in a few
numbers of iterations. For example, the solution offered by the AGPSO at the 28th iteration
reduces the total active power losses to 13.3329 MW (i.e. the resulting power losses are higher
than the final solution by 0.01%). On the other hand, only IPSO and MPSO algorithms reach this
solution at iterations 86 and 148, respectively. Also, the standard PSO algorithm converged to
a non-global solution compared to the AGPSO algorithm, resulting in higher values of the active
power system losses. At the end of the iterations, the highest real power losses are acquired by
the traditional PSO followed by the TACPSO and MFO algorithms.

Table 3 provides a summary of the simulation results, reporting the optimal size and location
of the SVC for all algorithms. For each technique, Table 3 also reports the corresponding active
power losses for the tested IEEE 14 bus system. The voltage profile of the tested system is
improved using the optimal size and location of the SVC based on AGPSO, as shown in Fig. 5.
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Table 3. The optimal solution for all algorithms of the tested IEEE 14 bus system

Algorithms SVC location (bus) SVC rating (Mvar) Active power losses (MW)

MFO 14 29.4832 13.3330

AGPSO 14 29.1658 13.3323

PSO 14 29.4072 13.3341

IPSO 14 28.8439 13.3329

TACPSO 14 29.5180 13.3333

MPSO 14 29.4945 13.3327

Fig. 5. The voltage profile of the tested IEEE 14 bus system

In the case of the IEEE 30 bus system, the modification of the load at bus 26 increases
the total real power losses from 17.5569 MW to 25.8210 MW. Fig. 6 shows the active power
loss curves of all algorithms for the IEEE 30 bus system. Among the tested algorithms, the
best solution for minimizing the active power losses is offered by the AGPSO algorithm, which
reduces the power losses from 25.8210 to 17.4755 MW by installing the SVC at bus 26 with a
size of 31.4222 MVAR. The AGPSO approach has significant convergence profiles relative to all
other algorithms and rapidly reaches a point close to the optimal solution at the 31st iteration
followed by the TACPSO algorithm at the 49th iteration. Despite the MFO algorithm providing
a close solution to the AGPSO algorithm, the conversion rate was slower and higher iterations
were required to find the solution. The highest active power losses are achieved by the IPSO
algorithm followed by MPSO and conventional PSO techniques. Table 4 provides a summary of
the optimal solution of all algorithms for the IEEE 30 bus.

Fig. 7 shows the change in the voltage profile of the IEEE 30 bus system with and without
installing the SVC device based on the AGPSO algorithm. It is evident that without using the SVC
controller, the voltages at buses 25, 26, 27, 29, and 30 are dropped to 0.88, 0.69, 0.93, 0.91, and
0.89 p.u., respectively, and became out of the allowable limits. In contrast, the AGPSO algorithm



170 Ahmed A. Shehata et al. Arch. Elect. Eng.

Fig. 6. Convergence curves of all algorithms for the tested IEEE 30 bus system

Table 4. The optimal solution for all algorithms of the tested IEEE 30 bus system

Algorithms SVC location (bus) SVC rating (Mvar) Active power losses (MW)

MFO 26 30.0069 17.4769

AGPSO 26 29.9248 17.4755

PSO 26 30.3122 17.4776

IPSO 26 30.2082 17.4784

TACPSO 26 29.8664 17.4773

MPSO 26 30.1313 17.4778

Fig. 7. The voltage profile of the tested IEEE 30 bus system
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offers an appropriate size of the SVC which is capable of providing adequate reactive power
during heavy loading conditions. This improves the voltage profile and keeps the bus voltage
within the secured limits. As can be seen, the voltage at busses 25, 26, 27, 29, and 30 maintained
within the permissible limits at 1.03, 1.027, 1.032, 1.008, 1.013, and 1.001 p.u., respectively.

6. Conclusions

The PSO algorithm has been widely applied to the allocation of FACTS devices, however,
the main challenges of this algorithm are trapped in local optima and a slow convergence rate.
The Autonomous Groups Particle Swarm Optimization (AGPSO) approach uses the principle
of autonomous groups inspired by the diversity of individuals in natural colonies to address the
drawbacks of the traditional PSO. The AGPSO technique has been proposed to obtain the optimal
location and size of the SVC in the IEEE 14 and 30 bus systems. By installing the SVC based
on AGPSO, the total active power losses of the IEEE 14 and 30 bus systems are reduced by
7.22% and 32.32%, respectively. In addition, the voltage profile of the power systems is improved
within the allowable limits. In order to demonstrate the effectiveness of the proposed algorithm,
a comparative study has been performed with other algorithms, such as PSO, TACPSO, MPSO,
IPSO, and MFO. algorithms. According to the simulation results, the AGPSO algorithm obtains
the near-global optimum solution with the lowest number of iterations that resulted in finding the
best solution with the rapid convergence rate compared to other tested heuristics algorithms. In
future work, the authors aim to apply the proposed algorithm to a real network.
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