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Abstract

Global Vector Autoregressive models came to be used quite widely in
empirical studies using macroeconomic non-stationary panel data for the global
economy. In this paper, it is shown that when the loading matrix of the
cointegrating vectors is not block-diagonal and the cross-sectional spillovers of
disequilibrium exist, the use of the GVAR model leads to spurious cross-sectional
long-run relationships. Moreover, the results of Monte Carlo simulation show
that the GVAR model is outperformed by other valid econometric approaches
in terms of the maximum likelihood estimator of long-run coefficients, when the
cointegrating vectors matrix is block-diagonal.
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1 Introduction
The expanding globalization of the world economy strengthens global value chains,
international trade, as well as financial market integration. This process inevitably
provides a strong rationale for the use of cross-sectional statistical frameworks in
analyses of modern macroeconomic phenomena. The increased globalization coincides
with dissemination of high-quality consistent panel data that are provided at quarterly
or even monthly basis and for long time spans, and are widely used in international
comparisons of different countries or regions. This invariably means that the panel
counterparts of techniques used for non-stationary time-series data can be applied for
empirical datasets, in order to disentangle the spatiotemporal behaviour of economic
phenomena. For example, Bussière et al. (2009) model global trade flows in panel of
emerging markets and advanced economies, Favero (2013) and Temizsoy and Rojas
(2019) investigate determinants of credit rating spreads, whereas Bi and Anwar (2017)
examine the impact of US monetary policy shocks on China’s economy. The common
feature of above mentioned articles is the use of the global VAR model as a statistical
framework of analyses. A comprehensive survey of applications associated with global
VAR provide Chudik and Pesaran (2016).
The growing interest over the last two decades for analysing multi-country or multi-
region data led to development of models that (i) do not impose cross-sectional
short- and/or long-run homogeneity, (ii) allow for various types of spatiotemporal
interdependencies, (iii) and are able to mimic country- or region-specific responses
to shocks that affect the world economy. There are two main strands how to deal
with macroeconomic panels, which can be discriminated on the basis of contemporary
state-of-the-art macroeconomic-oriented panel models, and which form alternatives to
spatial panel data models that simply employ the spatial weights matrix.
On the one hand, the error factor structures and the common correlated effects
estimator proposed by Pesaran (2006) or the interactive fixed effects and the principal
components estimator proposed by Bai (2009) can be used, primarily when the
variables under study are generated by stationary processes. On the other hand,
if the processes generating macroeconomic categories are non-stationary and more
flexibility is necessary regarding spatiotemporal interdependencies, then the natural
candidate for the model embodying the admissible statistical frameworks would be
the large-scale VAR model. Since the large-scale VAR model is infeasible in typical
empirical cases, it is necessary to impose some panel structure on the large-scale VAR
in order to gain feasibility.
In view of the need for the feasible large-scale VAR model with panel structure,
Pesaran et al. (2004) propose to utilize the international trade patterns as well as
to use a set of conditional country-specific models, by imposing weak-exogeneity of
cross-sectional sub-processes. This essentially means that the cross-sectional loading
matrix of the cointegrating vectors is block-diagonal and the cross-unit spillovers of
disequilibrium are not allowed, as opposed to the cointegrating vectors matrix, where
the cross-unit cointegration vectors are accepted, even though they are restricted
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by the international trade shares. The other solution has been proposed by Larsson
and Lyhagen (2007), who suggest to assume that the cointegrating vectors matrix is
block-diagonal rather than to restrict the loading matrix.
Both approaches, the global VAR model proposed by Pesaran et al. (2004) as well
as the panel VAR model introduced by Larsson and Lyhagen (2007) allow for the
instantaneous and the short-run cross-unit interdependencies, but they clearly differ
in terms of sources of the long-run cross-sectional dependencies. Definitely, both the
cross-sectional cointegrating vectors and the cross-unit spillovers of disequilibrium can
exist in general. However, of the two possibilities only one can be excluded a priori for
some empirical phenomena on the basis of some established economic theory, i.e. the
cross-sectional cointegrating vectors. Moreover, even if the cross-unit cointegrating
vectors are predicted by the economic theory due to some international parities,
there is usually possibility to transform the problem (real exchange rate instead of
nominal, interest rates differentials, e.g.). In case of the cross-sectional spillovers of
disequilibrium the economic theory remains blind and any a priori restrictions may
be incorrect.
The aforementioned problem calls for an investigation into effects of conditioning
model by erroneously assuming weak-exogeneity of cross-sectional sub-processes. To
this aim two issues are explored. Firstly, consequences of the use of the GVAR model
are examined when the cross-sectional spillovers of disequilibrium exist. Secondly,
performance of the maximum likelihood estimator (MLE) of long-run coefficients is
studied using the GVAR model, the PVAR model, and the individual VAR models.
Therefore, three statistical frameworks that are embodied within the large-scale VAR
model are considered, whereas all models that assume cross-sectional short- and/or
long-run homogeneity or common factors are excluded.
The remainder of this paper is organised as follows. First, it introduces three statistical
settings nested by the large-scale VAR model: the GVAR model, the PVAR model, as
well as the individual VAR models applied for each country or region independently.
Secondly, it describes a Monte Carlo simulations and the results. The paper closes
with concluding remarks.

2 Statistical framework
Firstly, consider the finite-order VAR model:

yit =
Ki∑

k=1
Πkiyi,t−k + Φidt + νit, i = 1, 2, . . . , I, t = 1, 2, . . . , T, (1)

where yit =
[
y1it y2it . . . yP it

]′ is a P × 1 vector of variables for cross-section i
and period t, Ki denotes a cross-section-specific lag order, Πki is a P × P matrix of
lagged coefficients, dt and Φi stand for a N × 1 vector of deterministic components
and P×N matrix of their coefficients, and νit is an P×1 idiosyncratic error term with
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zero mean and covariance matrix Ωi. Obviously, model (1) represents a pure time-
series approach, which severely limits its use for empirical modelling of cross-sectional
data.
Next, consider the large-scale VAR model:

yt =
K∑

k=1
Πkyt−k + Φdt + εt, (2)

where yt =
[
y′1t y′2t . . . y′It

]′ is a IP × 1 vector of stacked panel data for period
t, K = max (Ki), Πk is a IP × IP matrix of lagged coefficients, Φ denotes an
IP×N matrix of deterministic term coefficients and εt is an IP×1 independently and
identically distributed error term with zero mean and covariance matrix Ω. Clearly,
model (2) still constitutes de facto a time-series approach, however a wide bunch of
short- and long-run cross-sectional dependencies is here allowed. In order to make it
easily visible let the error-correction form of model (2) to be explicitly written, in the
compact form:

∆yt = Πyt−1 +
K−1∑
k=1

Γk∆yt−k + Φdt + εt, (3a)

where Π and Γk are IP × IP matrices of long- and short-run multipliers respectively,
or in the expanded form:

∆yt =


A11 A12 · · · A1I

A21 A22 · · · A2I

...
...

. . .
...

AI1 AI2 · · · AII




B11 B12 · · · B1I

B21 B22 · · · B2I

...
...

. . .
...

BI1 BI2 · · · BII


′

yt−1+

+
K−1∑
k=1


Γ11,k Γ12,k · · · Γ1I,k

Γ21,k Γ22,k · · · Γ2I,k

...
...

. . .
...

ΓI1,k ΓI2,k · · · ΓII,k

∆yt−k + Φdt + εt, (3b)

where var(εt) = Ω =


Ω11 Ω12 · · · Ω1I

Ω21 Ω22 · · · Ω2I

...
...

. . .
...

ΩI1 ΩI2 · · · ΩII

, Aij and Bij are P × Ri matrices of

full rank and Ri denotes cointegration rank for cross-section i. It is straightforward
to note that the model (3a)/(3b) allow for cross-sectional dependencies: (i) in the
error term, since cov(εit, εjt) = Ωij 6= 0, (ii) in the short-run co-movements, as
quantified by the Γij,k matrices, (iii) in the long-run relationships, whose coefficients
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are expressed by the cointegrating vectors matrix B, (iv) and in the spillovers of
disequilibrium, which are measured by the loading matrix A.
Although the model (3a)/(3b) is a flexible form for panels generated by nonstationary
(integrated of order one) processes, it becomes infeasible in practice. Since the short-
run effects can be concentrated out according to the Frisch-Waugh theorem, the main
problem to gain feasibility is how to restrict the long-run coefficients when the long-
run cross-sectional co-movements are observed.
One solution has been proposed by Larsson and Lyhagen (2007), who suggest to
assume that the B matrix in the model (3a)/(3b) is block-diagonal, which precludes
any cross-sectional long-run relationships, whereas the loading matrix A is left
unrestricted, which means that the cross-sectional spillovers of disequilibrium are
allowed. Therefore the model proposed by Larsson and Lyhagen (2007), panel vector
autoregression (PVAR), is given by:

∆yt = A


B11 0 · · · 0
0 B22 · · · 0
...

...
. . .

...
0 0 · · · BII


′

yt−1 +
K−1∑
k=1

Γk∆yt−k + Φdt + εt. (4)

The model (4) can be estimated by means of the MLE and the switching algorithm
proposed by Johansen (1991). This approach can be effectively applied for moderate
and large samples (T > 100), when the dimension of yt (IP ) is below 40,
see Kębłowski (2016). Moreover, further efficiency gains are possible in small
samples when the homogenous cointegrating vectors can be assumed, i.e. that the
cointegrating vectors in each cross-section span the same space.
The other possibility is to restrict the loading matrix to be block-diagonal. The
most notable model meeting this requirement is the global VAR (GVAR) model
proposed by Pesaran et al. (2004) and further developed by Dees et al. (2007).
The main proposition is not only to assume that the processes generating individual
cross-sections (regions, countries) are weakly-exogenous, which enables in itself the
use of conditional model, but also to take advantage of geographical patterns of
international trade (trade shares) in order to create a parsimonious model. The latter
is simply a direct borrowing from spatial panel data models that use the spatial
weights matrix W.
Therefore, the GVAR model is essentially a set of individual conditional models:

yit =
Ki∑

k=1
Πkiyi,t−k +

Mi∑
m=0

Λmixi,t−m + Φidt + υit, (5)

where
[
y′it x′it

]′ = Wiyt, xit =
[
x1it x2it . . . xQit

]′ is a Q × 1 vector of
country-specific foreign variables that are created by country-specific weights wij , i.e.
xit =

∑I
j=0 wijyjt, weights can be based on trade shares or capital flows and meet the
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requirements: ∀
i

∑I
j=0 wij = 1, ∀

i
wii = 0, and Λmi is a P × Q matrix of coefficients

associated with foreign variables. Denoting Wiyt = zit and K = max (Ki,Mi) the
model (5) can be rewritten in the VAR form:

G0izit =
K∑

k=1
Gkizi,t−k + Φidt + υit, (6)

where G0i =
[
IKi

−Λ0i

]
and ∀

0<k≤K
Gki =

[
Πki Λki

]
.

Let us now consider the cointegration restriction within the model proposed by
Pesaran et al. (2004). The error-correction form of model (5) is:

∆yit = Πiyi,t−1 +
Ki−1∑
k=1

Γki∆yi,t−k +Λixi,t−1 +
Mi−1∑
m=0

Tmi∆xi,t−m +Φidt +υit, (7a)

which can be shortly written as

∆yit =
_

Πizi,t−1 +
K−1∑
k=1

_

Γki∆zi,t−k + T0i∆xi,t + Φidt + υit, (7b)

where
_

Πi =
[
Πi Λi

]
,

_

Γki =
[
Γki Tki

]
, and

_

Πi and
_

Γki are P × (P +Q) matrices
of long- and short-run multipliers respectively. If the reduced rank restriction holds,
then, obviously, the long-run multipliers matrix can be decomposed as

_

Πi = AiBi
′,

where the Pi×Ri loading matrix Ai and the (Pi +Qi)×Ri cointegrating matrix Bi

are of full rank.
In order to see how the large-scale model (2) encompasses the GVAR model proposed
by Pesaran et al. (2004), let us consider the VAR form (6), which can be written
compactly as:

G0yt =
K∑

k=1
Gkyt−k + Φdt + υt, (8)

where ∀
0≤k≤K

Gk =
[
W′

1G′k1 W′
2G′k2 . . . W′

IG′kI

]′, Φ =
[
Φ′1 Φ′2 . . . Φ′I

]′,
υt =

[
υ′1t υ′2t . . . υ′It

]′, var(υt) = Σ = diag (Σ11, . . . , ΣII), so cov(υit,υjt) =
Σij = 0. The VAR solution of (8) is:

yt =
K∑

k=1
G−1

0 Gkyt−k + G−1
0 Φdt + G−1

0 υt =
K∑

k=1
Fkyt−k + Φ̃dt + ζt, (9)

and var (ζt) = G−1
0 υtυ

′
tG−1

0
′ = G−1

0 ΣG−1
0
′. Therefore, the GVAR model is a heavily

restricted form of the general large-scale VAR model (2).
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Finally, let us consider the error-correction form of model (8):

G0∆yt = Hyt−1 +
K−1∑
k=1

G̃k∆yt−k + Φdt + υt, (10)

where H = −G0 +
∑K

j=1 Gk and ∀
0<k<K−1

G̃k = −
∑K

j=k+1 Gk. The long-run

multipliers matrix can be decomposed as

H =


(−G01 + G11 + . . .GK1) W1
(−G02 + G12 + . . .GK2) W2

...
(−G0I + G1I + . . .GKI) WI

 =


A1B1

′W1
A2B2

′W2
...

AIBI
′WI

 = AB̃′,

where A = diag (A1, A2, . . . , AI) and B̃ =
[
W1

′B1 W2
′B2 . . . WI

′BI

]
.

3 Monte Carlo simulation
In this section, we investigate two issues. Firstly, we focus on main consequences
of wrongly assuming that non-stationary sub-processes generating individual cross-
sections (regions, countries) are weakly-exogenous for the GVAR framework.
Secondly, we examine performance of the maximum likelihood estimator of long-
run parameters in GVAR, in PVAR, and in individual VAR models, when the cross-
sectional spillovers of disequilibrium exist, but the long-run relationships are restricted
to individual cross-sections.
In order to address the aforementioned questions, we use the Monte Carlo simulation
technique and the data generating process (DGP) is defined as follows:

∆yt = A (II ⊗B′ii)
[
yt−1

′ j′
]′ + K−1∑

k=1
Γk∆yt−k + εt, (11)

where j stands for IP × 1 all-ones vector, the number of variables for each cross-
section is P = 5, the number of long-run relationships for each cross-section is
R = 2 and we use a second-order VAR – K = 2. The error-term is generated
by the multivariate normal distribution, εt ∼ NIP (0; Ω), the covariance matrix is
distributed by the inverse Wishart distribution, Ω ∼ W−1

IP (I · (df − I · P − 1) ; df),
with number of degrees of freedom df = I · P + 40, which ensures that the
expected value of diagonal elements of the covariance matrix is unity, ∀

i=j
E (ωij) = 1,

whereas the expected absolute value of non-diagonal elements takes a constant value
irrespective of I and P, ∀

i 6=j
E (|ωij |) = 0.125, which was investigated by means
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of Monte Carlo simulation. The short-run effects are defined as ∀
i=j

γij,1 = 0.5
and ∀

i 6=j
γij,1 ∼ U (−0.1; 0.1), the coefficients of the cointegrating vectors matrix

are ∀
i=1,...,I

Bii =
[
1 −1 0 0 0 1
0 0 1 −1 0 1

]′
and ∀

i 6=j
Bij = 0, and the loadings are

∀
i=j

Aij =
[
−0.5 0 0 0 0

0 0 −0.5 0 0

]′
and ∀

i 6=j
Aij =

[
−0.1 0 0 0 0

0 0 −0.1 0 0

]′
. The

only deterministic term is a constant restricted to the cointegration space. The roots
of the autoregressive polynomial are examined in each case in order to exclude the
explosive roots. The number of replications equals 100000.
The mentioned above settings of the DGP are not intended to closely mimic any
specific empirical example, however, the GVAR model presented in Dees et al. (2007)
has 4 to 6 domestic variables and 1 to 4 cointegrating vectors for each cross-section.
With respect to our DGP, we have the same number of variables for each cross-section
and we have set equal country-specific weights for the link matrices Wi:

∀
i

Wi =


0 1/(I − 1) · · · 1/(I − 1)

1/(I − 1) 0 · · · 1/(I − 1)
...

...
. . .

...
1/(I − 1) 1/(I − 1) · · · 0

 .

Table 1: Frequency of spurious cross-sectional cointegration in GVAR model
(significance of a “foreign” variable in a cointegrating vector), restricted MLE

T\I 2 3 4 5 6 7 8 9 10

100 0.459 0.530 0.568 0.591 0.605 0.618 0.628 0.640 0.654
200 0.561 0.646 0.687 0.705 0.716 0.722 0.725 0.728 0.733
400 0.686 0.765 0.797 0.810 0.814 0.814 0.812 0.809 0.808
800 0.786 0.849 0.870 0.877 0.878 0.876 0.871 0.866 0.864
2000 0.870 0.913 0.925 0.928 0.929 0.926 0.921 0.917 0.914

Since the cross-sectional cointegrating vectors matrix B in the DGP is block-diagonal,
the cross-unit cointegrating vectors are excluded. However, as reported in Table 1,
probability of a given foreign variable to be found as significant (using t-ratio) for
a given cointegrating vector exceeds by far the size of the test (5%). In fact, the
larger the sample size T and the number of cross-sections I are, the higher the
probability of spurious cross-sectional cointegration is. Considering a panel covering
I = 8 cross-sections and T = 100 the probability of a given foreign variable to be
spuriously found as significant in a given cointegrating vector is as high as almost
63%. Obviously, the probability that any foreign variable will be found as significant
in a given cointegrating vector is even higher.
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Table 2: Frequency of spurious cross-sectional cointegration in GVAR model
(significance of any “foreign” variable in any cointegrating vector), restricted MLE

T\I 2 3 4 ≥ 5

100 0.884 0.987 0.999 1

200 0.919 0.996 1 1
400 0.959 1 1 1
800 0.985 1 1 1
2000 0.995 1 1 1

It is worth mentioning that although the t-ratios are widely used for significance
testing in the context of coefficients of long-run relationships, the alternative approach
would be to employ distance measures between the space spanned by cointegration
vectors in the DGP and the estimated one, see e.g. Larsson and Villani (2001).
Table 2 gives frequencies of spurious cross-sectional cointegration for the GVAR, which
is defined as the probability of spurious significance of any foreign variable in any
cointegrating vector, i.e. that the cointegration space related to given cross-section
is spanned by coefficient(s) related to distinct cross-sections. It can be easily noticed
that this frequency is almost equal to unity, when the number of cross-sections exceeds
2. Moreover, the results presented in Tables 1 and 2 do not alter significantly, if the
unrestricted constant is used in the DGP, i.e. the linear trend is allowed in the
data, as well as, when the country-specific weights for the link matrices Wi are
uniformly distributed, which relaxes the assumption of equally-sized economies of
regions/countries (additional results available upon request).
The phenomenon of spurious cross-sectional cointegration that occurs within the
GVAR framework under cross-sectional spillovers of disequilibrium necessitates a very
cautious use of the GVAR model in modelling of regional interdependencies in the
global economy when data under study are generated by nonstationary processes.
Moreover, it seems also very likely that this phenomenon may affect various tests of
weak-exogeneity, which are applied after identification of (spuriously cross-sectional)
cointegrating vectors within the GVAR framework.
The next issue to be investigated is performance of the maximum likelihood estimator
of the cointegrating vectors matrix B in GVAR, in PVAR, and in individual VAR
models, when the cross-sectional spillovers of disequilibrium exist, i.e. the loading
matrix A is unrestricted, but the B matrix is block-diagonal. Therefore, we have the
misspecified GVAR, the PVAR with the MLE that is efficient (in the limit), as well
as a set of individual VAR models with the MLE that is inefficient. The restricted
MLE for the VAR is calculated as proposed by Johansen (1991), the restricted MLE
for the GVAR is derived as in Harbo et al. (1998), and the restricted MLE for the
PVAR is computed as in Larsson and Lyhagen (2007).
Table 3 presents standard deviation of the restricted MLE of B using the
aforementioned models for I ∈ {1, 2, . . . , 10} and T ∈ {100, 150, 200, 400, 800}.
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Table 3: Standard deviation of the restricted MLE of cointegrating vectors

I 1 2 3 4 5 6 7 8 9 10
T = 100
VAR 0.056 0.084 0.106 0.124 0.143 0.168 0.207 0.307 0.449 0.661
GVAR 0.056 0.116 0.150 0.174 0.210 0.258 0.314 0.402 0.536 0.718
PVAR 0.056 0.087 0.152 0.289 0.591 1.412 - - - -
T = 150
VAR 0.034 0.051 0.063 0.072 0.079 0.085 0.096 0.143 0.227 0.304
GVAR 0.034 0.059 0.072 0.082 0.093 0.103 0.117 0.147 0.202 0.364
PVAR 0.034 0.047 0.057 0.067 0.077 0.091 0.204 0.365 - -
T = 200
VAR 0.024 0.036 0.045 0.051 0.056 0.060 0.067 0.084 0.154 0.259
GVAR 0.024 0.041 0.049 0.056 0.062 0.068 0.077 0.093 0.128 0.189
PVAR 0.024 0.033 0.038 0.042 0.043 0.045 0.046 0.049 0.063 0.115
T = 400
VAR 0.012 0.017 0.021 0.024 0.026 0.027 0.030 0.038 0.064 0.137
GVAR 0.012 0.019 0.022 0.025 0.027 0.029 0.032 0.037 0.055 0.083
PVAR 0.012 0.015 0.016 0.017 0.016 0.015 0.014 0.012 0.011 0.010
T = 800
VAR 0.006 0.008 0.010 0.011 0.012 0.013 0.014 0.018 0.030 0.069
GVAR 0.006 0.009 0.010 0.012 0.013 0.014 0.015 0.017 0.022 0.049
PVAR 0.006 0.007 0.008 0.008 0.007 0.006 0.006 0.005 0.004 0.004

It can be easily noticed that the PVAR model outperforms the other frameworks in
terms of the standard deviation of the restricted MLE of the B matrix, except for
T = 100 as well as T = 150 and I ≥ 6, where the dimensionality effect prevails over
efficiency gains of the PVAR model. Considering a panel covering 8 cross-sections and
200 observations for each cross-section, the standard deviation of the restricted MLE
of B for the PVAR model equals 0.049, whereas for the VAR and the GVAR model
it is almost twice as large and equals 0.084 and 0.093 respectively. For large samples
counting 400 observations and more, which are, however, quite unusual in typical
macro-panels used in practice, and 8 cross-sections standard deviation of the restricted
MLE for the VAR and the GVAR model increases even threefold as compared to the
respective value for the PVAR model.
Since Pesaran et al. (2004) and Dees et al. (2007) use the unrestricted MLE for
estimating their GVAR models, we should consider performance of the unrestricted
MLE as well. In order to enable performance comparison, the cointegration vectors
are transformed into linear combinations that are as close as possible to subspaces
spanned by respective design matrices, as proposed by Johansen and Juselius (1994),
see also Kębłowski (2016).
The results in Table 4 reveal that the PVAR model is no longer the best in terms
of standard deviation of the unrestricted MLE of B, as the PVAR model becomes
overparametrized with respect to the number of long-run parameters to be estimated.
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Table 4: Standard deviation of the unrestricted MLE of cointegrating vectors

I 1 2 3 4 5 6 7 8 9 10
T = 100
VAR 0.091 0.148 0.199 0.251 0.336 0.430 0.599 0.845 1.148 1.560
GVAR 0.091 0.305 0.402 0.506 0.642 0.801 0.997 1.226 1.515 1.811
PVAR 0.091 0.370 0.808 1.461 2.600 4.352 - - - -
T = 150
VAR 0.053 0.081 0.104 0.126 0.148 0.175 0.260 0.393 0.602 0.923
GVAR 0.053 0.122 0.154 0.189 0.231 0.274 0.370 0.470 0.610 0.802
PVAR 0.053 0.139 0.319 0.543 0.807 1.239 1.965 3.043 - -
T = 200
VAR 0.037 0.057 0.073 0.087 0.101 0.122 0.152 0.227 0.383 0.673
GVAR 0.037 0.080 0.101 0.122 0.145 0.173 0.211 0.270 0.345 0.485
PVAR 0.037 0.089 0.171 0.303 0.450 0.616 0.835 1.165 1.664 2.408
T = 400
VAR 0.017 0.026 0.033 0.039 0.046 0.054 0.068 0.099 0.183 0.351
GVAR 0.017 0.034 0.042 0.051 0.060 0.072 0.088 0.109 0.141 0.193
PVAR 0.017 0.037 0.062 0.094 0.133 0.183 0.244 0.314 0.384 0.455
T = 800
VAR 0.008 0.012 0.016 0.019 0.022 0.026 0.034 0.050 0.095 0.208
GVAR 0.008 0.016 0.020 0.023 0.028 0.033 0.041 0.053 0.070 0.100
PVAR 0.008 0.017 0.027 0.039 0.053 0.069 0.087 0.106 0.128 0.152

Considering a panel covering 8 cross-sections, the smallest standard deviation of the
unrestricted MLE is associated with the individual VARmodels. Therefore, the GVAR
model is still outperformed by other models, except for the case of I ≥ 9 and T ≥ 200.

4 Conclusions
Modelling macroeconomic non-stationary panel data and regional interdependencies
in the global economy constitute one of a main strands in the contemporaneous
macroeconomic research. In this paper we show that the use of the global VAR
model leads to spurious cross-sectional long-run relationships when the cross-sectional
spillovers of disequilibrium exist. This phenomenon cannot be considered as a striking
feature of the GVAR model, since it is just a straightforward consequence of
restrictions imposed for rank factorization of the long-run multipliers matrix. If the
long-run multipliers matrix is not block-diagonal and an erroneous assumption of
weak-exogeneity of cross-sectional sub-processes is made then the only way how the
decomposition of the long-run multipliers matrix can be (approximately) done is by
a non-block-diagonal cointegrating vectors matrix.
The results of the Monte Carlo study indicate as well that the GVAR model is
outperformed by other valid econometric approaches in terms of the maximum
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likelihood estimator of the long-run coefficients, when the cointegrating vectors matrix
is block-diagonal. In terms of the standard deviation of the restricted MLE of the B
matrix, the PVAR model performs well for T = 150 and I ≤ 6, and the longer the time
span is, the better the small sample properties are. For T = 200 the PVAR model
clearly outperforms the GVAR and the individual VAR’s for all considered values of
I. However, it should be distinctly stressed that the PVAR framework requires small
I and large T , therefore, it cannot be employed in all I

P cases.
Finally, even though simultaneous investigation on both the cross-sectional
cointegrating vectors and the cross-unit spillovers of disequilibrium in the VAR
framework without a priori restrictions would require a large T in general, it is feasible
for some specific cases in small or moderate samples. For example, Jacobson et al.
(2008) consider modification of the PVAR model (4), by allowing for one common
variable that spans the sub-spaces for all cross-section, as it is in case of the purchasing
power parity.
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