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Combination of feedback control and spring-damper
to reduce the vibration of crane payload

Operating cranes is challenging because payloads can experience large and dan-
gerous oscillations. Anti-sway control of crane payload can be approached by the
active methods, such as feedback control, or passive methods. The feedback control
uses the feedback measurement of swing vibration to produce the command sent to
a motor. The feedback control shows good effectiveness, but conflict with the actions
of the human operator is a challenge of this method. The passive method uses the
spring-damper to dissipate energy. The passive method does not cause conflict with
the human operator but has limited performance. This paper presents the combination
of two methods to overcome the disadvantages of each separate one. The passive
method is used to improve the efficiency of the feedback method to avoid conflicts
with the human operator. The effectiveness of the combination is simulated in a 2D
crane model.

1. Introduction

The crane payload suspended by cables is highly flexible. External distur-
bances, such as wind or motion of the support unit (e.g., the bridge or trolley,
or tower), can cause the residual sway oscillation. These residual sways reduce
the crane’s operating speed, affect the durability of the cable, and cause a danger.
Since the crane is a popular device, reducing swaying vibrations for the payload is
extremely valuable.

The anti-swing control strategy proposed in the literature is often carried out by
active method including open- and closed-loop control. The closed-loop (feedback)
techniques use the crane measurements such as swing angle to provide control
commands [1–5]. On the other hand, the open-loop (feedforward) techniques,
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modify the command before sending it to the crane motors [6]. Besides, some
recent studies applied passive systems to control the payload oscillation [7, 8].
A typical passive system is the radial spring-damper, which provides nonlinear
Coriolis damping for anti-sway crane control [8].

Both the active method and the method using radial spring-damper mentioned
above have certain disadvantages. Regarding the active feedback method, it can ef-
fectively control payload swing under the influence of human operator commands
and external disturbances. However, most cranes are controlled by a human. They
are controlled in real-time by human operators that provide not only the initial
reference command to the crane, but also issue additional commands as necessary
to maneuver the crane through the desired trajectory. Any additional input from
a computerized feedback controller can adversely conflict with the input from the
human operator [9–11]. Therefore, a feedback control must have low authority
to avoid conflicts. In other words, the feedback gain should be not too large, but
this limits the real effectiveness of the feedback control. Another active method
of reducing crane payload oscillation employs feedforward techniques. The input
shaping, a typical feedforward technique, is implemented by convolving a series of
impulses, called the input shaper, with the reference command [11–13]. Although
it does not require the sensors, the input shaping cannot counteract external distur-
bances due to its open-loop nature [14, 15]. The passive method, conversely, has
limited performance but can counteract external disturbances and does not conflict
with the crane operator.

From the above analysis we see that: to avoid conflict between the feedback
control and the crane operator, the feedback control must have a low impact on the
system, but this reduces its efficiency. Therefore, we can combine feedback control
with the input shaping or combine feedback control with the spring-damper to
improve the efficiency of feedback control. This is explained as follows. If the
feedback control is combined with the input shaping, then significant work has
been directed at input shaping to reduce operator-induced vibration, significantly
less effort has been placed on combining input shaping with feedback control
to suppress external disturbances. If the feedback control is combined with the
spring-damper, it can be used as the secondary system and is expected to improve
the feedback control. Each method gives a small effect combined for a larger effect.
The combination of feedback control and input shaping has been presented in
[14, 15]. However, since these are active methods, more control is required, thus
increasing the delay time and making the system more complex. The contribution
of this paper is to propose combining the feedback control method with the spring-
damper to improve the efficiency of the feedback control. Payload oscillations are
eliminated by a low-authority feedback controller that is designed to operate ”in
the background” without disturbing the human operator. At the same time, the
spring-damper also contributes a part to reducing these oscillations.

The next section presents the dynamic model of a 2D crane. In Section 3, the
optimal parameters of radial spring-damper have been derived. Then, the effec-
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tiveness of the proposed approach is verified numerically, in Section 4. Finally,
Section 5 demonstrates the effectiveness of the combined method by the software
RECURDYN.

2. Mathematical model

Themodel of the combination of feedback control and spring-damper to reduce
a 2D crane sway motion is shown in Fig. 1.
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Fig. 1. Combination of feedback control and passive radial spring and damper

In Fig. 1, the following simplified assumptions have been made:
• There is only the trolley motion’s command.
• The spring and damper weights are ignored in comparison with the payload
weight, so that the single pendulum can be used to model the system.

Table 1.
Notations in Fig. 1

Symbol Description
m Payload mass
k, c Spring’s stiffness and damper’s coefficient
φ Payload swing angle
l Distances between the trolley and the payload in the static condition
u Radial motion of payload measured from static position
u0 = mg/k Static deflection of spring
x Trolley displacement
g Acceleration of gravity
ωs =

√
g/l Natural frequency of pendulum

τ = ωst Non-dimensional time

r =
√

k/m
ωs

Ratio between natural frequencies

ζ =
c

2mωs
Damping ratios of damper

un = u/l, xn = x/l Non-dimensional forms of radial movement and trolley movement



168 Trong Kien Nguyen

• The cable’s stiffness is large enough in comparison with the spring stiffness,
so that the cable deformation can be ignored.

With those three simplifications, to write the motion equations, we introduce
the symbols that are shown and explained in Table. 1.

Based on the coordinate system in Fig. 1, with the horizontal position of the
trolley as x, the position of the payload (xP, yP) is obtained as:

xP = x + (l + u) sin φ,
yP = (l + u) cos φ .

(1)

The dynamic model for this 2D crane is derived by using the Lagrange method.
After some manipulations, two Lagrange equations of motion reduce to:

2u̇φ̇ + ẍ cos φ + φ̈ (l + u) + g sin φ = 0 ,
mẍ sin φ + mü + ku + cu̇ + mg (1 − cos φ) − mφ̇2 (l + u) = 0 .

(2)

Using some non-dimensional parameters in Table 1, we reduce the Eq. (2) to the
non-dimensional form as follows. Dividing both sides of the first equation in (2)
by l and dividing both sides of the second equation in (2) by ml we have

2
u̇
l
φ̇ +

ẍ
l

cos φ + φ̈
(
1 +

u
l

)
+
g

l
sin φ = 0 ,

ẍ
l

sin φ +
ü
l
+

k
m

u
l
+

c
m

u̇
l
+
g

l
(1 − cos φ) − φ̇2

(
1 +

u
l

)
= 0 ,

(3)

or

2
u̇
l
φ̇ +

ẍ
l

cos φ + φ̈
(
1 +

u
l

)
+ ω2

s sin φ = 0 ,

ẍ
l

sin φ +
ü
l
+ r2ω2

s

u
l
+ 2ζωs

u̇
l
+ ω2

s (1 − cos φ) − φ̇2
(
1 +

u
l

)
= 0 .

(4)

As we use the non-dimensional time in Table 1, from now, the dot operator denotes
the differentiation to the normalized time τ, so we have

2u̇nφ̇ω2
s + ẍnω2

s cos φ + φ̈ω2
s (1 + un) + ω2

s sin φ = 0 ,

ẍnω2
s sin φ+ünω2

s+r2ω2
sun+2ζωsωsu̇n+ω2

s (1−cos φ)−φ̇2ω2
s (1+un) = 0 .

(5)

Dividing both sides of the equation in (5) by ω2
s gives the final equation used in

simulation:

2u̇nφ̇ + ẍn cos φ + φ̈ (1 + un) + sin φ = 0 ,

ẍn sin φ + ün + r2un + 2ζ u̇n + 1 − cos φ − φ̇2 (1 + un) = 0 .
(6)
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3. Combining feedback control and radial spring-damper

We consider the simple feedback control which has low authority. As said
above, the feedback control system must have low authority to avoid conflict with
the crane operator. The low authority feedback control allows the crane operator
to control the operation and does not make unexpected motions that surprise and
frustrate the human operator. Therefore, we choose the simple controller as a
proportional controller. Using the proportional (P) controller, we have the velocity
control command in the form:

ẋn = βφ (7)
in which β is the control gain.

To obtain the analytical solution of the optimal parameters, we approximate
the motion equations in (6) by Taylor expansion of the trigonometric functions to
the second-order, that:

sin φ ≈ φ; cos φ ≈ 1 −
φ2

2
. (8)

Moreover, the normalized displacement un is assumed to be small in comparison
with the unity, so that

1 + un ≈ 1 . (9)
Eq. (6) with the approximations (8), (9) are combined with the controller (7)

to be rewritten as follows:
2u̇nφ̇ + φ̈ + φ + βφ̇ = 0 ,

ün + r2un + 2ζ u̇n +
φ2

2
− φ̇2 + βφ̇φ = 0 .

(10)

Optimization of the damper parameters when combined

To perform a linearization equivalent to the Coriolis term, we replace the
Coriolis term by the effective damping:

u̇nφ̇→ ζe φ̇ , (11)

in which the effective damping ζe is found by minimizing the following error:

ζe =

〈
u̇nφ̇2

〉〈
φ̇2

〉 . (12)

In the case of free oscillation (but with feedback control), we consider the average
operator in the form of the integral from 0 to infinity.

ζe =

∞∫
0

u̇nφ̇2 dτ

∞∫
0
φ̇2 dτ

. (13)
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Substituting u̇nφ̇ by ζe φ̇ in (10) and writing the equations in a matrix form we get:

q̇ = A q (14)

where q is the expanded state vector and A is the system matrix determined by:

q =
[

q1 q2 q3 q4 q5 q6 q7
]T

=
[
φ φ̇ un u̇n φ2 φ̇2 φφ̇

]T
,

q��τ=0 =
[
φ0 0 0 0 φ2

0 0 0
]T
, (15)

A =


A1 02×5

05×2 A2


, A1 =



0 1
−1 −2ζe − β


,

A2 =



0 1 0 0 0
−r2 −2ζ −1/2 1 −β

0 0 0 0 2
0 0 0 −4ζe − 2β −2
0 0 −1 1 −2ζe − β



.

(16)

The effective damping Eq. (13) is rewritten as:

ζe =

∞∫
0

q4q6 dτ

∞∫
0

q2
2 dτ

. (17)

We use the conditions of double poles [16] to give optimal conditions and obtain
the analytical forms of the optimal parameters. The two dimensionless parameters
that need to be optimized are r and ζ . Because r and ζ only appear in the matrix
A2, the characteristic polynomial of A2 is determined by:

PA2 (s) = (s + 2ζe + β)
[
s2 + (4ζe + 2β) s + 4

] (
s2 + 2ζ s + r2

)
. (18)

The quintic polynomial Eq. (13) has one real root and two pairs of complex
conjugate roots. The repeated roots conditions give:

r = 2 , (19)

ζ = 2ζe + β . (20)

Substituting Eqs. (19), (20) into Eq. (16), we have the linear system depending on
the effective damping ζe. The next step is to calculate the effective damping from
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Eq. (17). It is well known that, in the linear system Eq. (14), the infinite integrals
of the quadratic form in Eq. (17) can be obtained by solving the Lyapunov matrix
equations. A general infinite integral of the quadratic form is given by:

J =

∞∫
0

qTQ qdτ (21)

where Q is a positive definite matrix.
Let us consider the matrix P being the solution of the Lyapunov matrix equa-

tion as:
P A + ATP +Q = 0. (22)

Substituting Eq. (22) into the integral Eq. (21) and using the state space Eq. (14)
gives:

J =

∞∫
0

qTQ qdτ = −
∞∫

0

qT
(
P A + ATP

)
qdτ

= −

∞∫
0

(
qTP q̇ + q̇TP q

)
dτ =

(
qTP q

) ���
0
∞

= qT
0 P q0 − q(∞)TP q(∞) = qT

0 P q0 ,

(23)

in which q0 is a vector containing the initial conditions and q(∞) = 0 with the
assumption that the system is asymptotically stable due to the presence of damping.

Using Eqs. (22) and (23) in Eq. (17), after a few computational steps, we
obtain:

∞∫
0

q4q6 dτ =
∞∫

0

u̇nφ̇2 dτ =
−3φ4

0
*
,

48ζ4
e + 144βζ3

e − 36ζ2
e + 144β2ζ2

e

+60β3ζe − 36βζe − 9β2 − 4 + 9β4
+
-

32 (2ζe + β)2
(
12ζ2

e + 12βζe + 4 + 3β2
)2 , (24)

∞∫
0

q2
2 dτ =

∞∫
0

φ̇2 dτ =
φ2

0
2 (2ζe + β)

. (25)

Equation (17) is rewritten to:

ζe =

−3φ2
0

*
,

48ζ4
e + 144βζ3

e − 36ζ2
e + 144β2ζ2

e

+60β3ζe − 36βζe − 9β2 − 4 + 9β4
+
-

16 (2ζe + β)
(
12ζ2

e + 12βζe + 4 + 3β2
)2 . (26)

Equation (26) is a sextic equation for ζe. Solving the equation we find ζe and the
damping ratio of the dampers is determined from (20).
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We can further simplify the optimal solution with the remark that ζe is usually
very small compared to 1. It is possible to ignore the terms higher than 2 of ζe, to
reduce the equation (26) to:

ζe =
3φ2

0
64 (2ζe + β)

⇒ ζe =

√
16β2 + 6φ2

0 − 4β

16
. (27)

And the optimal damping ratio is:

ζopt = 2ζe + β =

√
16β2 + 6φ2

0 + 4β

8
. (28)

In brief, we have determined the optimal parameters of dampers in the case of
a combination of proportional feedback control with the use of dampers. The
analytical solution is determined by (19) and (28).

4. Numerical simulation

Numerical calculation is performed in the non-dimensional crane model (6).
In this section, we will simulate two cases: the case of inactive crane and the crane
in operation to compare the effect of reducing vibration. In the case of an inactive
crane, the trolley’s movement is due to the feedback control signal:

ẋn = βφ . (29)

In the case of the crane in operation, the trolley’s movement is due to the feedback
control signal and the crane’s operator:

ẋn = vr + βφ , (30)

where vr is the velocity determined by the crane’s operator. The vibration of the
payload, when the crane is in operation, depends on the operating conditions. Here,
for demonstration, we consider the case of the simplest operation but causes for
large vibrations. The simple case is considered with the triangular velocity control
signal (Fig. 2). The operator speeds up the trolley with a constant acceleration.
When it reaches a half of the travel, the operator reduces the trolley speed with

 
0



v



r
vr max



Fig. 2. The velocity of the trolley is made by the operator



Combination of feedback control and spring-damper to reduce the vibration of crane . . . 173

the same constant acceleration. The velocity will decrease to zero when the trolley
reaches the required travel. The operating acceleration is assumed to have the form:

v̇r =




am 0 6 τ < π ,

−am π 6 τ < 2π ,
0 τ > 2π .

(31)

am is the dimensionless acceleration and will be altered for investigation.
Input values used in the numerical computation are taken as follows: the radial

spring-damper is designed for the large vibration angle up to 30◦, i.e., the angle ϕ0
is chosen of π/6 in (28). The results of ropt and ζopt are shown in Table 2.

Table 2.
Optimal values of r and ζ with angle of π/6

Parameter Value
ropt 2

ζopt
β = 0.05 0.1873
β = 0.1 0.2179

For convenience, we denote the simulation cases in Table 3.
Table 3.

The simulation cases

Notation C1 C2 C3 C4

Feedback control No Yes No Yes

Radial spring-damper No No Yes Yes

4.1. Case of inactive crane

First, we consider the case of payload oscillation caused by the initial angle
without the trolley motion.

The swing angles are shown in Figs. 3–4 with various cases of initial angle
and feedback control gain.

We also calculate the remaining oscillation angle after 4 periods. The compar-
ison results are shown in Table 4.

The results give the following remarks:
• In case 3 (with damper, without active control), the performance is better if
the initial angle is larger (60.5% in comparison with 43.1%).

• In case 2 (without damper, with active control), the performance does not
depend on the initial angle, but on the control gain β. The larger control gain
gives better performance.

• Case 4 combining two methods is indeed better than the cases of each
separate method. That means using the combination still allows for good
performance but does not make too serious a conflict with the crane operator.
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(a) φ0 = 30◦
 

(b) φ0 = 10◦

Fig. 3. Swing angle versus normalized time for β = 0.05 and different φ0

 

(a) φ0 = 30◦
 

(b) φ0 = 10◦

Fig. 4. Swing angle versus normalized time for β = 0.1 and different φ0

Table 4.
Maximum angle (degree) after 4 periods (percentile beside shows the reduction of swinging)

Case C1 C2 C3 C4

ϕ0 = 30◦, β = 0.05 30 (0%) 15.94 (46.9%) 11.85 (60.5%) 7.03 (76.6%)

ϕ0 = 10◦, β = 0.05 10 (0%) 5.31 (46.9%) 5.68 (43.1%) 3.55 (64.5%)

ϕ0 = 30◦, β = 0.1 30 (0%) 8.52 (71.6%) 11.85 (60.5%) 4.08 (86.4%)

ϕ0 = 10◦, β = 0.1 10 (0%) 2.84 (71.6%) 5.68 (43.1%) 2.09 (79.1%)

4.2. Case of the crane in operation

In the case of the crane in operation, the trolley‘s movement is due to the
feedback control signal and operator. The velocity of the trolley is taken from (30).
The comparison results are shown in Figs. 5–6 and Table 5.
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 (a) am = 0.1  (b) am = 0.2

Fig. 5. Swing angle versus normalized time for β = 0.05 and different am

 (a) am = 0.1
 

(b) am = 0.2

Fig. 6. The horizontal motion of the payload versus normalized time for β = 0.1 and different am

Table 5.
Maximum angle (degree) after 4 periods (percentile beside shows the reduction of swinging)

Case C1 C2 C3 C4

am = 0.1, β = 0.1 22.85 (0%) 7.64 (66.6%) 8.43 (63.1%) 4.18 (81.7%)

am = 0.2, β = 0.1 45.09 (0%) 15.20 (66.3%) 13.23 (70.7%) 5.76 (87.2%)

The results show that:
• When acceleration is increased, the sway angle also increases. Since the
spring-damper efficiency increases with sway angle, cases 3 and 4 have
better performance in the case of large acceleration.

• Case 4 that combines both methods still gives better efficiency than every
single method.

• The horizontal motion of the payload in case 4 is the closest to the desired
movement. That affirms the combined method, which reduces vibrations
well, while still ensuring the payload following the desired trajectory.
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4.3. The robustness of the proposed method

In the above calculations, we simulated the system with certain parameters.
These parameters can be varied, such as the cable’s length, the payload mass,
and the fabrication error of the radial spring-damper k and c or error of external
disturbances such as wind. To evaluate the effectiveness of the proposed method, in
this section, we consider the 20% error of the above parameters in the simulation.
Simulation results are shown in Figs. 7–9. Comparing Fig. 5a with Figs. 7a, 8a,
and Table 5 with Tables 6, 7 we see that when the parameters change, the cases 3
and 4 using spring-damper have reduced efficiency (36.44% in comparison with
63.1%; 71.37% in comparison with 81.7%). This is due to non-optimal parameters
of the spring-damper. However, case 4 still gives better performance than the rest.
This proves the robustness of the proposed method.

 
(a) am = 0.1  (b) am = 0.2

Fig. 7. Swing angle versus normalized time for β = 0.1 and different am. Case l, m are increased by
20%; k, c are reduced by 20%

 
(a) am = 0.1  (b) am = 0.2

Fig. 8. Swing angle versus normalized time for β = 0.1 and different am. Case l, m are reduced by
20%; k, c are increased by 20%
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(a) case φ0 increased by 20%

 

(b) case φ0 reduced by 20%

Fig. 9. Swing angle versus normalized time for β = 0.1 and different case φ0

Table 6.
Maximum angle (degree) after 4 periods (percentile beside shows the reduction of swinging)

Case l,m are increased by 20%; k, c are reduced by 20%

Case C1 C2 C3 C4

am = 0.1, β = 0.1 22.53 (0%) 8.24 (63.42%) 14.32 (36.44%) 6.45 (71.37%)

am = 0.2, β = 0.1 44.57 (0%) 16.31 (63.41%) 18.29 (58.96%) 10.62 (76.17%)

Table 7.
Maximum angle (degree) after 4 periods (percentile beside shows the reduction of swinging)

Case l,m are reduced by 20%; k, c are increased by 20%

Case C1 C2 C3 C4

am = 0.1, β = 0.1 22.12 (0%) 5.48 (75.23%) 13.76 (37.79%) 4.50 (79.66%)

am = 0.2, β = 0.1 44.27 (0%) 10.94 (75.29%) 20.37 (53.98%) 7.55 (82.95%)

5. Verification simulation

To demonstrate the effectiveness of the proposed combination method, a 2D
crane model is simulated independently using the software RECURDYN [17]. The
model’s parameters are as follows: l = 0.9 m, payload mass: mP =1.5 kg, spring’s
stiffness k, and damper’s coefficient c are taken from Table 1 with r (defined in
(18)) is equal to 2, ζ (defined in (19)) is equal to 0.2. The 2D crane model in
RECURDYN is shown in Fig. 10.

To induce the initial motion of the payload for the case of an inactive crane,
we assume that the payload has an initial velocity v0 (this initial velocity can be
the result of a short and large wind gust). In the case of the crane in operation,
the acceleration of the trolley a is still taken from (30). The commands to control
the trolley are done with the help of Matlab Simulink. The simulation results are
shown in Figs. 11–14.
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Fig. 10. 2D crane model in RECURDYN

 

(a) β = 0.1 m/s

 

(b) β = 0.2 m/s

Fig. 11. Swing angle of payload for v0 = 1 m/s and different β

 

(a) β = 0.1 m/s

 

(b) β = 0.2 m/s

Fig. 12. Swing angle of payload for v0 = 2 m/s and different β
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(a) a = 1 m/s2

 

(b) a = 2 m/s2

Fig. 13. Swing angle of payload for β = 0.2 m/s and different a

 

(a) a = 1 m/s2
 

(b) a = 2 m/s2

Fig. 14. Horizontal motion of payload for β = 0.2 m/s and different a

The results show that: when further simulated by independent software RE-
CURDYN and the simulation parameters are physical parameters (l = 0.9 m,
mP = 1.5 kg, . . . ), case 4 that combines both methods still gives better efficiency
than every single method in all cases. Once again, it proves the effectiveness of the
proposed method.

6. Conclusion

This paper proposes the combination of proportional feedback control with the
use of dampers to control the swaying of the crane payload. The dampers and low-
authority feedback controller simultaneously eliminate payload oscillation caused
by initial conditions and operator’s commands. The combined dampers and low-
authority feedback control architecture produced a robust control effect that reduced
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the unwanted oscillation of the payload. Numerical calculations and simulations
were used to verify the effectiveness of the proposed method, for various cases
of initial angle, initial velocity, drive acceleration, and control gain. Besides, the
optimal parameters of the spring-damper system have been derived.

Manuscript received by Editorial Board, January 17, 2021;
final version, June 11, 2021.
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