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Load bearing capacity of laminated veneer lumber beams 
strengthened with CFRP strips 

M. Bakalarz1 

Abstract: The paper presents the results of experimental tests on the reinforcement of bent laminated veneer 
lumber beams with carbon fibre reinforced polymer (CFRP) strips glued to the bottom of elements. CFRP strips 
(1.4×43×2800 mm) were glued to the beams by means of epoxy resin. The tests were performed on full-size 
components with nominal dimensions of 45×200×3400 mm. Static bending tests were performed in a static 
scheme of the so-called four-point bending. The increase in the load bearing capacity of the reinforced elements 
(maximum bending moment and loading force) was 38% when compared to reference beams. A similar increase 
was noted in relation to the deflection of the elements at maximum loading force. For the global stiffness 
coefficient in bending, the increase for reinforced beams was 21%. There was a change in the way elements were 
destroyed from brittle, sudden destruction for reference beams resulting from the exhaustion of tensile strength 
to more ductile destruction initiated in the compressive zone for reinforced beams. The presented method can be 
applied to existing structures. 
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1. Introduction 

Mechanical properties of the wood depend on the direction of analysis relative to the axis of the tree 

trunk (anisotropy), location of the point of interest (heterogeneity) and several factors such as 

moisture content, density, wood temperature, service life, mechanical load [18]. Numerical analysis 

of the influence of anisotropy on the energy release rate for pinewood are presented in paper [28]. 

Analysis of the process of wood plasticization, considering different values of moisture content and 

temperature, are presented in paper [24].  

Increasing the load bearing strength and stiffness of bent wooden structural elements is usually done 

by introducing reinforcement into an old [2, 19, 34] or new element. This reinforcement usually 

takes the form of rods [9], sheets (uni-, bi- or multi-directional reinforced) [10, 16, 17, 27, 36, 38], 

laminates [13] or profiles obtained by pultrusion [23, 39]. The conventional material from which 

these elements were made was steel [1,15] or other metals such as aluminium. Composite materials 

– aramid, glass, carbon or basalt fibres responsible for carrying the load immersed in the resin 

matrix have now become a popular solution [6, 26]. Fiber-reinforced polymer materials are 

characterized by lightweight and high mechanical properties. The connection between the 

reinforcement and the reinforced element is usually done by means of an epoxy resin adhesive or 

mechanical connectors.  

Numerous papers, published since the 1960s [7], have been devoted to passive reinforcement of 

solid or laminated wood elements [8, 25]. The starting point of these considerations was the 

reinforcement scheme involving an application of reinforcement in the tensile zone, which is the 

response to a standard method of destruction resulting from a brittle fracture of an element. 

Modification of this scheme, enforced by the pursuit of effectiveness improvement, involves the 

addition of reinforcement inserts in the compressed part of a cross-section [12]. Reinforcement can 

be applied over the entire length of an element or on its parts [4]. When considering the position of 

the reinforcement in relation to a cross-section of a wooden element we can distinguish between [3, 

14, 37]: inner reinforcement and outer reinforcement.  

In order to increase the strengthening effectiveness, the reinforcement is prestressed, the so-called 

active reinforcement. The prestressing generates the precamber of the reinforced element and 

increases the utilization of the strength of the applied reinforcement. Among the prestressing 

effects, the authors [11, 35] also mention a significant increase in stiffness in addition to significant 

increases in load bearing capacity. An unusual solution was presented in the paper [5], where 
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compressed wood in the form of a block introduced in the compresive zone was used to prestress 

the elements. 

The results of the tests are presented in this article as a continuation of the work on reinforcement of 

laminated veneer lumber beams. The papers [20, 21] discuss the reinforcement of LVL beams, on 

a laboratory scale, using composite sheets reinforced with aramid, glass and carbon fibres. 

Reinforcement of full-size beams with CFRP strips glued into the hollowed-out slots along the 

bottom surface is discussed in the publication [22]. The objective of this study is to evaluate 

strengthening effectiveness of LVL beams reinforced with CFRP laminates glued to the bottom 

face. A comparison of the internal and external type of reinforcement is described in the summary. 

2. Materials and methods 

2.1. Materials 

2.1.1. Laminated veneer lumber 

The full-size beams made of laminated veneer lumber (LVL) were used in research. The beams 

with dimensions of 45×200×3400 mm were tested in the edge-wise conditions. Selected properties 

of laminated veneer lumber are shown in Table 1. Control testing of the reinforced material is 

presented below to estimate the compressive strength parallel to the grain.  

 

Table 1. Selected properties of laminated veneer lumber (exposed by manufacturer) 

Parameter Value 

Bending strength [N/mm2] 44 

Tensile strength [N/mm2] 36 

Compressive strength parallel to grain [N/mm2] 40 

Modulus of elasticity [kN/mm2] 14 

Shear modulus [N/mm2] 600 

 

The compressive strength parallel to grain was estimated on samples cut from full-size beams on 

the Zwick 250 testing machine according to the guidelines of the standards [29, 31]. The geometric 

dimensions of the samples were selected taking into account the maximum possible load and 
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The CFRP strips were glued to the beams with a two-component epoxy adhesive. Before the 

adhesive application, the surface of the CFRP strip had been degreased. The surface of LVL beams, 

along the length of the reinforcement application, was ground and cleaned. The adhesive joint 

thickness was approximately 3 mm. The selected adhesive parameters are shown in Table 4. 
 

 

Table 4. Selected mechanical and physical properties of epoxy resin (exposed by manufacturer) 

Parameter Value 

Modulus of elasticity [N/mm2] 7100 

Density [g/cm3] 1.7–1.8 

Tensile strength [N/mm2] 3 

Compressive strength [N/mm2] 70 

2.2. Methods 

The tests were conducted in the Material Strength Laboratory of the Kielce University of 

Technology. The tests were performed according to the guidelines contained in the standards [29, 

31]. The subject of the tests was laminated veneer lumber beams reinforced with carbon strips glued 

to the bottom surface of the beams. The aim of the tests was to determine the impact of the 

reinforcement on the work of elements subjected to four-point bending test (load bearing capacity). 

A view of the test bench is shown in Fig. 3. The reinforcement scheme for F beams is shown in 

Fig. 4. The total length of each beam was 340 cm. The span in the support axes was 15 times the 

height of the tested cross-section (300 cm). 

The beams were loaded symmetrically with two concentrated forces, as shown in Fig. 3. The 

distance between the concentrated force axis and the axis of nearest support was 90 cm. The 

distance between the concentrated forces was 6 times the height of the cross section – 120 cm. The 

load was controlled by means of the sliding speed of the load thrust. The initial load of the tested 

components was 0.3kN in each actuator. The sliding speed of the load thrust was chosen 

experimentally so that the destruction of unreinforced elements takes place within the time interval 

of 180 to 420 seconds recommended by the standard [31]. In this way, the first element was tested 

at a sliding speed of thrust equal to (beam A1) 13 mm/min and the other elements at a speed equal 

to 7 mm/min. 
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Fig. 3. The test bench setup 

 

 

Steel plates were used, to prevent local indentation and to spread the load over a larger area, on 

supports and at the point of application of concentrated forces. The plates width was assumed to be 

half the height of the unreinforced cross section. The dimensions of steel plates were: 10 cm 

(width), 1 cm (thickness) and 20 cm (length).  

Due to the testing of relatively slender elements, the test bench was equipped with additional 

protection against displacement of elements from the bending plane in the form of side supports 

(guides). Each side support had of a roller, on which the side surface of the beam moved during the 

test, placed on a support frame made of channel sections. The support frame allowed adjusting the 

height of the guide and its distance from the side surface of the elements. At the beginning of the 

test, the roller was applied at half of the unreinforced section height. The asymmetrical arrangement 

of the protections was forced by the dimensions of the load thrust heads and the need to expose the 

central part of the beam at the front in order to measure the deflections and deformations using an 

ARAMIS optical system. The distance between the axis of side supports and the nearest 

concentrated force axis was approximately 300 mm. In addition, wooden protections based on the 

test bench design construction were placed on the supports (P1, P2). 
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Table 5 shows the detailed test results for the tested elements in relation to the maximum total load 

and the accompanying values for the other parameters to be recorded or determined, including: 

S1Fmax – force recorded in S1 actuator, in kilonewtons; S2Fmax – force recorded in S1 actuator, in 

kilonewtons; Fmax – maximum loading force of the element (sum of S1 and S2) , in kilonewtons; 

uFmax - deflection when maximum loading is reached, in millimetres; TFmax – time at reaching the 

maximum load, in seconds; M1Fmax – bending moment at the point of application of the 

concentrated force S1, in kilonewton-metres; M2Fmax – bending moment at the point of application 

of the concentrated force S2, in kilonewton-metres; MavFmax – value of the bending moment at the 

centre of the element span, in kilonewton-metres. The table also shows the value of the global 

modulus of elasticity (MOE) in bending determined according to the formula [31]: 

 

(1.1) Em,g =
3al2 − 4a3

2bh3 ቀ2 w2 − w1
F2 − F1

−  6a
5Gbhቁ  

 
where:  
F2 – F1 – load increment in elastic range [N], w2 – w1 – deflection increment corresponding to the load 
increment [mm], b, h – cross-section dimensions [mm], a, l – dimensions related to the static scheme [mm], 
G – shear modulus [N/mm2]. 
 

 
Table 5. The results of experimental tests for ultimate limit state 

Nr S1Fmax 
[kN] 

S2Fmax 
[kN] 

Fmax 

[kN] 
uFmax 
[mm] 

TFmax 

[s] 
M1Fmax 

[kN] 
M2Fmax 
[kN] 

MavFmax 
[kN] MOE [GPa] 

A1 16.41 20.46 36.871 – 179.8 15.861 17.321 16.59 12.731 

A2 16.09 19.24 35.331 36.06 314.8 15.331 16.461 15.90 14.501 

A3 18.90 20.00 38.891 39.10 332.4 17.301 17.701 17.50 14.681 

A4 20.21 22.14 42.361 43.56 367.6 18.711 19.411 19.06 15.091 

A5 16.11 19.97 36.081 – 337.4 15.541 16.931 16.24 13.771 

F1 23.61 26.66 50.27 58.38 440.2 22.07 23.17 22.62 15.15 

F2 27.10 29.76 56.86 50.90 408.4 25.11 26.07 25.59 16.37 

F3 24.66 27.98 52.64 50.84 414.0 23.09 24.28 23.69 16.18 

F4 22.19 29.42 51.61 60.82 477.8 21.92 24.53 23.23 15.20 

F5 26.64 24.02 50.66 51.91 412.2 23.27 22.33 22.80 15.65 

1 Values published in work [22] 
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4. Summary and conclusion 

The paper presents the results of the experimental tests on reinforcement of laminated veneer 

lumber beams with CFRP strips glued to external surfaces. It was found: 

1. The increase in load bearing capacity – maximum loading force and bending moment in the 

middle of the span of the reinforced beams – was 38%. The average global modulus of 

elasticity was increased by 11%. 

2. Loading the beams by means of two actuators controlled by the loading speed of the actuators 

allows a more accurate presentation of the distribution of cross-sectional forces and the 

continuation of bending of elements in the event of partial failure of beam. The way the load 

was applied affected the differentiation of the force values in individual actuators in the final 

stage of the test.  

3. The presented method of reinforcement may be applied to existing structures. The CFRP strips 

were glued between the support points of the elements, in the beam span. 

4. The reference beams were destroyed due to the exhaustion of the load bearing capacity in the 

tensile zone. In the case of reinforced beams, the initiation of destruction took place in the 

compressive zone. Crack propagation in two cases caused the CFRP strip to debonding and 

a crack the tensile zone. The CFRP strip was not destroyed despite debonding. 

 

Compared to the reinforcement glued into slots described in the paper [22], reinforcement by gluing 

the elements to the external surface requires less work both during the preparation of the 

reinforcement system components and the application of the reinforcement itself. The time of 

reinforcement application and aftertreatment is also shorter for the method presented in this paper. 

The F series is characterized by higher reinforcement effectiveness in terms of load bearing capacity 

of the elements, using reinforcement with a similar surface area to the E series. There were no 

significant differences in the global modulus of elasticity values. 
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Nośność na zginanie belek z forniru klejonego warstwowo wzmocnionych taśmami CFRP 

Słowa kluczowe: 4-punktowe zginanie, konstrukcje drewniane, włókna węglowe, zbrojenie  

 

Streszczenie:  
W pracy przedstawiono wyniki badań eksperymentalnych dotyczących wzmacniania zginanych belek z forniru 
klejonego warstwowo za pomocą taśm węglowych (CFRP) przyklejanych do powierzchni dolnej elementów. Taśmy 
CFRP, o wymiarach 1,4×43×2800 mm, przyklejone zostały za pomocą żywicy epoksydowej. Badania przeprowadzono 
na elementach pełnowymiarowych o wymiarach nominalnych 45×200×3400 mm. Belki obciążano symetrycznie 
dwoma siłami skupionymi do zniszczenia. Na podstawie wyników badań stwierdzono: 
1. Wzrost nośności – maksymalnej siły obciążającej oraz momentu zginającego w środku rozpiętości – belek 

wzmocnionych wyniósł 38%. Przyrost przeciętnej wartości modułu sprężystości wyniósł 11%. 
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2. Obciążanie belek za pomocą dwóch siłowników kontrolowanych za pomocą prędkości ich przesuwu umożliwia 
dokładniejsze przedstawienie rozkładu sił wewnętrznych w przekroju całego badania oraz kontynuacje zginania 
w przypadku wystąpienia częściowego zniszczenia w obrębie jednego z siłowników. Sposób prowadzenia 
obciążenia wpłynął na zróżnicowanie wartości sił w poszczególnych siłownikach w końcowej fazie badania.  

3. Przedstawiony sposób wzmocnienia może zostać zastosowany w przypadku konstrukcji istniejących. Taśmy 
przyklejone zostały pomiędzy punktami podparcia elementów w części przęsłowej belki. 

4. Belki referencyjne ulegały zniszczeniu na skutek wyczerpania nośności w strefie rozciąganej. W przypadku belek 
wzmocnionych inicjacja zniszczenia następowała w strefie ściskanej. Propagacja pęknięcia w dwóch przypadkach 
wywołała odspojenie taśmy CFRP oraz pękniecie w strefie rozciąganej. Taśmy CFRP pomimo odspojenia nie 
ulegały zniszczeniu. 
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