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Perforation analysis of S235 steel sheets up to 573 K using 
experimental and numerical methods 

M. Klosak1, M. Grazka2, L. Kruszka3, W. Mocko4 

Abstract: This paper reports on efficient experimental and numerical techniques used in the design of critical 
infrastructure requiring special protection measures regarding security and safety. The presented results, some of 
which have already been reported in [1], were obtained from perforation experiments carried out on S235 steel 
sheets subjected to impacts characterized as moderate velocity (approximately 40–120 m/s). The metal was 
tested using the Hopkinson Bar Technique and pneumatic gun. The originality of perforation testing consist on 
using a thermal chamber designed to carry out experiments at higher temperatures. 3D scanners and numerically 
controlled measuring devices were used for the final shape deformation measurements. Finally, the results of 
FEM analysis obtained using explicit solver are presented. The full-scale CAD model was used in numeric 
calculations. 
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1. Introduction 

The material under investigation, i.e. S235 steel, is a typical construction material. The S235 steel 

tested under perforation investigation, subjected to impacts of moderate velocity [2] is a typical 

building material. Much has been said about its application in construction where this kind of steel 

is widely used for the manufacture of frames or façade panels, including steel protective doors [3]. 

However, its mechanical properties are also beneficial for the development of engineering 

applications in the domain of the so-called critical infrastructure. 

The security of critical infrastructure has become more of a concern at a time of increasing terrorist 

threats. The term itself refers to the following facilities and their components: structures related to 

production, transmission, and distribution of electricity, fuels, crude oil and petroleum products, 

telecommunication infrastructure, water installations, food production, and distribution centers, 

heating facilities, health care facilities (hospitals), transport (roads, railway, airports, ports), 

financial institutions and security services (police, army, rescue services) [4–6]. Thus, the critical 

infrastructure includes not only military buildings, but also public utility buildings which are made 

of typical building materials such as used S235 steel. These facilities are crucial to be secured for 

the proper functioning of the country. It is, therefore, necessary to implement sophisticated and 

efficient policies and systems to protect this infrastructure. It is obvious this protection shall be 

provided with reliable engineering structures for which protective capabilities of construction 

materials have been fully assessed.  

It is to be noted that a danger to critical infrastructure elements does not usually come from a direct 

missile attack, but it is mainly caused by debris from an explosion or ricochet. As the whole 

building cannot be protected against a missile attack, engineers design special reinforcements 

consisting of metal plates or composite elements for doors, walls etc. This is where the S235 steel 

sheets have their applicability. 

2. Laboratory set-up and experimental data 

2.1. Material and specimen description 

Laboratory tests of S235 (also designated as A283C in ASME standards) steel sheets and numerical 

calculations of dynamic perforation of the specially prepared specimens were conducted using 

measuring devices available in three different research centers. Sheet metal perforation tests were 
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performed in the dynamic research laboratory at the Universiapolis of Agadir (Morocco). Tensile tests 

on this steel were carried out at the Motor Transport Institute (Warsaw, Poland) and the measurements 

of the deformed samples as well as numerical simulations using the FEM method were made at the 

Institute of Armament at the Military University of Technology (Warsaw, Poland). 

The chemical composition of structural steel is extremely important and regulated by codes. It is 

a fundamental factor which defines the mechanical properties of the steel material. Table 1 presents 

maxima percentage levels of certain regulated elements as chemical components required for S235 

according to the European standards. 

 
Table 1. Chemical composition of structural steel S235 [7] 

Chemical 
composites C % Mn % P % S % Si % 

Steel S235 0,22 1,60 0,05 0,05 0,05 
 

The mechanical properties of structural steel are fundamental to its classification and hence 

application. Even though the chemical composition is a dominant factor of the mechanical 

properties of steel, it is also very important to understand the minimum standards for the mechanical 

properties. The naming convention used in European Standard EN10025 refers to the minimum 

yield strength of the steel grade tested at 16 mm thick specimens. Table 2 presents the mechanical 

properties of the analyzed material. 

 
Table 1. Steel S235 yield and tensile strength [7] 

Structural 
steel 

Minimum yield strength at 
nominal thickness 16 mm 

Tensile strength at nominal 
thickness between 3 and 16 mm 

MPa MPa 

S235 235 360-510 
 

The use of plate specimens subjected to perforation in gas guns [8, 9] or Hopkinson bars [10] are 

the most common experimental techniques to study ballistic properties of materials and structures. 

Usually, it is not possible to run an extended study on real-size specimens for economic and logistic 

reasons, therefore reference testing tools are used in experiments. The studied specimens are fully 

clamped in a rigid and solid frame with no free degrees of freedom. The aim of the study is to 

analyze different failure modes in which petaling is a common occurrence. The experiment is 

subjected to the numerical validation which allow to define a material model and, as a consequence, 

run full-scale models and verify real structure conditions. 
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Fig. 2. Hopkinson Pressure Bar set-up for investigation of the material’s dynamic behavior [11] 

 
Fig. 3. CNC measuring machine used for plate deformation calculations [11] 

a)  
A – pneumatic chamber, B – fast valve, C – gas gun tube with supports, D – sensor for initial impact velocity 
measurements, E – thermal chamber and specimen fixation device, F – sensor for residual velocity measurement,              
G – projectile catcher, H – PID controller, ∎∎∎ projectile trajectory 
 

b)  

Fig. 4. Gas gun set-up used for perforation tests at high impact velocities and temperatures [8]; a) general 

scheme, b) photo of the system with the installed thermal chamber 
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The apparatus is equipped with a thermal chamber in which a specimen is heated. Few experimental 

data are available in the international literature which deals with impact loading at elevated 

temperatures. This is due mainly to the non-coupling of standard gas gun with a heating tool. The 

usual approach is to carry out perforation tests at room temperature and to extrapolate results using 

numerical simulations at high temperatures by applying the defined constitutive relation. The 

temperature is modulated from room temperature to the maximum temperature of T0 = 573 K 

(300°C). The air flows inside the system through to a ventilator. A sarcophagus is used around the 

plate specimen to keep a uniform temperature distribution. Therefore, the two sides of the specimen 

are heated up at the same time. Due to conductivity, the entire specimen reaches the initial 

temperature imposed to the specimen and regulated by a controller. A detailed description of the 

thermal chamber is given in [8], whereas Figure 5 presents the general principle of its functioning. 

The thermal chamber has been patented in Morocco under the reference number MA 41357 A1 

(OMPIC), the extended experimental analysis using this set-up can be found in [15, 16]. 

 

a)  

b)   

Fig. 5. Thermal chamber for heating up the target plate specimens; a) schematic representation of the air 

mixing process [8], b) general view of the thermal chamber 
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3. Results of laboratory experiments 

3.1. Dynamic analysis of S235 steel properties 

Many authors dealt with perforation analysis of steel plates, from theoretical approaches such as 

discussed in [17] to more practical considerations as reported in [9, 18] where experimental results 

and numerical applications are discussed.  

The perforation laboratory tests were carried out for two types of steel sheet thicknesses with 

a projectile initial impact velocity V0 ranging from 40 to 120 m/s at two different thermal conditions 

T0 = 293 K and T0 = 573 K. During the tests, the initial velocity (V0) of the projectile was measured 

at the moment of impact and the residual velocity (VR) just after the specimen was perforated. Two 

separate laser sensor systems were used for the velocity quotes. The results of these measurements 

are recapitulated in Table 3. 

 
 

Table 3. Impact velocity (V0) and residual velocity (VR) measured for ballistic perforation test 

Specimen thickness 0.6 mm Specimen thickness 1.0 mm 

Test 
no 

Pressure 
[bar] 

Temp. 
[K] 

Impact 
velocity 
V0 [m/s] 

Time 
[ms] 

Residual 
velocity 
VR [m/s] 

Test 
no 

Pressure 
[bar] 

Temp. 
[K] 

Impact 
velocity 
V0 [m/s] 

Time 
[ms] 

Residual 
velocity 
VR [m/s] 

T10 1.0 293 44.17 2.480 20.16 T2 2.0 293 64.93 – 0.00 

T9 1.5 293 54.11 1.440 34.72 T3 3.0* 293 79.11 0.000 0.00 

T8 2.0 293 64.43 1.080 46.30 T6 3.2 293 83.06 2.400 20.83 

T7 3.0 293 79.11 0.740 67.57 T1 4.0 293 90.25 1.000 50.00 

T12 4.0 293 90.58 0.640 78.13 T4 5.0 293 101.21 0.780 64.10 

T13 5.0 293 100.40 0.540 92.59 T5 7.5 293 121.36 0.540 92.59 

T14 7.5 293 121.36 0.440 113.64 T24 2.7** 573 75.50 0.000 0.00 

T23 0.8 573 39.49 4.960 10.08 T25 3.0 573 79.11 1.440 34.72 

T22 1.0 573 43.55 2.100 23.81 T26 4.0 573 91.24 0.830 60.24 

T21 1.5 573 55.93 1.190 42.02 T27 5.0 573 101.62 0.660 75.76 

T20 2.0 573 64.60 0.890 56.18 T28 7.5 573 122.55 0.490 102.04 

T16 3.0 573 79.37 0.660 75.76 * perforated but with VR = 0 

T17 4.0 573 90.91 0.570 87.72 ** perforation but projectile stuck in specimen 

T18 5.0 573 100.81 0.490 102.04 

T19 7.5 573 120.77 0.430 116.28 
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was due to internal stresses caused by temperature. The maximum deformation measured is 4 mm. 

The measurements were identified later in numerical simulations. 
 

  

  

  
Fig. 8. Deformed shape of plate specimens with measurements provided by CNC tool 

 

Figure 9 reports a comparison between experimental results at T0 = 293 K and T0 = 573 K, all these 

experimental values were previously reported in Table 3. It can be noticed that increasing the initial 

temperature of the specimen shifts the ballistic limit (state of no perforation) to lower values. The 
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ballistic limits VB obtained were approximately 42 m/s for T0 = 293 K and subsequently they 

dropped to 37 m/s for T0 = 573 K, this concerned the case of 0.6 mm plate. They were 82 m/s and 

77 m/s, respectively, for 1.0 mm plate. The Recht-Ipson estimation [22] would suggest a slightly 

lower ballistic limit at for T0 = 293 K, namely 75 m/s (compared to 77 m/s in the experiment). The 

other measured points are also shifted when higher residual velocities VR are reported for elevated 

temperatures (see Fig. 9). 
 

 
a) 

 

b) 

Fig. 9. Initial impact velocity V0 vs. residual velocity VR – experimental results for T0 = 293 K and 

T0 = 593 K; a) plate thickness of 0.6 mm, b) plate thickness of 1.0 mm 

3.2. Kinetic energy calculation 

The initial V0 and residual VR velocities were recorded during the tests, this information is useful 

for the kinetic energy estimation. The kinetic energy value demonstrates energy dissipation 
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The tests were carried out using the samples cut in four directions: 0°, 30°, 60°, 90° in regard to the 

rolling direction. The tests were performed for different rates of deformation: 10–3 s–1, 10–1 s–1, 1 s–1, 

10 s–1. The results shown in Fig. 11 confirm the analysis did not reveal any anisotropy. 
 

  
a) b) 

  
c) d) 

Fig. 11. Experimental results of tensile tests at various strain rates and different direction cut of the 2 mm 

material samples; a) static tests, b) quasi-static tests, c) dynamic tests, d) flow stress at 10% true strain vs 

strain rate for 0° direction 

4. Numerical simulations using FEM method 

4.1. Initial and boundary conditions 

Numerical calculations were performed using Ansys explicit solver dedicated for high rates of 

deformations in line with the practice used in many previous works [18, 23, 24]. In all calculations, 

the S235 steel sheet and projectile were modelled as presented in Fig. 12. 
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elements such as ricochet. The obtained results as well as the presented methodology of testing and 

numerical analysis are important elements to help the design of building panels and protective 

partitions of critical infrastructure facilities made of steel sheets. The laboratory perforation tests at 

elevated temperatures allowed for the scaling of the thermal component of the Johnson Cook model 

used in the numerical calculations. As numerical results correspond to the experimental findings, it 

can be concluded that the determined form of the thermal weakening coefficient allows to 

extrapolate the use of the proposed Johnson Cook model for higher temperatures and make it 

possible to determine perforation resistance in fire conditions and in case of blast. 
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Analiza perforacji arkuszy stali S235 w temperaturach do 573 K metodą eksperymentalną 
i numeryczną 

Słowa kluczowe: perforacja stali, właściwości balistyczne, analiza MES, pomiary technologią CNC 

Streszczenie:  
W artykule opisano efektywne techniki eksperymentalne i numeryczne stosowane w projektowaniu konstrukcjo 
ochronnych budowlanej infrastruktury krytycznej. Bezpieczeństwo infrastruktury krytycznej stało się poważniejszym 
problemem w czasach rosnących zagrożeń terrorystycznych. Infrastruktura krytyczna odnosi się do obiektów budowlanych 
i ich elementów, w tym w szczególności do budowli związanych z wytwarzaniem, przesyłem i dystrybucją energii 
elektrycznej, paliw, ropy naftowej i produktów ropopochodnych, sieci telekomunikacyjnych i wodociągowych, zakładów 
produkcji i dystrybucji żywności, elektrociepłowni, obiektów ochrony zdrowia (szpitale), komunikacyjnych (drogi, koleje, 
lotniska, porty morskie), instytucji finansowych i służby bezpieczeństwa (policja, wojsko, ratownictwo). Tak więc 
infrastruktura krytyczna to nie tylko budynki wojskowe, ale także obiekty użyteczności publicznej, które wykonane są 
z typowych materiałów budowlanych, takich jak użyta w prezentowanych badaniach stal S235. Ich konstrukcje 
zabezpieczające powinny spełniać warunek niezawodności jak dla konstrukcji inżynierskich, dla których zostały w pełni 
określone właściwości ochronne materiałów konstrukcyjnych. Należy zauważyć, że zagrożenie dla krytycznych 
elementów infrastruktury zwykle nie pochodzi z bezpośredniego ataku rakietowego, ale jest spowodowane głównie przez 
odłamki z eksplozji lub w wyniku rykoszetu. Ponieważ cały budynek nie może być chroniony przed atakiem rakietowym, 
inżynierowie projektują specjalne wzmocnienia składające się z metalowych paneli lub elementów kompozytowych na 
drzwi, ściany itp. Tutaj zastosowanie znajdują blachy stalowe S235, których właściwości użytkowe są korzystne dla 
rozwoju zastosowań inżynierskich w dziedzinie ochrony infrastruktury krytycznej. 
Badany materiał, czyli stal S235, jest typowym materiałem konstrukcyjnym, zaś przedstawione wyniki uzyskano 
z eksperymentów perforacji wykonanych na blachach S235 poddanych uderzeniom charakteryzującym się 
umiarkowaną prędkością (około 40–120 m/s). Kwadratowe próbki o wymiarach 13×13 cm i grubościach 0,6 mm 
i 1,0 mm, mocowane sztywno wzdłuż czterech krawędzi, poddawane są procesowi perforacji z użyciem pocisku 
o zakończeniu stożkowym i masie 28 g, wykonanego ze słabo odkształcalnej stali maraging. Oryginalność badań 
perforacji polega na zastosowaniu komory termicznej przeznaczonej do przeprowadzania eksperymentów w wyższych 
temperaturach. Komora termiczna pozwala na równomierne ogrzanie próbki do wymaganej temperatury, w przypadku 
prezentowanej analizy do 573 K (300°C), po którym następuje uwolnienie pocisku. W celu określenia energii 
rozproszonej podczas perforacji dokonywane są pomiary prędkości początkowej V0 (uderzenia badanej próbki) oraz 
rezydualnej VR (po perforacji) za pomocą urządzeń laserowych. Próbki poddawane są analizie pod kątem modelu 
zniszczenia – dla metali i pocisków o zakończeniu stożkowych najczęstszą formą są tzw. petals. Do ostatecznych 
pomiarów deformacji kształtu wykorzystano skanery 3D i sterowane numerycznie urządzenia pomiarowe (technologia 
pomiarów CNC). Stal została przetestowana również przy użyciu techniki pręta Hopkinsona i uzyskane wyniki 
pozwoliły na określenie dynamicznych właściwości mechanicznych tego materiału. Ważnym elementem badań jest 
analiza numeryczna metodą elementów skończonych. Wykorzystano program Ansys i jego solver oparty o algorytmy 
jawnego całkowania równań. Model zbudowano z trójwymiarowych elementów typu Solid. Zaproponowany model 
konstytutywny Johnsona Cooka oparto na dostępnych danych materiałowych, wprowadzając zależność materiału od 
temperatury i szybkości odkształcenia. Zastosowane jednowymiarowe kryterium zniszczenia polega na usuwaniu 
z modelu elementów, które osiągają zadaną krytyczną wartość odkształceń plastycznych, wynoszącą 0,7. 
Uzyskane wyniki eksperymentalne pozwoliły określić użytkowe właściwości balistyczne materiału, czyli zależność 
prędkości początkowej V0 i rezydualnej VR oraz limit balistyczny. Limit balistyczny obniża się ze wzrostem 
temperatury. Model MES odzwierciedlił z powodzeniem zachowanie próbek podczas eksperymentu zarówno 
w zakresie formy zniszczenia, jak i parametrów balistycznych.  
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