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Abstract: Transformer efficiency and regulation, are to be maintained at maximum and
minimum respectively by optimal loading, control, and compensation. Charging of electric
vehicles at random charging stations will result in uncertain loading on the distribution
transformer. The efficiency reduces and regulation increases as a consequence of this
loading. In this work, a novel optimization strategy is proposed to map electric vehicles
to a charging station, that is optimal with respect to the physical distance, traveling time,
charging cost, the effect on transformer efficiency and regulation. Consumer and utility
factors are considered for mapping electric vehicles to charging stations. An Internet of
Things platform is used to fetch the dynamic location of electric vehicles. The dynamic
locations are fed to a binary optimization problem to find an optimal routing table that maps
electric vehicles to a charging station. A comparative study is carried out, with and without
optimization, to validate the proposed methodology.
Key words: charging stations, electric vehicle, e-mobility, optimization, transformer effi-
ciency, transformer regulation

1. Introduction

The demand and production of electric vehicles is increasing in the global market. This
increasing trend creates many opportunities and challenges in various sectors like the power
system, mechanical design, communication system, production, sales and services [1]. Unlike
an internal combustion engine, wherein power is generated through the combustion of fuel;
electric vehicles use electrical energy as a source of power. The power requirement for electric
vehicle fleets is very high [2]. To meet this additional power demand, a sufficient source of power
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and associated infrastructure is to be deployed in the power system [3]. The e-mobility sector
introduces numerous challenges to the power system, that needs to be addressed immediately [4].
The energy balance, utilization of the existing infrastructure and deployment of essential new
infrastructure are the priorities in the power system. The physical components in the power system
such as transformers, transmission lines, switchgear, generators and compensators are designed
based on the installed load. The distribution network has to be now planned with consideration
of electric vehicle fleets [5]. The additional burden caused by electric vehicles can be addressed
either by infrastructural development or optimized utilization of existing infrastructure [6, 7].

In a power system, the transformers are the interface between the power grid and charging
stations [8]. The efficiency of the transformer depends on the load. The transformer has maximum
efficiency for the load which equates to the iron and copper loss. It is important to vary load in
such a way that the efficiency of the transformer stays near the maximum point, so that loss and
stress on the transformer is reduced [9]. Electric vehicle charging at a random charging station
could lead to overloading, load shedding and instability in the power system. Charging at a random
charging station will also result in economic loss and inconvenience for the customer [10, 11].

Uncertain loading on the transformer leads to increased electromagnetic stress and physical
deformations. Optimization techniques and intelligence algorithms can be used to map electric
vehicles to charging stations. The objectives considered are minimization, voltage deviation,
charging cost in the distribution system [12]. The predicted load is embedded in the optimization
problem to allocate electric vehicles to charging stations [13]. Optimal load flow is carried out
by considering electric vehicle fleets to increase the stability of the system and to lower the
charging cost [14, 15]. Distribution network reconfiguration is performed in case of uncertain
electric vehicle loading and to decrease the switching cost and demand response charges [16,17].
Distributed energy sources are strategically managed to minimize the unnecessary active power
curtailments [18]. The impact of an electric vehicle load on the distribution transformer has to
be analyzed for each discrete EV loading by considering customer requirements namely charging
cost, travel time and travel distance [19–21].

In this work, distribution transformers connected to public charging stations are safeguarded
by the strategic and optimized routing of electric vehicles considering both utility and consumer
constraints. Utility and consumer factors are also considered while deriving the routing table,
which results in optimal loading on the transformer. Efficiency and regulation increase and
decrease respectively by the optimal loading on the transformer. Consumer benefited by the
reduced travel time, distance and charging cost.

This paper is organized as shown below:
– Section 2 presents the interconnection of the system components, information flow and

research process.
– Sections 3 and 4 present functional matrices and their corresponding weights to formulate

the multi-objective optimization problem.
– Section 5 presents the mathematical model of the optimization problem consisting of

objective functions and constraints.
– Section 6 presents the test system under consideration.
– Section 7 presents the proposed algorithm.
– Section 8 provides an optimized mapping of an electric vehicle with a charging station as

a solution for the problem formulated in Section 5.
– Section 9 investigates and discusses the utility and consumer benefits.
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2. Process and architecture

There are four stages in the proposed work, namely data collection, pre-processing, problem
formulation and the solution of the optimization problem as shown in Fig. 1. Geolocation and
electrical parameters are fetched from the electric vehicles, charging stations and distribution
transformers. The distance, time and cost matrices are calculated using the collected data. The
functional matrices are plugged into the optimization problem. The problem is solved using
optimization technique to obtain the electric vehicle and charging station mapping.

Fig. 1. Process diagram

The proposed architecture for the proposed method is shown in Fig. 2. Interconnection
of physical entities, information flow and information technology infrastructures are shown in
the figure. An algorithm is proposed to optimize physical distance, travel time, charging cost,
efficiency and regulation, and developed as an application. Static information from electric
vehicles, charging stations and transformers are pre-loaded in the application. The dynamic
location of the electric vehicles is uploaded to the Internet of Things (IoT) platform from vehicle
telemetry and fetched from the IoT platform to the proposed application. The application estimates

Fig. 2. Architecture
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the routing table and uploads to the cloud database. The consumer is informed through listener
service in the vehicle console. The application program runs at regular intervals of time to
provide a customer and utility-centric routing table where time, cost, distance, the efficiency of
transformers and regulations are optimal.

3. Functional matrices

Unique and novel functional matrices that are the matrix representation of specific parameters
that relate the 𝑛 number of electric vehicles and the 𝑚 number of charging stations are proposed
in this work. They are defined as follows: 𝑖 is the index of a charging station and 𝑗 is the index of
an electric vehicle.

Distance Matrix

Distance Matrix (𝐷): 𝐷 = 𝑑𝑖 𝑗 ∈ R𝑚×𝑛. Element 𝑑𝑖 𝑗 is the physical distance of the 𝑗 th

electric vehicle to reach the 𝑖th charging station. This distance is fetched from Google Maps
distance/direction APIs by providing charging station and electric vehicle location as input.

Time Matrix

Time Matrix (𝑇): 𝑇 = 𝑡𝑖 𝑗 ∈ R𝑚×𝑛. Element 𝑡𝑖 𝑗 is the travel time of the 𝑗 th electric vehicle to
reach the 𝑖th charging station. This time is fetched from Google Maps distance/direction APIs by
providing charging station and electric vehicle location as input.

Cost Matrix

Cost Matrix (𝐶): 𝐶 = 𝑐𝑖 𝑗 ∈ R𝑚×𝑛. Element 𝑐𝑖 𝑗 is the charging cost for the 𝑗 th electric vehicle
at the 𝑖th charging station. This cost is fetched from the Regional Time of Use (RToU) tariff
database which is defined by distribution companies.

Efficiency Matrix

Efficiency Matrix (𝐸): 𝐸 = 𝜂𝑖 𝑗 ∈ R𝑚×𝑛. Element 𝜂𝑖 𝑗 is the efficiency of the distribution
transformer when loaded with the 𝑗 th electric vehicle alone at the 𝑖th charging station along with
the regular load. The deviation of efficiency with respect to the maximum point is to be minimized.
The efficiency of the distribution transformer 𝜂 is calculated by

𝜂 =
𝑘𝑆 cos 𝜙

𝑘𝑆 cos 𝜙 + 𝑘2𝑃𝑐 + 𝑃𝑖

, (1)

where: 𝑘 is the ratio of current loading to the full load current, 𝑆 is the transformer total power,
𝜙 is the angle between the voltage and current vector, 𝑃𝑐 is the copper loss at the full load, 𝑃𝑖 is
the core loss.

Regulation Matrix

Regulation Matrix (𝑅): 𝑟𝑖 𝑗 ∈ R𝑚×𝑛. Element 𝑟𝑖 𝑗 is the regulation of the distribution trans-
former when loaded with the 𝑗 th electric vehicle alone at the 𝑖th charging station along with the
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regular load. The regulation of the distribution transformer 𝑟 is calculated by

𝑟 = 𝑘 (𝑈𝑟 cos 𝜙 +𝑈𝑥 sin 𝜙) + 𝑘2

200
(𝑈𝑥 cos 𝜙 −𝑈𝑟 sin 𝜙)2 , (2)

where 𝑈𝑟 is the percentage resistance voltage at the full load and 𝑈𝑥 is the percentage reactance
voltage.

4. Weights for functional matrices

In this section, five factors with weights are proposed and defined, to be considered in the
optimization problem. The weights have a value between 0 and 1. Individual weights are also
considered for the 𝑛 number of electric vehicles charging at the 𝑚 number of charging stations.

Weight for Cost Matrix

𝛽1𝐵
′ = 𝛽1𝑏

′
𝑖 𝑗

∈ R𝑚×𝑛 is the weight for the Cost Matrix (𝐶), where 𝛽1 is the scalar value
multiplied to all the elements in 𝐶 and decided by the utility. 𝑏′

𝑖 𝑗
is the element in 𝐵′ which

indicates individual cost weight of the 𝑗 th electric vehicle charging at the 𝑖th charging station.
This factor is the weight for the (𝑖 𝑗)th element in 𝐶 and decided by a customer depending on
the importance of cost of the customer. If distance and time constraints are less important to the
customer then the customer would go for value 0. If, however, the cost is major criteria then the
customer would go for value.

Weight for Distance Matrix

𝛽2𝐵
′′ = 𝛽2𝑏𝑖 𝑗 ∈ R𝑚×𝑛 is the weight for the Distance Matrix (𝐷), where 𝛽2 is the scalar value

multiplied to all the elements in 𝐷 and decided by the utility. 𝑏𝑖 𝑗 is the element in 𝐵′′ which
indicates individual distance weight of the 𝑗 th electric vehicle charging at the 𝑖th charging station.
This factor is the weight for the (𝑖 𝑗)th element in 𝐷 and decided by a customer depending on the
traveling distance constraint of the customer.

Weight for Time Matrix

𝛽3𝐵
′′′ = 𝛽3𝑏

′′′
𝑖 𝑗

∈ R𝑚×𝑛 is the weight for the Time Matrix (𝑇), where 𝛽3 is the scalar value
multiplied to all the elements in 𝑇 . 𝑏′′′

𝑖 𝑗
is the element in 𝐵′′′ which indicates individual time

weight of the 𝑗 th electric vehicle charging at the 𝑖th charging station. This factor is the weight for
the (𝑖 𝑗)th element in 𝑇 and decided by a customer depending on the traveling time constraint of
the customer.

Weight for Efficiency Matrix

𝑝1𝑃
′ = 𝑝1𝑝

′
𝑖 𝑗
∈ R𝑚×𝑛 is the weight for the Efficiency Matrix (𝐸), where 𝑝1 is the scalar value

multiplied to all the elements in 𝐸 . 𝑝′
𝑖 𝑗

is the element in 𝑃′ which indicates individual efficiency
weight of the 𝑗 th electric vehicle charging at the 𝑖th charging station. This factor is the weight for
the (𝑖 𝑗)th element in 𝐸 and decided by the utility.
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Weight for Regulation Matrix

𝑝2𝑃
′′ = 𝑝2𝑝𝑖 𝑗 ∈ R𝑚×𝑛 is the weight for the Regulation Matrix (𝑅), where 𝑝2 is the scalar

value multiplied to all the elements in 𝑅. 𝑝𝑖 𝑗 is the element in 𝑃′′ which indicates individual
regulation weight of the 𝑗 th electric vehicle charging at the 𝑖th charging station. This factor is the
weight for the (𝑖 𝑗)th element in 𝑅 and decided by the utility.

5. Multi objective optimization problem formulation

In the proposed work, electric vehicles must be directed to a particular charging station
with the matrices and factors discussed in Sections 3 and 4. The problem is formulated as an
integer optimization problem and solved using integer linear programming in the MATLABr
optimization toolbox (intlinprog). The objective is to get the best routing of electric vehicles to
charging stations.

Problem statement

The problem is to find an optimal routing for each of the 𝑛 electric vehicles to one of the 𝑚

charging stations. The solution to be obtained is a matrix [𝑋]𝑚×𝑛, where element 𝑥𝑖 𝑗 is either 0
or 1. If the 𝑗 th electric vehicle is mapped to the 𝑖th charging station then 𝑥𝑖 𝑗 = 1. If the 𝑗 th electric
vehicle is not mapped to the 𝑖th charging station, then 𝑥𝑖 𝑗 = 0.

Objective function

The objective function consists of five terms to account for cost, distance, time, efficiency and
regulation for 𝑚 charging stations and 𝑛 electric vehicles.

– Cost objective function: min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛽1𝐵
′
𝑖 𝑗𝑐𝑖 𝑗 ,

– Distance objective function: min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛽2𝐵
′′
𝑖 𝑗𝑑𝑖 𝑗 ,

– Time objective function: min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛽3𝐵
′′′
𝑖 𝑗 𝑡𝑖 𝑗 ,

– Transformer efficiency objective function: min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝1𝑃
′
𝑖 𝑗

��𝜂𝑖 max − 𝜂𝑖 𝑗
��,

– Transformer regulation objective function: min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝2𝑃
′′
𝑖 𝑗 (𝑟𝑖 𝑗 ).

The overall objective function is given in (3).

min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗𝑥𝑖 𝑗 , (3)

where 𝑓𝑖 𝑗 = 𝛽1𝐵
′
𝑖 𝑗
𝑐𝑖 𝑗 + 𝛽2𝐵

′′
𝑖 𝑗
𝑑𝑖 𝑗 + 𝛽3𝐵

′′′
𝑖 𝑗
𝑡𝑖 𝑗 + 𝑝1𝑃

′
𝑖 𝑗

��𝜂𝑖 max − 𝜂𝑖 𝑗
�� + 𝑝2𝑃

′′
𝑖 𝑗
(𝑟𝑖 𝑗 ).
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Constraints
Power limitation and physical restrictions are modelled as equality and inequality constraints.

The constraints are:
– Electric vehicle constraint: An electric vehicle is allowed to charge at one charging station

only. The electric vehicle constraint is given by
𝑚∑︁
𝑖=1

𝑋𝑖 𝑗 = 1 ∀ 𝑗 ∈ 𝑅𝑛. (4)

– Charging station constraint: The maximum number of electric vehicles which can be
directed to any charging station is limited to 𝑛. The charging station constraint is given by

𝑛∑︁
𝑗=1

𝑋𝑖 𝑗 ≤ 𝑛 ∀𝑖 ∈ 𝑅𝑚. (5)

– Charging station power limit: The maximum number of electric vehicles mapped to any
charging station is limited by the sanctioned load for the charging station. Cumulative
power rating of all the electric vehicles assigned to a particular charging station should be
less than the power limit of the charging station. The power limit constraint is given by (6)
(where 𝑃𝑐

𝑖
is the power limit of the 𝑖th charging station and 𝑃𝑒

𝑖 𝑗
is the power rating of the

𝑗 th electric vehicle mapped to the 𝑖th charging station).
𝑛∑︁
𝑗=1

𝑃𝑒
𝑖 𝑗𝑋𝑖 𝑗 ≤ 𝑃𝑐

𝑖 . (6)

– Control variable constraint: Mapping of electric vehicles to a charging station has to result
in a binary outcome. The decision variable is either 0 or 1.

𝑥𝑖 𝑗 ∈ {0, 1}. (7)

Output
The solution obtained is the 𝑚 × 𝑛 matrix with each element being 0 or 1 satisfying the

constraints discussed above to minimize the objective function.

Output matrix (𝑋) : 𝑋 = 𝑥𝑖 𝑗 ∈ 𝑍𝑚×𝑛 : 𝑥𝑖 𝑗 ∈ 0, 1}. (8)

It can be observed that the objective function and constraints are linear. Hence linear pro-
gramming technique is used to solve this problem. Binary integer linear programming is used to
obtain the optimal solution.

6. Case study

Input data
Ten electric vehicles, ten charging stations and five distribution transformers are considered

to demonstrate the proposed method. The electric vehicle location, power rating and weights
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Table 1. Electric vehicle specifications

EV Latitude Longitude Power (kW) B′ B′′ B′′′

E1 12.3199 76.6334 20 1 1 1

E2 12.3091 76.6442 18 1 1 1

E3 12.3155 76.6126 15 1 1 1

E4 12.303 76.6165 16 1 1 1

E5 12.3005 76.603 20 1 1 1

E6 12.2959 76.6376 15 1 1 1

E7 12.2886 76.6294 18 1 1 1

E8 12.3265 76.6127 16 1 1 1

E9 12.3316 76.6247 20 1 1 1

E10 12.3139 76.6588 15 1 1 1

considered in this work are shown in Table 1. E1, E2, . . . , E10 → electric vehicles. 𝐵′, 𝐵′′ and
𝐵′′′ are considered as 1 to portray equal significance to cost, distance and time concerns of electric
vehicle users.

The charging station location, power limit, charging cost per unit and the distribution trans-
former association is shown in Table 2. C1, C2, . . . , C10 are the charging stations. DTC no.
is a distribution transformer ID. In Table 2, charging stations C1 and C2 are connected to the
distribution transformer whose ID is 1. Similarly, other records are to be interpreted.

Table 2. Charging station location and specification

EV Latitude Longitude Power (kW) Cost per unit (|) DTC no.

C1 12.32113 76.6357 20 5.00 1

C2 12.31055 76.64138 18 6.20 1

C3 12.31552 76.60822 15 5.50 2

C4 12.30521 76.60743 16 7.00 2

C5 12.29732 76.63475 20 6.50 3

C6 12.29384 76.62519 15 7.50 3

C7 12.32226 76.61568 18 6.75 4

C8 12.32239 76.62443 16 5.75 4

C9 12.31852 76.64883 20 5.25 5

C10 12.31392 76.65048 15 6.35 5
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The location and electrical specifications of all the distribution transformers are shown in
Table 3. DTC1, DTC2, . . . , DTC5 are distribution transformers. kVA and Z are the total power
rating and percentage impedance of the distribution transformers. Power factor and voltage are
measured values at a low-tension side when the load is connected.

Table 3. Distribution transformer location and specifications

DTC Latitude Longitude kVA Power factor Voltage (V) Z (%)†

DTC1 12.31681 76.63696 250 0.8 400 4

DTC2 12.31438 76.61405 250 0.85 404 4

DTC3 12.30231 76.62559 250 0.87 402 4

DTC4 12.31883 76.63023 250 0.79 405 4

DTC5 12.31761 76.64668 250 0.88 398 4
† Source: Low Voltage Transformers from https://library.abb.com/en

The Regional Time of Use (RToU) cost for the customer at various charging stations is fetched
from Table 2. Let this vector be 𝑞. Hence the Cost Matrix is the arrangement of 𝑞 vector 𝑛 times.
Therefore, 𝐶 =

[
𝑞𝑇 ; 𝑞𝑇 , . . . , 𝑞𝑇

]
𝑚×𝑛, where

𝑞 = [5 6.2 5.5 7 6.5 7.25 6.75 5.75 5.25 6.35]1×𝑚.

The charging stations, transformers and feeders are immovable assets in the power system,
whereas electric vehicles change their positions in the geographical space. The dynamic position
of the electric vehicles is fetched from vehicle telemetry. The immovable asset locations are
pre-loaded in the application. The challenge is to map electric vehicles and charging stations con-
sidering all the constraints. In Fig. 3, the location of feeders, distribution transformers, changing
stations and electric vehicles are shown. The bubble size indicates power value.

Fig. 3. Geo-spacial distribution of electric vehicles, charging stations, DTCs and feeders
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Functional matrices of the case study

Distance Matrix API is one of the Google Maps APIs, which gives optimum or best distance
and time for the given two locations. One can generate an API key to utilize services from
Google. These services should be subscribed. The functional matrix can be constructed by any
programming language such as Python. Python libraries namely google maps along with NumPy
and Pandas are to be used to construct a functional matrix by feeding electric vehicles and charging
station locations. The Distance Matrix for the case under consideration is shown in Table 4. This
matrix is constructed on 23rd July 2020 05:57:02, using Google Maps API.

Table 4. Distance Matrix (in meters)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
C1 402 1732 3978 4412 3810 3803 2600 1509 2275 2931
C2 2704 619 5437 4431 2570 3528 3847 3498 2090 1469
C3 3904 4158 2163 2221 4717 3866 1140 2153 5590 5437
C4 4270 3843 2497 1491 2844 1993 2284 3297 5743 5122
C5 5832 5405 2524 1114 4061 3210 3845 4858 7305 6684
C6 3778 2002 5800 4794 451 1572 4921 4572 3918 3297
C7 5774 4222 5098 4008 1998 2113 5331 5282 6139 5518
C8 2702 3869 1674 3533 5946 4763 937 1762 4821 5148
C9 2023 3822 3478 4696 5900 5094 2100 1371 3488 4144
C10 3195 2428 6823 6578 4821 5675 5445 4936 1347 963

The Time Matrix for the case under consideration is shown in Table 5. This matrix is
constructed on 23rd July 2020 05:57:02. The time estimation provided by Google Maps API is
the travel time with the consideration of traffic density on that route.

Table 5. Time Matrix (in seconds)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
C1 74 210 599 569 484 474 359 237 364 484
C2 361 116 750 599 362 470 529 489 359 294
C3 561 562 395 357 709 557 216 400 847 838
C4 552 489 397 246 456 304 342 526 831 766
C5 720 657 377 186 601 449 510 694 999 934
C6 474 265 796 645 75 275 642 602 602 537
C7 805 598 866 661 346 353 816 791 936 871
C8 486 505 328 524 779 619 172 306 775 781
C9 316 552 619 731 826 736 379 253 530 650
C10 532 489 1106 1009 789 880 866 825 246 217
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The Efficiency Matrix discussed in Section 3 is calculated and shown in Table 6. An element
in this matrix is the efficiency of a transformer considering a specific EV load.

Table 6. Transformer Efficiency Matrix (in p.u)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

C1 0.9853 0.9853 0.9861 0.9861 0.9868 0.9868 0.9862 0.9862 0.9866 0.9866

C2 0.9852 0.9852 0.9859 0.9859 0.9867 0.9867 0.9862 0.9862 0.9865 0.9865

C3 0.9852 0.9852 0.9860 0.9860 0.9867 0.9867 0.9862 0.9862 0.9865 0.9865

C4 0.9854 0.9854 0.9861 0.9861 0.9869 0.9869 0.9863 0.9863 0.9867 0.9867

C5 0.9852 0.9852 0.9859 0.9859 0.9867 0.9867 0.9862 0.9862 0.9865 0.9865

C6 0.9853 0.9853 0.9861 0.9861 0.9868 0.9868 0.9862 0.9862 0.9866 0.9866

C7 0.9852 0.9852 0.9860 0.9860 0.9867 0.9867 0.9862 0.9862 0.9865 0.9865

C8 0.9854 0.9854 0.9861 0.9861 0.9869 0.9869 0.9863 0.9863 0.9867 0.9867

C9 0.9852 0.9852 0.9859 0.9859 0.9867 0.9867 0.9862 0.9862 0.9865 0.9865

C10 0.9853 0.9853 0.9861 0.9861 0.9868 0.9868 0.9862 0.9862 0.9866 0.9866

The Regulation Matrix discussed in Section 3 is calculated and shown in Table 7. An element
in this matrix is the regulation of a transformer considering a specific EV load.

Table 7. Transformer Regulation Matrix (in %)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

C1 0.4712 0.4712 0.4490 0.4490 0.4564 0.4564 0.5090 0.5090 0.4405 0.4405

C2 0.4686 0.4686 0.4464 0.4464 0.4539 0.4539 0.5064 0.5064 0.4379 0.4379

C3 0.4647 0.4647 0.4426 0.4426 0.4500 0.4500 0.5026 0.5026 0.4340 0.4340

C4 0.4660 0.4660 0.4439 0.4439 0.4513 0.4513 0.5039 0.5039 0.4353 0.4353

C5 0.4712 0.4712 0.4490 0.4490 0.4564 0.4564 0.5090 0.5090 0.4405 0.4405

C6 0.4647 0.4647 0.4426 0.4426 0.4500 0.4500 0.5026 0.5026 0.4340 0.4340

C7 0.4686 0.4686 0.4464 0.4464 0.4539 0.4539 0.5064 0.5064 0.4379 0.4379

C8 0.4660 0.4660 0.4439 0.4439 0.4513 0.4513 0.5039 0.5039 0.4353 0.4353

C9 0.4712 0.4712 0.4490 0.4490 0.4564 0.4564 0.5090 0.5090 0.4405 0.4405

C10 0.4647 0.4647 0.4426 0.4426 0.4500 0.4500 0.5026 0.5026 0.4340 0.4340
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7. Proposed algorithm

The algorithm to find the mapping of electric vehicles to charging stations is as follows.

Algorithm 1: Mapping of electric vehicle to charging station

Step 1: Load charging station, distribution transformer center (DTC) and Feeders’ static
data such as ratings and locations from the application database.

Step 2: Fetch dynamic location of electric vehicles from the cloud database.
Step 3: Load all the factors for optimization from the application database.
Step 4: Construct distance and time relational matrices using Google distance and direction

APIs.
Step 5: Construct efficiency and regulation functional matrices by (1) and (2).
Step 6: Formulate the optimization problem.
Step 7: Solve the optimization problem using integer linear programming to get charging

station and electric vehicle mapping.
Step 8: Perform element wise multiplication of solution and relational matrices to obtain

actual parameters such as cost, distance and travel time of every electric vehicle;
also the efficiency and regulation of all the DTCs.

8. Results

The test system defined by functional matrices in Section 6 is plugged in the problem formula-
tion in Section 5 by using the MATLABr integer linear programming (intlinprog) function. The
solution is obtained and results are tabulated. The Euclidean mappings are shown using geoplot
to visualize connectivity between an EV, CS and DTCs.

Optimized mapping table

The binary solution obtained from the mathematical model is shown in Tables 8 and 9. The
table depicts the best charging station for the electric vehicle. Element 𝑋 (1, 3) = 𝑋 (C1, E3) = 1
indicates that the 3rd electric vehicle is mapped to the 1st charging station. Element
𝑋 (1, 1) = 𝑋 (C1, E1) = 0 indicates that the 1st electric vehicle is not mapped to the 1st charging
station. An element in this matrix is either 0 or 1. All the electric vehicles are mapped to any one
charging station. In Table 9, distance, time and cost per unit to reach a charging station is shown
for all electric vehicles.

Table 10 gives summary of all the distribution transformer details where the electric vehicles
mapped, power allocation, functional value, efficiency and regulation of all the distribution
transformers are given.
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Table 8. Optimized mapping of EV and charging station

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

C1 0 0 1 0 0 0 0 0 0 0

C2 0 1 0 0 0 0 0 0 0 0

C3 0 0 0 1 0 0 0 0 0 0

C4 0 0 0 0 1 0 0 0 0 0

C5 0 0 0 0 0 1 0 0 0 0

C6 0 0 0 0 0 0 1 0 0 0

C7 0 0 0 0 0 0 0 1 0 0

C8 0 0 0 0 0 0 0 0 1 0

C9 1 0 0 0 0 0 0 0 0 0

C10 0 0 0 0 0 0 0 0 0 1

Table 9. Look-up table: electric vehicles and charging stations

Charging
station

Electric
vehicles

Power
(kW)

Associated
DTC

Distance
(m)

Time
(s)

Cost per unit
(|)

1 3 15 1 3904 561 5

2 2 18 1 619 116 6.2

3 4 16 2 2497 397 5.5

4 5 20 2 1114 186 7

5 6 15 3 451 75 6.5

6 7 18 3 2113 353 7.25

7 8 16 4 937 172 6.75

8 9 20 4 1371 253 5.75

9 1 20 5 2275 364 5.25

10 10 15 5 963 217 6.35

Table 10. Look-up table: electric vehicles, charging stations and DTCs

DTC
no.

Charging
stations

Electric
vehicles

Power
(kW)

Associated
feeder

Objective
function

Efficiency
(%)

Regulation
(%)

1 1, 2 3, 2 33 1 1.3421 98.985 0.6185

2 3, 4 4, 5 36 1 1.2573 98.988 0.61461

3 5, 6 6, 7 33 1 1.0766 98.947 0.68017

4 7, 8 8, 9 36 1 1.0584 98.761 0.96539

5 9, 10 1, 10 35 1 1.2634 98.986 0.60331
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Euclidean mapping
The Euclidean mapping between electric vehicles and charging stations is shown pictorially in

Fig. 4. Similarly, the Euclidean mapping between DTCs and electric vehicles is shown pictorially
in Fig. 5. It shows the electric vehicle fleet loading on the distribution transformers.

Fig. 4. Euclidean mapping of electric vehicles and charging stations

Fig. 5. Euclidean mapping of DTCs and electric vehicles

Comparison with random mapping
The proposed solution is validated by comparing objective function values of a random routing

table. Random mapping, as shown in Table 11 is considered for the comparative study.
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Table 11. Random mapping of EV and charging station

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

C1 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0

C4 0 0 0 0 1 0 0 0 0 0

C5 0 0 1 0 0 0 0 0 0 0

C6 1 0 0 0 0 0 0 1 0 0

C7 0 0 0 0 0 0 1 0 1 1

C8 0 0 0 0 0 1 0 0 0 0

C9 0 0 0 0 0 0 0 0 0 0

C10 0 1 0 1 0 0 0 0 0 0

Mean objective function value
The objective function values obtained for the optimized and non-optimized cases are shown

in Table 12. It is evident from the table that the overall objective function value or a mean value
of 1.1996 is much less compared to the mean value of 1.9267 of the non-optimized case. The
overall objective function value is improved by 37.7381%. There is a marginal improvement in
efficiency and a significant improvement in regulation.

Table 12. Random mapping of EV and charging station

Objective function Without optimization With optimization Improvement (%)

Objective function value 1.9267 1.1996 37.7381

Transformer efficiency 98.875% 98.933% 0.0586

Transformer regulation 0.7403% 0.694% 6.2542

Cost | 6.670 | 6.155 7.7211

Distance 3843.6 meters 1624.4 meters 57.7375

Time 571.1 seconds 269.4 seconds 52.8278

9. Discussions

In this section, the transformer performance enhancement for all distribution transformers
and benefits for all electric vehicle users are discussed.

Transformer efficiency characteristics
The transformer efficiencies with and without optimization are estimated for each DTC. Loss

is more for random mapping and less for the optimized system. The comparison results are shown
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in Fig. 6. It is evident from the figure that the mean value of efficiency is increased compared to
the non-optimized system.

Fig. 6. Euclidean mapping of DTCs and electric vehicles

Transformer regulation characteristics
The transformer regulation with and without optimization is estimated for each DTC. Voltage

droop is more for nonstrategic and less for the optimized system. Comparison results are shown
in Fig. 7. It is evident from the figure that the mean values are much less compared to the
non-optimized system.

Fig. 7. Euclidean mapping of DTCs and electric vehicles
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Time characteristics
It is highly essential to recommend an electric vehicle owner such a charging station that takes

him less time to reach. Figure 8 shows that the mean value of time of travel is reduced drastically
compared to the random system.

Fig. 8. Euclidean mapping of DTCs and electric vehicles

Distance characteristics
The algorithm recommends the nearest charging station to the customer. Figure 9 shows that

the mean travel distance is reduced significantly compared to the random system. Reduction of
distance consecutively saves time and cost.

Fig. 9. Euclidean mapping of DTCs and electric vehicles
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Cost characteristics
Figure 10 shows that the mean value of the customer cost per unit is less compared to the

non-optimized system.

Fig. 10. Euclidean mapping of DTCs and electric vehicles

10. Conclusions

In this paper, a novel optimization methodology is proposed and validated to map an electric
vehicle to a particular charging station. A multi-objective optimization problem is formulated with
the consideration of five objectives, namely, the minimization of charging cost, distance of travel,
time of travel, efficiency deviation and regulation in distribution transformers. The problem
is solved using integer linear programming to obtain an optimal routing table. The proposed
methodology is significantly benefited for both electric vehicle users and power supply utilities.
The routing table ensures the optimal loading on the transformer, which eliminates excessive
loss, faults due to overloading and peak demand penalties. The overall objective function value is
improved by 37.73% in comparison with the non-optimized case. The transformer performance
parameters namely, efficiency and regulation, are increased by 0.058% and decreased by 6.25%,
respectively. The cost, distance and time parameters are decreased by 7.72%, 57.73% and 52.82%,
respectively. The future scope of this research work is to upgrade the routing table by including
additional constraints, namely the available space in charging stations and the SoC level of an
electric vehicle.
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