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Abstract
Different temperature sensors show different measurement values when excited by the same dynamic
temperature source. Therefore, a method is needed to determine the difference between dynamic temperature
measurements. This paper proposes a novelty approach to treating dynamic temperature measurements over a
period of time as a temperature time series, and derives the formula for the distance between the measurement
values using uniform sampling within the time series analysis. The similarity is defined in terms of distance to
measure the difference. The distance measures were studied on the analog measurement datasets. The results
show that the discrete Fréchet distance has stronger robustness and higher sensitivity. The two methods have
also been applied to an experimental dataset. The experimental results also confirm that the discrete Fréchet
distance performs better.
Keywords: dynamic temperature, temperature time series, similarity measure, distance measure.
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1. Introduction

Temperature measurement is divided into static temperature measurement and dynamic tem-
perature measurement. Dynamic temperature measurement means that the temperature is not
constant during the measurement period but changes [1]. For the same dynamic temperature ex-
citation source, whether it is to measure with multiple sensors, or use the multiple measurements
of a single sensor, it is necessary to process multiple groups of similar dynamic temperature
measurements, and distinguishing them poses is a serious problem.

Temperature measured with a sensor over a period of time is a group of time series data, so time
series analysis is the most appropriate. Therefore, we regard dynamic temperature measurement
values as a temperature time series [2] and distinguish them by calculating the similarity. And
for temperature time series, the similarity between them is mainly measured by the Euclidean
distance [3], but it only applies to data with the same sampling frequency [4].

Therefore, we also provide the Fréchet distance as an alternative method on this basis, and we
study the Euclidean distance and Fréchet distance on the analog measurement datasets through
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simulation. Then the same procedure is applied to an experimental dataset. The results show
to distinguish multiple groups of similar dynamic temperature measurements that the Fréchet
distance is more suitable for indicating temperature difference than the Euclidean distance.

2. Related work

The Euclidean distance is applied to measure the similarity between dynamic temperature
measurements. Kunt et al. [3] used the Euclidean distance to measure the similarity between
the two response curves. Mukherjee et al. [5] studied the arrangement of temperature sensors
based on K-means clustering with a microprocessor. The Euclidean distance was used as the
similarity function of measuring distance, and the average accuracy was improved by 19%. Guo
et al. [6] used the Euclidean distance as a nonlinear operator to obtain a better model effect
when monitoring the temperature trend of a wind turbine. Ortega et al. [7] designed an intelligent
detector based on temperature modulation, and took the Euclidean distance as the similarity
measure in cluster analysis.

However, the Euclidean distance is a one-to-one measure, which is only suitable for data with
the same sampling frequency, so the application is not satisfactory. The Fréchet distance seeks the
best time alignment matching, which can better indicate the difference between similar dynamic
temperature measurements. Driemel et al. [8] studied the time series clustering problem with the
application of the Fréchet distance, and proposed a clustering algorithm based on it which resulted
in a better clustering result. Jiang et al. [9] raised a trajectory compression method based on the
Fréchet distance, which brought a better geometric similarity between the compressed trajectory
and the original trajectory. Fan et al. [10] proposed a long-term intuitive fuzzy time series
prediction model based on vector quantization and a curve similarity measure, which replaced
the Euclidean distance by the Fréchet distance, making it more suitable for vector matching. Hadi
et al. [11] developed a data diagnosis method based on the Fréchet distance to diagnose outliers
in data and verify the method in two groups of data.

Dynamic temperature measured with a sensor over a period of time can be treated as a
temperature time series. Temperature time series can be analyzed through a data-driven method.
This paper presents simulation of analog dynamic temperature measurement datasets, and analysis
of the similarity of temperature time series with Euclidean Fréchet distances. These methods are
also applied to the experimental dataset. The results show that Fréchet distance can indicate the
difference between dynamic temperatures, and is more suitable than the Euclidean distance.

3. Theoretical background

3.1. Temperature time series analysis

Temperature time series is based on time- or space-transformed datasets generated on the
basis of time domain observations. Processing temperature time series data has difficulties such
as huge data volume, high-dimensional datasets, and noise.

There are four kinds of time series analyses [12]:
– Discrete analysis considers only part of the information in the sequence and assumes that

the observed eigenvalues have no regularity in time or ignores their regularity in time.
– Point set analysis regards the time series as an unordered feature point set which can be

represented by a distribution function.
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– Uniform sampling analysis differs from the point set analysis in that it considers the order
of points in the feature point set. Usually, the analyzed time series can be described by
vectors, but it is difficult for uniform sampling to distinguish time inconsistencies.

– Time domain modeling allows time distortion and does not limit the length of the sequence.
Considering temperature time series to be sequential, this paper adopts uniform sampling

analysis and uses distance to measure the difference between the dynamic temperature measure-
ments.

3.2. Measures of dynamic temperature measurements similarity

The similarity between dynamic temperature measurements is usually defined in terms of
distance. The distance between any two points in the metric space 𝜓 is defined as:

𝑑 : 𝜓 × 𝜓 → 𝑑 (𝑎, 𝑏) ∈ R. (1)

The distance needs to meet the following three conditions:
(1) It is non-negative:

𝑑 (𝑎, 𝑏) ≥ 0, ∀𝑎, 𝑏 ∈ 𝜓. (2)

(2) It is symmetric:
𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝜓. (3)

(3) It satisfies the triangle inequality:

𝑑 (𝑎, 𝑏) ≤ 𝑑 (𝑎, 𝑐) + 𝑑 (𝑐, 𝑏), ∀𝑎, 𝑏, 𝑐 ∈ 𝜓. (4)

However, distance can only describe the similarity qualitatively, so it is difficult to analyze
similarity with different methods on a unified scale. Therefore, the similarity is quantified with a
similarity measure.

A similarity measure involves weighing the degree of similarity between individuals. In
contrast to the distance measure, the larger the similarity measure, the greater the individual
similarity and the smaller the difference.

Given function similarity(·, ·) as a normalized similarity, then it satisfies properties as follows:

similarity(𝑎, 𝑏) ∈ [0, 1],
similarity(𝑎, 𝑏) = 1 ⇔ 𝑎 = 𝑏,

similarity(𝑎, 𝑏) = 0 ⇔ 𝑎 and 𝑏 are completely different.

The similarity can be defined in terms of distance measure as:

similarity(𝑎, 𝑏) = 1
1 + dist(𝑎, 𝑏) , (5)

where dist represents the distance measure and 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 represents the normalized similarity.

3.2.1. Euclidean distance

The Euclidean distance is defined in a Euclidean space to calculate the overall dissimilarity. It
compares samples at the same time and is a one-to-one metric [13]. Figure 1 shows the Euclidean
distance between two discrete dynamic temperature measurements 𝑇𝐴 and 𝑇𝐵.
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Fig. 1. Euclidean distance between 𝑇𝐴 and 𝑇𝐵 .

Given two discrete dynamic temperature measurements 𝑇𝐴 and 𝑇𝐵,

𝑇𝐴 = {𝑎𝑘 | 𝑘 = 1, 2, 3, . . . , 𝑛} ∈ 𝜓, (6)

𝑇𝐵 = {𝑏𝑘 | 𝑘 = 1, 2, 3, . . . , 𝑛} ∈ 𝜓. (7)

In the metric space, the Euclidean distance is defined as:

𝑑𝐸 (𝑇𝐴, 𝑇𝐵) =

√√
𝑛∑︁

𝑘=1
(𝑎𝑘 − 𝑏𝑘 )2 , (8)

The Euclidean distance is parameter-free [14]. However, it has the drawbacks of high sensitiv-
ity to noise and inability to reflect the morphological characteristics of the sequence. Furthermore,
the Euclidean distance cannot deal with the time drift; that is, it cannot align two series in a feature-
to-feature form (peak-to-peak, trough-to-trough) [4].

3.2.2. Fréchet distance

Maurice René Fréchet proposed the Fréchet distance to describe the similarity of space
paths [15]. Fréchet distance considers the similarity on the curve space path, which makes it more
efficient to deal with time series curves. Suppose 𝐴 and 𝐵 are two continuous curves in a metric
space, 𝐴 : [0, 1] → 𝜓, 𝐵 : [0, 1] → 𝜓. Then, we define continuous increasing functions 𝛼(𝑡)
and 𝛽(𝑡), where 𝛼 : [0, 1] → [0, 1], 𝛽 : [0, 1] → [0, 1]. The Fréchet distance between 𝐴 and 𝐵

is defined as:
𝑑𝐹 (𝐴, 𝐵) = inf

𝛼,𝛽
max
𝑡 ∈[0,1]

{
𝑑 (𝐴 (𝛼(𝑡)) , 𝐵 (𝛽(𝑡)))

}
, (9)

where, 𝑑 represents the distance metric function on metric space𝜓. 𝐴(𝛼(𝑡)) and 𝐵(𝛽(𝑡)) represent
the spatial positions of continuous curves 𝐴 and 𝐵 at time 𝑡, respectively.

From (9), for each group of 𝛼(𝑡) and 𝛽(𝑡), we can always find the maximum distance of two
curves 𝐴 and 𝐵 on the whole path. By changing the variables 𝛼(𝑡), 𝛽(𝑡) and 𝑡, the maximum
distance between the curves will also change. The Fréchet distance is to find a set of appropriate
functions 𝛼(𝑡) and 𝛽(𝑡) to minimize the maximum distance between the curves.

In 1994, Eiter et al. discretized the two continuous curves and expressed them as two sequences
on the basis of the Fréchet distance [16]. Then, the discrete Fréchet distance was proposed by
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them. As the curves are discretized, only the node distance needs to be considered. This makes
it easier to find an optimal route between them. The discrete Fréchet distance is often used to
describe a similarity between two curves at different travel speeds. Figure 2 shows two dynamic
temperature curves and with different response speeds, where 𝑟1 represents the discrete Fréchet
distance between two dynamic temperature series 𝑇𝐴 and 𝑇𝐵.

Fig. 2. Discrete Fréchet distance between 𝑇𝐴 and 𝑇𝐵 .

Given two discrete dynamic temperature measurements 𝑇𝐴 and 𝑇𝐵 from (6) and (7), and
both of them are composed of 𝑛 sampling points, that is, 𝑇𝐴 = {𝑎1, · · · , 𝑎𝑖 , · · · , 𝑎𝑛}, 𝑇𝐵 =

{𝑏1, · · · , 𝑏 𝑗 , · · · , 𝑏𝑛}. We use 𝑢(𝑇𝐴) and 𝑢(𝑇𝐵) to represent the sequential set of 𝑇𝐴 and 𝑇𝐵,
respectively. Then, 𝑢(𝑇𝐴) = {𝑎𝑖 , . . . , 𝑎𝑛} and 𝑢(𝑇𝐵) = {𝑏𝑖 , . . . , 𝑏𝑛}, at the same time, sequence
point pairs 𝜏 can be obtained 𝜏 =

{
(𝑎1, 𝑏1), · · · , (𝑎𝑖 , 𝑏 𝑗 ), · · · , (𝑎𝑛, 𝑏𝑛)

}
. The distance of the

sequence pairs between 𝑇𝐴 and 𝑇𝐵 can be defined as:

𝑑𝜏
𝐷𝐹 (𝑇𝐴, 𝑇𝐵) = max

(𝑎,𝑏) ∈𝜏
𝑑 (𝑎, 𝑏). (10)

The discrete Fréchet distance between 𝑇𝐴 and 𝑇𝐵 is defined as in [17]:

𝑑𝐷𝐹 (𝑇𝐴, 𝑇𝐵) = min
𝜏

𝑑𝜏
𝐷𝐹 (𝑇𝐴, 𝑇𝐵) . (11)

It can be seen from (11) that the definition of discrete Fréchet distance satisfies the nonnega-
tivity, symmetry and trigonometric inequality of distance measures.

4. Dataset

4.1. Numerical simulation dataset

Zimmerschied and Isermann [18] applied an amplitude-modulated pseudo-random binary
sequence to the study of dynamic characteristics of a temperature sensor, which can better reflect
the variation of dynamic temperature than the step signal and the pseudo-random binary sequence.
So, we used an amplitude-modulated pseudo-random binary sequence as excitation temperature.
The time length of the whole sequence is 200 s, the data length 𝑛 studied in this paper ranges
from 1001 to 10001. As shown in Fig. 3, it is an amplitude-modulated pseudo-random binary
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Fig. 3. Excitation signal.

sequence with data length 𝑛 of 2001 and a time interval of 0.1 s. Data length 𝑛 could be changed
by changing the time interval between adjacent points.

As can be seen from Fig. 3, the 𝑥-axis represents the sampling time and the 𝑦-axis represents
the dimensionless temperature. The dimensionless temperature is a dimensionless value between
0 and 1, where 0 represents low temperature excitation, 1 represents high temperature excitation,
and the value between 0 and 1 corresponds to the temperature excitation between low temperature
and high temperature. Following Tagawa [19], we simulated a temperature sensor with a time
constant of 0.04 s. Its transfer function is

𝐺 (𝑠) = 1
0.04𝑠 + 1

. (12)

The amplitude-modulated pseudo-random binary sequence in Fig. 3 was used as the excitation
temperature for the sensor represented by (12), and the theoretical measurement values of the
temperature sensor were obtained, as shown in Fig. 4.

Fig. 4. Temperature sensor output.

Fig. 5 shows the zoomed characteristics of the temperature sensor input and response in the
one-coordinate system (75–83 s).

As can be seen from Fig. 5, the dynamic response of the temperature sensor lags behind the
input. Gaussian noise was added to these values to obtain the analog measurement values of the
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Fig. 5. Input and response of the temperature sensor (75–83 s local amplification).

temperature sensor. The intensity of the added noise was controlled using the signal-to-noise ratio
(SNR), which is defined as:

SNR = 10 log
(
𝑃𝑆

𝑃𝑁

)
, (13)

where 𝑃𝑆 and 𝑃𝑁 are the effective powers of the signal and noise, respectively.
By changing the SNR, many groups of analog measurement values can be obtained. Following

Li [20], we set an SNR range of 20 dB to 70 dB and obtained several groups of analog measurement
values. A small SNR indicates a large measurement error, while a large SNR indicates a small
measurement error.

We also define the time constant ratio 𝜏𝑟 as follows:

𝜏𝑟 =
𝜏𝐴

𝜏𝐵
, (14)

where 𝜏𝑟 represents the time constant ratio, 𝜏𝐴 and 𝜏𝐵 are the time constants of two temperature
sensors, respectively.

For a comparison, we also simulated multiple temperature sensors according to the definition
of time constant ratio 𝜏𝑟 . Its transfer function is defined as:

𝐺 (𝑠) = 1
0.04𝜏𝑟 𝑠 + 1

. (15)

The time constant ratio range studied in this paper is 1–2.5 and the step size is 0.5. Using a
similar method, we obtained the analog measurement values of temperature sensors.

4.2. Experimental measurement dataset

In order to validate the effectiveness of the two similarity measures in the experimental
data, an experimental setup for measuring dynamic temperature was built for the purpose of this
paper. The system mainly included four segments: dynamic temperature measurement segment,
mechanical drive segment, data acquisition segment and control segment, as shown in Fig. 6.

The temperature sensors used in the experiment were K-type NiCr/ NiSi thermocouples
with wire diameters of 0.15 mm (thermocouple A), 0.15 mm (thermocouple B) and 0.1 mm
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Fig. 6. Dynamic temperature measurement experimental setup.

respectively (thermocouple C), and the accuracy of the sensors is ±1.5◦C. The thermocouple was
statically calibrated by a measuring furnace, a multi-channel thermometer and a second-class
standard platinum rhodium thermocouple in the temperature range of 323 K–923 K. The data
acquisition card was a USB-2408 (24-bit AD resolution), hot-air guns A and B were QUICK2008,
and the programmable controller was an OMRON CPM1A.

First, two hot-air guns A and B produced high- and low-temperature airflows respectively
as the temperature excitation of the thermocouples, and then the mechanical driving device was
controlled by the driving controller to realize the swing of the thermocouple measuring point
between the two temperature sources. Finally, the dynamic temperature data collected by the data
acquisition card was returned to the controller for storage and processing, and the TracerDAQ
software output the data in real time.

Table 1 shows the parameters of the experimental setup.

Table 1. Experimental parameters.

Sampling
frequency/Hz Data length High-temperature

airflow/K
Low-temperature

airflow/K
50 10001 633 323

With parameters in Table 1, the experimental dataset of three thermocouples was obtained.
Figure 7 shows the dynamic response of the three thermocouples under 323 K low-temperature
airflow and 633 K high-temperature airflow, with the data length of 10001.

The three thermocouples are all bare wire thermocouples, and the smaller the wire diameter of
the bare wire thermocouple, the smaller the time constant and the greater the speed of response. In
addition, it can be seen from Fig. 7 that thermocouple A (wire diameter of 0.15 mm), thermocouple
B (wire diameter of 0.15 mm) and thermocouple C (wire diameter of 0.1 mm) show good
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Fig. 7. Thermocouple experimental measurement data (low-temperature airflow at 323 K
and high-temperature airflow at 633 K).

consistency for the same dynamic temperature excitation, and their experimental measurement
values are similar and difficult to distinguish.

5. Result

5.1. Numerical simulation result

5.1.1. SNR

Firstly, considering that the time constant ratio 𝜏𝑟 = 1, the similarity between the analog
measurement values of dynamic temperature in different noise environments is studied. The
analog measurement values of sensors were obtained for SNR = 20 dB, the Euclidean distance
and the discrete Fréchet distance between the two groups of measurements were calculated.
Then, the SNR was increased in 5 dB steps to get the analog measurement values and calculate
the two distances at each step. The results are shown in Fig. 8a. The similarity between the analog
measurement values can be calculated from these two distances according to (5), as shown in
Fig. 8b.

Fig. 8 shows that when the SNR increases, so do the two kinds of similarity (as abscissa
values increase). However, the sensitivities of the two kinds of similarities to the variation in
SNR are different, with the similarity based on the Euclidean distance being the most sensitive.
This means that the result given by the Euclidean distance in the analog measurement values with
noise is not reliable, and it will misjudge the two groups of similar temperature data. Moreover,
the robustness of the method itself is not strong and it can be easily affected by a variety of factors
including noise, so it is difficult to indicate the difference between dynamic temperatures. The
discrete Fréchet distance shows stronger robustness in the case of the analog measurement values
of temperature sensors with noise and is more suitable than the Euclidean distance.

However, owing to the effects of fabrication technology and sensor structure and size, the
time constants of two temperature sensors are not completely equal in practical application. In
the following, the Euclidean distance and the discrete Fréchet distance between the two groups of
measurements were calculated after we assumed the time constant ratio 𝜏𝑟 = 1.5 and also obtained
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a) b)

Fig. 8. Distance between analog measurement values (a); Similarity between analog measurement values (b), of the
temperature sensors with the same time constant of 0.04 s.

the analog measurement values of sensors for SNR = 20 dB. Then, the SNR was increased in
5 dB steps to get the analog measurement value and calculate the two distances at each step.
The results are shown in Fig. 9a. The similarity between the analog measurement values can be
calculated from these two distances according to (5), as shown in Fig. 9b.

a) b)

Fig. 9. Distance between analog measurement values (a); Similarity between analog measurement values (b), of the
temperature sensors with different time constants of 0.04 s and 0.06 s.

Fig. 9 shows that when the sensors have different time constants, the similarities based on
the Euclidean and discrete Fréchet distances sensitively measure the difference. Table2 shows the
distance and similarity between the analog measurement values of the Euclidean distance and the
discrete Fréchet distance with two time-constant ratios of 1 and 1.5 respectively at different SNRs.

The results in Fig. 8, Fig. 9 and Table 2 combined show that the discrete Fréchet distance can
better indicate the temperature difference between the analog measurement values of two temper-
ature sensors with different time constants than the Euclidean distance. In the noise environment
with high SNR, taking SNR of 70 dB as an example, the influence of the time constant ratio 𝜏𝑟
increases the Euclidean distance varies from 0.0200 to 0.2920, and the discrete Fréchet distance
varies from 0.0016 to 0.0836. The discrete Fréchet distance is more sensitive to the variation of
the time constant of the temperature sensor, that is, it can indicate the difference between two
groups of similar dynamic temperature measurements. In the noise environment with low SNR,
the robustness of the Euclidean distance is poor, and it is more vulnerable to noise interference.
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Table 2. Distance and similarity between analog measurements of two temperature sensors.

SNR/dB 𝝉r
Euclidean distance Discrete Fréchet distance

Distance Similarity Distance Similarity

20
1 6.3213 0.1366 0.3568 0.7370

1.5 6.3245 0.1365 0.3582 0.7363

25
1 3.5525 0.2197 0.2294 0.8134

1.5 3.5594 0.2193 0.2317 0.8119

30
1 1.9959 0.3338 0.1449 0.8734

1.5 2.0213 0.3310 0.1508 0.8690

35
1 1.1252 0.4750 0.0900 0.9175

1.5 1.1641 0.4621 0.1091 0.9016

40
1 0.6328 0.6124 0.0513 0.9512

1.5 0.6960 0.5896 0.0909 0.9167

45
1 0.3563 0.7373 0.0292 0.9716

1.5 0.4601 0.6849 0.0854 0.9213

50
1 0.2000 0.8333 0.0160 0.9842

1.5 0.3537 0.7387 0.0835 0.9229

55
1 0.1128 0.8986 0.0092 0.9909

1.5 0.3119 0.7662 0.0835 0.9229

60
1 0.0631 0.9407 0.0051 0.9949

1.5 0.2980 0.7704 0.0839 0.9226

65
1 0.0355 0.9658 0.0029 0.9971

1.5 0.2933 0.7742 0.0837 0.9228

70
1 0.0200 0.9804 0.0016 0.9984

1.5 0.2920 0.7740 0.0836 0.9228

5.1.2. Time constant ratio

This section focuses on the influence of time constant ratio 𝜏𝑟 on the similarity between
dynamic temperature measurements. As shown in Fig. 10, the distance between the analog
measurement values of two temperature sensors with time constant ratios of 1, 1.5, 2 and 2.5
under different noise environments was calculated with the Euclidean distance and the discrete
Fréchet distance respectively.

The similarity between the analog measurement values can be calculated from these two
distances according to (5), as shown in Fig. 11.

In order to further analyze the sensitivity of the two distance measures to the difference caused
by the variation of the time constant of the temperature sensor, we introduce variation ratio 𝑣𝑟 as
the evaluation metric, which is defined as follows:

𝑣𝑟 =
𝑑
(
𝑇0.04𝜏𝑟 , 𝑇0.04

)
− 𝑑 (𝑇0.04, 𝑇0.04)

𝑑 (𝑇0.04, 𝑇0.04)
, (16)

where 𝜏𝑟 represents the time constant ratio, 𝑇0.04 and 𝑇0.04𝜏𝑟 represent the dynamic temperature
analog measurement values of the temperature sensors with the time constants of 0.04 s and
0.04𝜏𝑟 s, respectively, 𝑑 ( , ) represents the distance measure. Table 3 shows variation ratio 𝑣𝑟
of the temperature sensors with time constant ratios 𝜏𝑟 of 1.5, 2 and 2.5 under different noise
environments.

293

https://doi.org/10.24425/mms.2022.140036


Z. Cui et al.: SIMILARITY ANALYSIS OF DYNAMIC TEMPERATURE MEASUREMENTS

Fig. 10. Distance between analog measurement values of the temperature sensors for an SNR of 20 dB (a); 30 dB (b);
40 dB (c); 50 dB (d); 60 dB (e); 70 dB (f)

Fig. 11. Similarity sensitivity against the degree of variation of the time constant ratio for an SNR of 20 dB (a); 30 dB (b);
40 dB (c); 50 dB (d); 60 dB (e); 70 dB (f)

Table 3. Variation ratio 𝑣𝑟 of two distance measures.

SNR/dB
Euclidean distance Discrete Fréchet distance

𝜏𝑟 = 1.5 𝜏𝑟 = 2 𝜏𝑟 = 2.5 𝜏𝑟 = 1.5 𝜏𝑟 = 2 𝜏𝑟 = 2.5

20 0.0005 0.0024 0.0064 0.0039 0.0154 0.0219

30 0.0127 0.0370 0.0673 0.0407 0.2422 0.4210

40 0.0999 0.3086 0.5469 0.7719 1.8616 2.6959

50 0.7685 1.8585 2.8615 4.2188 7.9375 10.6375

60 3.7227 7.5325 10.8685 15.4510 26.9804 35.3629

70 13.6000 25.755 36.325 51.3125 88.1250 114.9375
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The results in Fig. 10 and Fig. 11 show that both Euclidean distance and discrete Fréchet
distance can measure the difference of temperature sensor caused by the variation of time constant
ratio 𝜏𝑟 , and with the increase of time constant ratio 𝜏𝑟 , the distance between analog measurement
values increases and the similarity decreases.

The results in Table 3 show that the sensitivity of the discrete Fréchet distance is significantly
stronger than that of the Euclidean distance under different noise environments. In addition, with
the decrease of SNR, the sensitivity of the two distance measures decreases. The main reason for
this phenomenon is that the robustness of the method decreases, and it is more vulnerable to noise
interference, resulting in a decrease in sensitivity. Nevertheless, the robustness of the discrete
Fréchet distance is still stronger than that of the Euclidean distance, which is more suitable for
processing dynamic temperature data with noise.

5.1.3. Data length

Data length represents the number of time series elements. In this section, the data length
studied ranged from 1001 to 10001 and noise environment SNR ranged from 20 dB to 70 dB. Two
groups of temperature sensors with time constant ratio 𝜏𝑟 of 1 and 1.5 were taken as the research
objects. Figure 12 shows the Euclidean distance and the discrete Fréchet distance between analog
measurements with data length 𝑛 of 1001, 2001, 4001 and 10001 respectively.

Fig. 12. Distance between analog measurement values of the temperature sensors for 𝜏𝑟 = 1, SNR = 20 dB (a); 𝜏𝑟 = 1,
SNR = 70 dB (b); 𝜏𝑟 = 1.5, SNR = 20 dB (c); 𝜏𝑟 = 1.5, SNR = 70 dB (d).

The similarity between analog measurement values was calculated following (5) and the
results are shown in Fig. 13.

295

https://doi.org/10.24425/mms.2022.140036


Z. Cui et al.: SIMILARITY ANALYSIS OF DYNAMIC TEMPERATURE MEASUREMENTS

Fig. 13. Similarity sensitivity against the degree of variation of data length 𝑛 for 𝜏𝑟 = 1, SNR = 20 dB (a); 𝜏𝑟 = 1,
SNR = 70 dB (b); 𝜏𝑟 = 1.5, SNR = 20 dB (c); 𝜏𝑟 = 1.5, SNR = 70 dB (d).

The results in Fig. 12 and Fig. 13 combined show that with an increase in data length, the
Euclidean distance between the analog measurement values of the temperature sensor increases
rapidly, while the discrete Fréchet distance varies little. Due to the difference of large order of
magnitude between the Euclidean distance and the discrete Fréchet distance, it is difficult to
analyse the impact of the data length only with the numerical variation trend. Therefore, 𝑣𝑙 is
introduced as an evaluation metric to represent the variation rate of the two distances with data
length. A smaller 𝑣𝑙 means that the distance is less affected by the data length, which is defined
as follows:

𝑣𝑙 =

���𝑑 (
𝑇 𝑙

0.04𝜏𝑟 , 𝑇
𝑙
0.04

)
− 𝑑

(
𝑇1001

0.04𝜏𝑟 , 𝑇
1001
0.04

)���
𝑑

(
𝑇1001

0.04𝜏𝑟 , 𝑇
1001
0.04

) (𝑙 = 2001, 4001, 10001), (17)

where 𝑇 𝑙
0.04, 𝑇 𝑙

0.04𝜏𝑟 represent the analog measurement values of the temperature sensors with
data length of 𝑙 and time constants of 0.04 s and 0.04𝜏𝑟 s, respectively. 𝑇1001

0.04 , 𝑇1001
0.04𝜏𝑟 represent

the analog measurement values of the temperature sensors with data length of 1001 and time
constants of 0.04 s and 0.04𝜏𝑟 s, respectively. The values of 𝑣𝑙 are shown in Table 4.

The results in Table 4 show that, compared with Euclidean distance under the conditions of
different SNRs and different time constant ratio 𝜏𝑟 , 𝑣𝑙 of each data length of the discrete Fréchet
distance is less than the Euclidean distance, which means that the discrete Fréchet distance is less
affected by data length 𝑛. Therefore, discrete Fréchet is insensitive to the variation of data length,
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Table 4. 𝑣𝑙 for the two distance measures.

SNR/dB 𝝉r
Euclidean distance Discrete Fréchet distance

𝑙 = 2001 𝑙 = 4001 𝑙 = 10001 𝑙 = 2001 𝑙 = 4001 𝑙 = 10001

20
1 0.4110 0.9935 2.1531 0.0930 0.1833 0.2394

1.5 0.4126 1.0004 2.1557 0.1002 0.1706 0.2409

70
1 0.4085 0.9930 2.1620 0.0667 0.2000 0.2000

1.5 0.5098 1.1851 2.5341 0.3145 0.4450 0.4528

has a wider applicability, and as such, is more suitable for processing dynamic temperature data
than Euclidean distance.

5.2. Experimental results

Section 5.1 analyzed the performance of the Euclidean distance and the discrete Fréchet
distance on multiple groups of analog measurement datasets by simulation. In order to verify the
numerical simulation results, the two distance measures were further analysed with the experi-
mental dataset presented in this paper. The experimental dataset was acquired by thermocouple A,
thermocouple B and thermocouple C. Before calculating the similarity, the experimental dataset
was normalized. Based on the normalized experimental dataset, the Euclidean distance and the
discrete Fréchet distance were used to measure the similarity of performance of the three ther-
mocouples under the same dynamic temperature excitation, as shown in Table 5.

Table 5. Euclidean and discrete Fréchet distances between the three thermocouple sensors.

Euclidean distance
Thermocouple A Thermocouple B Thermocouple C

Distance Similarity Distance Similarity Distance Similarity

Thermocouple A / / 0.9784 0.5055 2.1779 0.3147

Thermocouple B 0.9784 0.5055 / / 1.4428 0.4094

Thermocouple C 2.1779 0.3147 1.4428 0.4094 / /

Discrete Fréchet distance
Thermocouple A Thermocouple B Thermocouple C

Distance Similarity Distance Similarity Distance Similarity

Thermocouple A / / 0.1180 0.8945 0.2052 0.8297

Thermocouple B 0.1180 0.8945 / / 0.1429 0.8750

Thermocouple C 0.2052 0.8297 0.1429 0.8750 / /

The results in Table 5 show that the distance between the experimental measurement value
measured with the Euclidean distance is significantly greater than the discrete Fréchet distance.
This is because the Euclidean distance involves the distance between points and is highly sensitive
to variation of each dynamic temperature measurement sampling point. At the same time, the
discrete Fréchet distance focuses more on the structure and spatial similarity between dynamic
temperature measurements. Under the excitation of the same dynamic temperature, with three
thermocouples with of response speeds caused by different wire diameters, the discrete Fréchet
distance can better grasp the structural similarity. The discrete Fréchet distance is more suitable
for distinguishing between multiple groups of similar dynamic temperature measurements.
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6. Conclusions

In dynamic calibration, values measured with a high-precision temperature sensor are used
to approximate the real temperature, and the point of interest is how to convert into a comparison
between two temperature sensors. This paper has analyzed the similarity between the dynamic
temperature measurements of temperature sensors. Aiming at solving the problem of how to
distinguish multiple groups of similar dynamic temperature measurements, it is proposed to cal-
culate the similarity through the distance measures to distinguish the similar dynamic temperature
measurements. Simulations show that the discrete Fréchet distance can distinguish the dynamic
temperature measurement values more accurately than the Euclidean distance, and the perfor-
mance is better in the noise environment with low SNR. We have built an experimental setup for
measuring dynamic temperature with thermocouples and acquired the experimental dataset. The
experimental results are consistent with the simulation results. The main reason why the discrete
Fréchet distance is better than the Euclidean distance is that the Euclidean distance is sensitive
to noise and is a step-locked measure. In contrast, the discrete Fréchet distance can allow time
distortion, adapt to a local time shift, has low sensitivity to noise and as such, it is more suitable
to process dynamic temperature data as a similarity measure.

In future research, we can also study thermocouples of different materials and different types
of temperature sensors. The combination of deep learning algorithms and denoising algorithms
is also considered to better deal with the dynamic temperature measurements in strong noise
environment.
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