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An efficient iteration procedure for form finding of slack
cables under concentrated forces

Igor Orynyak 1, Federico Guarracino2, Mariano Modano3,
Roman Mazuryk4

Abstract: The goal of paper is the development and demonstration of efficiency of algorithm for form
finding of a slack cable notwithstanding of the initial position chosen. This algorithm is based on
product of two sets of coefficients, which restrict the rate of looking for cable geometry changes at each
iteration. The first set restricts the maximum allowable change of absolute values of positions, angles
and axial forces. The second set takes into account whether the process is the converging one (the
signs of maximal change of parameters remain the same), so that it increases the allowable changes;
or it is a diverging one, so that these changes are discarded. The proposed procedure is applied to two
different methods of simple slack cable calculation under a number of concentrated forces. The first
one is a typical finite element method, with the cable considered as consisting of number of straight
elements, with unknown positions of their ends, and it is essentially an absolute coordinate method. The
second method is a typical Irvine’s like analytical solution, which presents only two unknowns at the
initial point of the cable; due to the peculiarity of implementation it is named here a shooting method.
Convergence process is investigated for both solutions for arbitrary chosen, even very illogical initial
positions for the ACM, and for angle and force at the left end for SM as well. Even if both methods
provide the same correct convergent results, it is found that the ACM requires a much lower number of
iterations.

Keywords: concentrated force, cable, iteration procedure, shooting method, absolute coordinate
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1. Introduction

Analysis of cables is a strongly nonlinear problem from a geometrical standpoint and
requires a careful formulation of the element, as well as a robust and efficient algorithm
for the solution of assemblages of cables. In most case there are no clear borders between
these problems, because the type of element might demand a certain organization of the
numerical scheme. So, it is hardly to judge which formulation can be more efficient and
contribute mostly to the overall efficiency of analysis.
When the cable weight can be neglected, the behavior of a system of cables reduces to a

set of straight lines which are connected under some angle at the point of force application.
The governing equations for the isolated cable under concentrated loads are very simple.
The first one is equilibrium equation:

(1.1) ®𝑇𝑒,𝑖 = ®𝑇𝑏,𝑖+1 + ®𝐹𝑖,𝑖+1

where ®𝑇𝑒,𝑖 and ®𝑇𝑏,𝑖+1 are the tangent forces at the end (index 𝑒) of the 𝑖-th section, and at the
beginning (index 𝑏) of the (𝑖+1)-th section, and ®𝐹𝑖,𝑖+1 is the outer force applied between
them. The second equation is relationship between the elongation and tangent force applied
to each element:

(1.2) d𝑠𝑖 =
(
1 +

��� ®𝑇𝑖 ��� /𝑘𝑖) d 𝑙𝑖
d𝑠𝑖 , d 𝑙𝑖 are the final and the initial lengths of the 𝑖-th element and 𝑘𝑖 is its stiffness. These
two equations represent, in fact, the basis for the theory of cables under concentrated forces.
They are supplemented by boundary conditions and possible restrictions.
There are very few works which are devoted to the investigation of the actions of

concentrated forces. Most of them take origin from the work of Irvine and Sinclair [1, 2].
They have shown that a cable element can be described by two independent unknowns
at its origin (beginning), e.g., the horizontal and vertical components of the axial force
or equivalently, by the value of axial force and its angle of inclination. In this sense the
approach to concentrated forces is identical to the scheme of solution for the catenary
equation (uniformly distributed loading) initially proposed in [3,4]. The generalization for
cable in space and for uniformly distributed load generically oriented in space was given
in [5, 6], which requires to choose three (instead of two) trial unknowns at the beginning.
The simplicity of governing equations and their identity with those of truss element

pose no problem with mathematical formulation of element and, in fact, guarantee the
overall accuracy of solution, provided it converges and boundary conditions are fulfilled.
So, the main question is whether or not the solution converges. Two choices, which are
concerned with the algorithm, are “responsible” for the convergence. First is the choice of
initial (trial) geometry (two initial parameters at the beginning for 2D and three- for 3D
problem); second is the form finding procedure.
Starting from the seminal work of Irvine and Sinclair [1] the modified Newton or New-

ton Raphson [7] methods are used. But it is known [5] that Newton’s method will converge
only if the starting values are sufficiently close to the actual solution of the problem. So, the



AN EFFICIENT ITERATION PROCEDURE FOR FORM FINDING OF SLACK CABLES . . . 647

trial initial geometry becomes the central problem in any numerical implementation. For
one cable systems the trial solution can usually be obtained graphically [8]. The problem
becomes more complex for a slack cable, whose initial length is much larger than the dis-
tance between the fixed end points [9,10]. Therefore, the common approach is to start from
a tensed geometry and iteratively adjust the position of either of supports to attain the cor-
rect position. This is generally done in combination with the Newton Raphson method [10].
Also, it is possible to artificially reduce the initial length of cable and successively increase
its length iteratively.
All these methods are subjective and depend on choice of the initial configuration.

Of course, for one cable systems the problem is not complicated because a guess can
always be made about the initial position. The problem arises for a net of cables, where it
is hardly to envisage the plausible initial geometry, including prestress. So, the cable net
geometry determination can be a complex procedure, which requires first a form finding
for separate elements, provided that their end positions are known and the internal forces
are in equilibrium with the applied load and, successively, an adjustment of the position of
mutual points of the system and a form finding for separate cables, iteratively [11].
The goal of the present study is the development of a robust form finding algorithm

regardless the initial position of the single slack cable. The algorithm proposed in [12]
and elaborated in [13, 14] for geometrically nonlinear problems is used. It is based on the
notion of basic geometry and correction geometry, where the correction is used to refine the
basic geometry. The coefficient of corrections depends on whether the solution converge
or diverge.
Two analytical approaches are developed. The first approach considers as unknowns the

position of each point of force application. This method resembles the absolute coordinate
method [15, 16], and can be effective for the solution of systems with many cables, some
points of which are connected.
The second method is derived from the classical Irvine’s solution, with the difference

that the initial values are updated on the basis of analytically (not numerically) determined
derivatives for the positions of end points. Just because the implementation of this method
resembles the general idea of the universal Shooting Method, such a name will be retained
here [17].
The case study is that of a single slack cable under the action of several vertical forces.

This geometry allows us to investigate the effectiveness of the different approaches with
respect to the refinement of the geometry after each iteration.

2. Absolute coordinate method

2.1. Designations and basic equation

The equations are written in the form which will be used in iteration process. For
convenience make the following identification. Consider the cable of initial length 𝐿0, and
account for 𝑛 points of force applications on the cable. So, at whole, including the end
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boundaries, it is 𝑛 + 2 points, which are numerated as 𝑖 = 0, 1, 2, . . . , 𝑛+1, where points
and 𝑛 + 1 are the boundary ones. The positions of these points are designated through the
progressive lengths as 𝑙1, 𝑙2, . . . , 𝑙𝑖 , . . . , 𝑙𝑛+1, where, of course, 𝑙𝑛+1 = 𝐿0. So, the 𝑖 section
(element) lies between points 𝑖−1 and 𝑖. We use the following designation for initial length
at each section 𝑠0,1 = 𝑙1 − 0, 𝑠0,2 = 𝑙2 − 𝑙1, 𝑠0,𝑛+1 = 𝑙𝑛+1 − 𝑙𝑛.
Formulate the boundary conditions. With no restrictions on the generality assume that

at left boundary the cable is attached to point with initial position 𝐵(0, 0), and at right
boundary – to the point 𝐸 (𝑋𝐿 , 𝑌𝐿), Fig. 1. For convenience connect points 𝐵 and 𝐸 by a
straight line and determine the geometrical length of vector −−→𝐸𝐵 = ®𝐸 − ®𝐵. Let assume that
distance

���−−→𝐸𝐵��� = 𝐿.

(2.1) −−→
𝐸𝐵 =

(
®𝑖 sin 𝛽0 + ®𝑗 cos 𝛽0

)
𝐿 = ®𝑣𝐿 =

(
®𝑖𝑋𝐿 + ®𝑗𝑌𝐿

)
where 𝛽0 is angle of inclination between the boundary points.

Fig. 1. Initial and deformed positions of force application points

Introduce four governing parameters for each point of the cable. They are: (scalar)
tension force 𝑇 , angle of inclination to the horizontal line 𝛼, horizontal position 𝑥 and
vertical position 𝑦. It is more convenient to relate the last two values to some initial
reference position, connected to the vector −−→𝐸𝐵. So, define the reference position as:

(2.2) ®𝑔𝑖 = ®𝑣𝑔𝑖 =
(
®𝑖𝑋𝑖 + ®𝑗𝑌𝑖

)
Here we introduced some reference position of force application points, ®𝑖𝑋𝑖 + ®𝑗𝑌𝑖 , with

respect to the boundary points. Write down two equations of equilibrium (vertical and
horizontal directions) at any points of force application:

(2.3) 𝑇𝑖 sin𝛼𝑖 − 𝑇𝑖+1 sin𝛼𝑖+1 = 𝐹𝑖 𝑇𝑖 cos𝛼𝑖 − 𝑇𝑖+1 cos𝛼𝑖+1 = 𝑄𝑖

Assume that we have some “guess in” preliminary geometry after 𝑗 iteration. It is
characterized by values of additional displacements 𝑢 𝑗 and 𝑣 𝑗 , where upper index means
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the iteration number. So, the positions of points on horizontal axis, 𝑥 𝑗

𝑖
and vertical, 𝑦 𝑗

𝑖
,

axes, are:

(2.4) 𝑥
𝑗

𝑖
= 𝑋𝑖 + 𝑢

𝑗

𝑖
𝑦
𝑗

𝑖
= 𝑌𝑖 + 𝑣

𝑗

𝑖

Designate the length of each section (element) as 𝑠 𝑗
𝑖
:

(2.5) 𝑠
𝑗

𝑖
=

√︂(
𝑥
𝑗

𝑖
− 𝑥

𝑗

𝑖−1

)2
+

(
𝑦
𝑗

𝑖
− 𝑦

𝑗

𝑖−1

)2
Assume that at next iteration step these values need to be refined. The incremental

values are:

(2.6) 𝑣 𝑗+1 = 𝑣 𝑗 + 𝜀 𝑗+1 𝑢 𝑗+1 = 𝑢 𝑗 + 𝛾 𝑗+1

where 𝜀 𝑗+1 and 𝛾 𝑗+1 are the correction displacements, the determination of which is the
goal of each iteration. There is no need to keep the upper indexes for each iteration. Starting
from here present the search for ultimate solution at the next iteration ®𝑈 𝑗+1 as the sum of
basic solution at the previous iteration ®𝐵 𝑗 and the correction one ®𝐶 𝑗+1, i.e.:

(2.7) ®𝑈 𝑗+1 = ®𝐵 𝑗 + ®𝐶 𝑗+1

Designations 𝑠𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑢𝑖 , 𝑣𝑖 pertain to basic solutions. Designations 𝜀𝑖 and 𝛾𝑖 pertain
to correction solution. It is implicitly assumed that their values are much smaller than 𝑥𝑖
and 𝑦𝑖 . Present the expressions for the Ultimate lengths at the next iteration through their
projections:

(2.8) 𝑠𝑈𝑖 =

√︃
(𝑥𝑖 − 𝑥𝑖−1 + 𝛾𝑖 − 𝛾𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1 + 𝜀𝑖 − 𝜀𝑖−1)2

Evidently expressions for sinus and cosines functions from the angles of inclination are
given by:

(2.9) sin𝛼 𝑗+1
𝑖

=
𝑦𝑖 + 𝜀𝑖 − 𝜀𝑖−1

𝑠𝑈
𝑖

cos𝛼 𝑗+1
𝑖

=
𝑥𝑖 − 𝑥𝑖−1 + 𝛾𝑖 − 𝛾𝑖−1

𝑠𝑈
𝑖

Then according to physical relation between the tangent force and increment of lengths
of the element, for the simplest case of linearly elastic material according to (1.2) it can be
written:

(2.10) 𝑇𝑖 = 𝑘𝑖

(
𝑠𝑈
𝑖
− 𝑙𝑖

)
𝑙𝑖

By inserting (2.8)–(2.10) into (2.3), we get two governing equations:

(2.11) 𝑘𝑖
𝑠𝑈
𝑖
− 𝑙𝑖

𝑙𝑖

𝑦𝑖 − 𝑦𝑖−1 + 𝜀𝑖 − 𝜀𝑖−1

𝑠𝑈
𝑖

− 𝑘𝑖+1
𝑠𝑈
𝑖+1 − 𝑙𝑖+1

𝑙𝑖+1

𝑦𝑖+1 − 𝑦𝑖 + 𝜀𝑖+1 − 𝜀𝑖

𝑠𝑈
𝑖+1

= 𝐹𝑖

(2.12) 𝑘𝑖
𝑠𝑈
𝑖
− 𝑙𝑖

𝑙𝑖

𝑥𝑖 − 𝑥𝑖−1 + 𝛾𝑖 − 𝛾𝑖−1

𝑠𝑈
𝑖

− 𝑘𝑖+1
𝑠𝑈
𝑖+1 − 𝑙𝑖+1

𝑙𝑖+1

𝑥𝑖+1 − 𝑥𝑖 + 𝛾𝑖+1 − 𝛾𝑖

𝑠𝑈
𝑖+1

= 𝑄𝑖

Once all preliminary positions are set, the solution of the problem can be pursued. For
simplicity assume that 𝑘𝑖 = 𝑘𝑖+1 = 𝑘 , which allows us to simplify equilibrium expressions.
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2.2. Linearization

There are 𝑛 points with two unknown parameters (horizontal and vertical positions), so
at each iteration we have 2𝑛 unknowns, represented by two sets of 𝜀 and 𝛾. There are also
𝑛 equations (2.11) and 𝑛 equations (2.12). Thus, the number of unknowns and equations
are the same.
The proposed strategy for solution consists in linearizing expressions (2.8), (2.9)

and (2.10) with respect to 𝜀 and 𝛾. Then these linearized expressions are substituted
to (2.11) and (2.12) with subsequent linearization (i.e., by neglecting the products of 𝜀
and 𝛾).
Retaining in expression for 𝑠𝑈

𝑖
(2.8) only the values of first order of smallness, it can

be rewritten as:

(2.13) 𝑠𝑈𝑖 = 𝑠𝑖 + (𝛾𝑖 − 𝛾𝑖−1)
(𝑥𝑖 − 𝑥𝑖−1)

𝑠𝑖
+ (𝜀𝑖 − 𝜀𝑖−1)

(𝑦𝑖 − 𝑦𝑖−1)
𝑠𝑖

From (2.13) follows:

(2.14)
1
𝑠𝑈
𝑖

=
(𝑠𝑖)2 − (𝛾𝑖 − 𝛾𝑖−1) (𝑥𝑖 − 𝑥𝑖−1) − (𝜀𝑖 − 𝜀𝑖−1) (𝑦𝑖 − 𝑦𝑖−1)

(𝑠𝑖)3

Substituting (2.13) and (2.14) into (2.11), neglecting the products of small unknown
values, and grouping the knowns and unknown variables, we get the simplified equation:

(2.15) 𝜀𝑖−1
(
−𝑍 𝑗

2,𝑖

)
+ 𝜀𝑖

(
𝑍

𝑗

2,𝑖 − 𝑍
𝑗

3,𝑖

)
+ 𝜀𝑖+1

(
𝑍

𝑗

3,𝑖

)
+ 𝛾𝑖−1

(
−𝑍 𝑗

4,𝑖

)
+ 𝛾𝑖

(
𝑍

𝑗

4,𝑖 − 𝑍
𝑗

5,𝑖

)
+ 𝛾𝑖+1

(
𝑍

𝑗

5,𝑖

)
= 𝑍

𝑗

1,𝑖

where

𝑍
𝑗

1,𝑖 =

(
1
𝑙𝑖
− 1

𝑠𝑖

)
(𝑦𝑖 − 𝑦𝑖−1) −

(
1
𝑙𝑖+1

− 1
𝑠𝑖+1

)
(𝑦𝑖+1 − 𝑦𝑖) − 𝐹𝑖/𝑘(2.16)

𝑍
𝑗

2,𝑖 = −
(
1
𝑙𝑖
− 1

𝑠𝑖
+ (𝑦𝑖−𝑦𝑖−1)2

(𝑠𝑖)3

)
𝑍

𝑗

3,𝑖 =

(
1
𝑙𝑖+1

− 1
𝑠𝑖+1

+ (𝑦𝑖+1−𝑦𝑖)2

(𝑠𝑖+1)3

)
= −𝑍 𝑗

2,𝑖+1(2.17)

𝑍
𝑗

4,𝑖 =
− (𝑦𝑖 − 𝑦𝑖−1) (𝑥𝑖 − 𝑥𝑖−1)

(𝑠𝑖)3
𝑍

𝑗

5,𝑖 =
(𝑦𝑖+1 − 𝑦𝑖) (𝑥𝑖+1 − 𝑥𝑖)

(𝑠𝑖+1)3
= −𝑍 𝑗

4,𝑖+1(2.18)

Expression (2.15) gives a system of 𝑛 equations with respect to the unknown 𝜀𝑖 , 𝛾𝑖 .
The second set of equations can be derived from (2.12) in similar way:

(2.19) 𝑊
𝑗

1,𝑖 = 𝜀𝑖−1
(
𝑊

𝑗

4,𝑖

)
+ 𝜀𝑖

(
𝑊

𝑗

4,𝑖 −𝑊
𝑗

5,𝑖

)
+ 𝜀𝑖+1

(
𝑊

𝑗

5,𝑖

)
+ 𝛾𝑖−1

(
𝑊

𝑗

2,𝑖

)
+ 𝛾𝑖

(
𝑊

𝑗

2,𝑖 −𝑊
𝑗

3,𝑖

)
+ 𝛾𝑖+1

(
𝑊

𝑗

3,𝑖

)
where the following designations are used:

(2.20) 𝑊
𝑗

1,𝑖 =

(
1
𝑙𝑖
− 1

𝑠𝑖

)
(𝑥𝑖 − 𝑥𝑖−1) −

(
1
𝑙𝑖+1

− 1
𝑠𝑖+1

)
(𝑥𝑖+1 − 𝑥𝑖) −𝑄𝑖/𝑘
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(2.21)
𝑊

𝑗

2,𝑖 =

((
1
𝑙𝑖
− 1

𝑠𝑖

)
+ (𝑥𝑖 − 𝑥𝑖−1)2

(𝑠𝑖)3

)
𝑊

𝑗

3,𝑖 =

((
1
𝑙𝑖+1

− 1
𝑠𝑖+1

)
+ (𝑥𝑖+1 − 𝑥𝑖)2

(𝑠𝑖+1)3

)
= −𝑊 𝑗

2,𝑖+1

(2.22) 𝑊
𝑗

4,𝑖 =
(𝑥𝑖 − 𝑥𝑖−1) (𝑦𝑖 − 𝑦𝑖−1)

(𝑠𝑖)3
𝑊

𝑗

5,𝑖 =
(𝑥𝑖+1 − 𝑥𝑖) (𝑦𝑖+1 − 𝑦𝑖)

(𝑠𝑖+1)3
= −𝑊 𝑗

4,𝑖+1

Thus, expression (2.19) provides the second set of equations.
The following boundary conditions should be accounted for in solving equations (2.15)

and (2.19).

(2.23) 𝜀
𝑗

0 = 𝜀
𝑗

𝑛+1 = 𝛾
𝑗

0 = 𝛾
𝑗

𝑛+1 = 0

2.3. Algorithm and refinement of basic geometry

Numerating unknowns as 𝑋𝑚, where 1 ≤ 𝑚 ≤ 2𝑛 and 𝑋2𝑖−1 = 𝜀𝑖 and 𝑋2𝑖 = 𝛾𝑖 , and
considering both systems (2.15) and (2.19) at consequent number of 𝑖 we get a system,
characterized by a diagonal matrix.
Two peculiarities of solution should be mentioned. First one is related with the “switch-

ing on” of procedure. If at the initial iteration all 𝑣𝑖 and 𝑢𝑖 are taken to be zero, the matrix
gives no solution, because all coefficients of matrix would be zero. So, an initial approxi-
mation is needed. It is not a problem, and any logical geometry can be taken, provided the
length of it is greater than the physical length of cable. In any case the influence of initial
geometry is the object of investigation here.
The second peculiarity relates to refining the basic values of 𝑣 𝑗+1 and 𝑢 𝑗+1 when the 𝑗+1

iteration is performed. In spite that before the iteration the values of ultimate parameters
are the sum of the previous set and of the correction according to formula (2.6), it is not
expedient to use the found ultimate as new basic parameters at the next iteration. Introduce
here the notion of so-called retardation coefficient, 𝜇, according to which the basic solution
at the next iteration will be refined:

(2.24) 𝑥
𝑗+1
𝑖

= 𝑥
𝑗

𝑖
+ 𝜇𝛾𝑖 𝑦

𝑗+1
𝑖

= 𝑦
𝑗+1
𝑖

+ 𝜇𝜀𝑖 𝑠
𝑗+1
𝑖

=

√︂(
𝑥
𝑗+1
𝑖

− 𝑥
𝑗+1
𝑖−1

)2
+

(
𝑦
𝑗+1
𝑖

− 𝑦
𝑗+1
𝑖−1

)2
In Section 3 a special procedure for the automatic calculation of 𝜇, based on results of

the actual iterations, will be proposed.

3. Shooting method

3.1. Designations and basic equation

Here slightly different designations and indexes will be used. In fact, consider that 𝑙𝑖 ,
stands for the name of element as well as its length, so that on the whole we have 𝑖 + 1
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elements. In the shooting method we will characterize each element by 8 characteristic
parameters. They are four parameters at the beginning of each element – 𝑋𝑖,𝑏 , 𝑌𝑖,𝑏 coor-
dinates of the initial point of the element; angle of inclination 𝛼𝑖,𝑏 and axial tension force
𝑇𝑖,𝑏 . Also, we have four parameters at the end of element, they are – 𝑋𝑖,𝑒, 𝑌𝑖,𝑒 coordinates
of the end point of the element; angle 𝛼𝑖,𝑒 and tension force 𝑇𝑖,𝑒.
Parameters at the beginning are related to those at the end by the following nonlinear

expressions:

(3.1) 𝑋𝑖,𝑒 = 𝑋𝑖,𝑏 + 𝑠𝑖
(
𝑇𝑖,𝑏

)
· cos𝛼𝑖,𝑏 𝑌𝑖,𝑒 = 𝑌𝑖,𝑏 + 𝑠𝑖

(
𝑇𝑖,𝑏

)
· sin𝛼𝑖,𝑏

(3.2) 𝛼𝑖,𝑒 = 𝛼𝑖,𝑏 𝑇𝑖,𝑒 = 𝑇𝑖,𝑏

where 𝑠𝑖
(
𝑇𝑖,𝑏

)
– is the actual length of the element on account of the deformation from

axial force:

(3.3) 𝑠𝑖 =

(
1 + 𝑇𝑖,𝑏

)
𝑙𝑖

These are Connection equations between the beginning and the end of each element.
Now consider the relation of the end point of previous element with the initial point of

next one. The positions of the last point of previous element are the same as the first point
of the successive one:

(3.4) 𝑋𝑖+1,𝑏 = 𝑋𝑖,𝑒 𝑌𝑖+1,𝑏 = 𝑌𝑖,𝑒 .

These two conjugation equations (relations between two neighboring elements) need
to be supplemented by force equations. So, rewrite the equilibrium eqs. (2.3):

(3.5) 𝑇𝑖,𝑒 sin𝛼𝑖,𝑒 − 𝐹𝑖,𝑖+1 = 𝑇𝑖+1,𝑏 sin𝛼𝑖+1,𝑏 𝑇𝑖,𝑒 cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1 = 𝑇𝑖+1,𝑏 cos𝛼𝑖+1,𝑏

Here the indexes for the applied forces, 𝐹𝑖,𝑖+1,𝑄𝑖,𝑖+1, are changed (as compared with ACM)
to underline that they are applied at the border between two elements. By squaring both
equations (3.4) and (3.10) and adding them, we get:

(3.6) 𝑇𝑖+1,𝑏 =

√︃(
𝑇𝑖,𝑒

)2 − 2𝑇𝑖,𝑒𝐹𝑖,𝑖+1 sin𝛼𝑖,𝑒 − 2𝑇𝑖,𝑒𝑄𝑖,𝑖+1 cos𝛼𝑖,𝑒 +
(
𝐹𝑖,𝑖+1

)2 + (
𝑄𝑖,𝑖+1

)2
Then, we consequently obtain:

(3.7) cos𝛼𝑖+1,𝑏 =
𝑇𝑖,𝑒 cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1

𝑇𝑖+1,𝑏
sin𝛼𝑖+1,𝑏 =

𝑇𝑖,𝑒 sin𝛼𝑖,𝑒 − 𝐹𝑖,𝑖+1
𝑇𝑖+1,𝑏

Values of angle and force at the end of previous element allows us to find them at
beginning of the next one. So, equations (3.4) with (3.6)–(3.7) allow to determine all four
parameters at the beginning of the next element on the basis of those at the end of the
previous one.
This analysis shows that knowledge of the correct four values at the beginning of first

section allows us to find the correct ones at any other point of any other section. Now we
are ready to formulate an algorithm of solution. Yet we need to rewrite four Connection
and four Conjugation equations in a linearized (differential) form.
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3.2. Linearized governing equations

Suppose that we know some approximate solution (name it as a Probe one) for the
whole cable at the 𝑗 iteration. It means that we know the four initial parameters at the
beginning of the first element, and also the actual length of the element according to (3.3).
Then, by applying the Connection and Conjugation equations, we are able to get all four
parameters at the end and beginning of each element, including for the end of the last
element. For this solution we introduce the special upper index 𝑗 . The positions of the last
points, i.e., 𝑋 𝑗

𝑛+1,𝑏 , 𝑌
𝑗

𝑛+1,𝑒 in the probe solution may differ from the prescribed boundary
conditions, which we designate as 𝑋𝐿 and 𝑌𝐿 . Thus, it is necessary to set up a procedure
of correction of the Probe solution.
Suppose that the values of all four parameters at the beginning of element 𝑖 have

been changed by small values, namely: Δ𝑋𝑖,𝑒, Δ𝑌𝑖,𝑒, Δ𝜃𝑖,𝑒, Δ𝑇𝑖,𝑒 and determine how
this influences the changes of them at the end of this element. In other words, write the
Connection equations in a differential linearized form. Note that according to (3.3), the
change of axial force leads to a change in length, so write:

(3.8) Δ𝑠𝑖 =
(
Δ𝑇 𝑖,𝑒/𝑘𝑖

)
𝑙𝑖

Then from (3.1)–(3.2) we can get the equations for their change

Δ𝑋𝑖,𝑒 = Δ𝑋𝑖,𝑏 +
(
Δ𝑇𝑖,𝑒/𝑘𝑖

)
cos𝛼𝑖,𝑏 − Δ𝛼𝑖,𝑏𝑠𝑖

(
𝑇𝑖,𝑏

)
sin𝛼𝑖,𝑏(3.9)

Δ𝑌𝑖,𝑒 = Δ𝑌𝑖,𝑏 +
(
Δ𝑇𝑖,𝑒/𝑘𝑖

)
sin𝛼𝑖,𝑏 + Δ𝛼𝑖,𝑏𝑠𝑖

(
𝑇𝑖,𝑏

)
cos𝛼𝑖,𝑏(3.10)

Δ𝛼𝑖,𝑒 = Δ𝛼𝑖,𝑏 Δ𝑇𝑖,𝑒 = Δ𝑇𝑖,𝑏(3.11)

Or in matrix form

(3.12) Δ ®𝑊𝑖,𝑒 = d𝐴𝑖eΔ ®𝑊𝑖,𝑏

where Δ ®𝑊𝑖 = column (Δ𝑋𝑖 , Δ𝑌𝑖 , Δ𝜃𝑖 , Δ𝑁𝑖), and elements of matrix d𝐴𝑖e are given by
equations (3.9)–(3.11). Thus, the matrix (3.12) is one of two key matrixes which is needed
for refining the probe solution.
Another key linearized matrix stems from the Conjugation equations. Assume that we

know all four parameters at the end of 𝑖 element, Δ ®𝑊𝑖,𝑒 and find them at the beginning of
the next one. According to equations (3.4) we can write:

(3.13) Δ𝑋𝑖+1,𝑏 = Δ𝑋𝑖,𝑒 Δ𝑌𝑖+1,𝑏 = Δ𝑌𝑖,𝑒

Equations for the derivatives of forces parameters (force and angle) are obtained
from (3.9)–(3.10):

(3.14) 𝑇𝑖+1,𝑏 + Δ𝑇𝑖+1,𝑏 ≈
√
𝑌0,0

(
1 +

Δ𝑇𝑖,𝑒𝑌1,0 + Δ𝛼𝑖,𝑒𝑌2,0

𝑌0,0

)
where

(3.15) 𝑌0,0 =
(
𝑇𝑖,𝑒

)2 + (
𝐹𝑖,𝑖+1

)2 + (
𝑄𝑖,𝑖+1

)2 − 2𝑇𝑖,𝑒 (
𝐹𝑖,𝑖+1 sin𝛼𝑖,𝑒 +𝑄𝑖,𝑖+1 cos𝛼𝑖,𝑒

)
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(3.16)
𝑌1,0 = 𝑇𝑖,𝑒 −

(
𝐹𝑖,𝑖+1 sin𝛼𝑖,𝑒 +𝑄𝑖,𝑖+1 cos𝛼𝑖,𝑒

)
𝑌2,0 = −𝑇𝑖,𝑒

(
𝐹𝑖,𝑖+1 cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1 sin𝛼𝑖,𝑒

)
Keeping in mind that 𝑇𝑖+1,𝑏 =

√
𝑌0,0, according to (3.6), we can rewrite (3.14), which

give us the following first force equation:

(3.17) Δ𝑇𝑖+1,𝑏 =

(
Δ𝑇𝑖,𝑒𝑌1,0 + Δ𝛼𝑖,𝑒𝑌2,0

𝑇𝑖+1,𝑏

)
= Δ𝑇𝑖,𝑒𝑌1 + Δ𝛼𝑖,𝑒𝑌2

The second force equation for gains can be derived as follows. From (3.7) we get:
(3.18)

tan
(
𝛼𝑖+1,𝑏 + Δ𝛼𝑖+1,𝑏

)
=

𝑇𝑖,𝑒 sin𝛼𝑖,𝑒 − 𝐹𝑖,𝑖+1 + Δ𝑇𝑖,𝑒 · sin𝛼𝑖,𝑒 + Δ𝛼𝑖,𝑒 · 𝑇 𝑖,𝑒 cos𝛼𝑖,𝑒

𝑇𝑖,𝑒 cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1 + Δ𝑇𝑖,𝑒 · cos𝛼𝑖,𝑒 − Δ𝛼𝑖,𝑒 · 𝑇𝑖,𝑒 sin𝛼𝑖,𝑒

Linearization of (3.18) with accounting for (3.6) gives the second governing equations
as:

(3.19) Δ𝛼𝑖+1,𝑏 = Δ𝑇𝑖,𝑒𝑌3 + Δ𝛼𝑖,𝑒 · 𝑌4

where:

𝑌3 = cos2 𝛼𝑖+1,𝑏
− cos𝛼𝑖,𝑒 tan𝛼𝑖+1,𝑏 + sin𝛼𝑖,𝑒

𝑇𝑖,𝑒 cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1

𝑌4 = cos2 𝛼𝑖+1,𝑏
sin𝛼𝑖,𝑒 tan𝛼𝑖+1,𝑏 + cos𝛼𝑖,𝑒

cos𝛼𝑖,𝑒 −𝑄𝑖,𝑖+1/𝑇𝑖,𝑒

(3.20)

Thus, equations (3.14), and (3.17) and (3.19) give the Conjugation equations for the
changes (increments). In matrix form they can be presented as follows:

(3.21)
−−→
Δ𝑊 𝑖+1,𝑏 = d𝐵𝑖+1e

−−→
Δ𝑊 𝑖,𝑒

In conclusion of this section note, that we are able to determine all the four main
parameters at any point provided that we know them at the first point of the first element.
Thus, the state at the last point of last element is given by the following matrix expression:

(3.22)
−−→
Δ𝑊𝑛+1,𝑒 = d𝐴𝑛+1e ([𝐵𝑛+1]) d𝐴𝑛e ([𝐵𝑛]) . . . d𝐴2e ([𝐵2]) d𝐴1e

−−→
Δ𝑊1,𝑏

In particular, which is important for the implementation of the method, we can establish
a relation between the increments at the beginning point of the first element and the
increment of the position of the end point of the last element. Furthermore, the initial
change is only the change of angle Δ𝜃1,𝑒 and on the change of force Δ𝑁1,𝑒. So, the main
result of calculations (3.25) can be presented in form:

(3.23) Δ𝑋𝑛+1,𝑒 = 𝑓11Δ𝜃1,𝑒 + 𝑓12Δ𝑁1,𝑒 Δ𝑌𝑛+1,𝑒 = 𝑓21Δ𝜃1,𝑒 + 𝑓22Δ𝑁1,𝑒

where 𝑓𝑘𝑚 are known from (3.22) coefficients.
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3.3. Algorithm of solution

Suppose that for the 𝑗 − 1 iteration we know the basic length of each element, the
four basic parameters at the beginning and at end of each element, and of course the basic
positions of each element and point. Thus, the position of the last point 𝑋 𝑗−1

𝑛+1,𝑏 , 𝑌
𝑗−1
𝑛+1,𝑒 is

known. This position may not to coincide with the prescribed boundary position of the last
point. So, we need to change the initial angle and force at the beginning of first element on
the small values Δ𝜃1,𝑒 and Δ𝑁1,𝑒, which can be found from the boundary conditions at the
end point of last section. Thus, we get:

(3.24) 𝑋
𝑗−1
𝑛+1,𝑏 + 𝑓11Δ𝜃1,𝑒 + 𝑓12Δ𝑁1,𝑒 = 𝑋𝐿 𝑌

𝑗−1
𝑛+1,𝑏 + 𝑓21Δ𝜃1,𝑒 + 𝑓22Δ𝑁1,𝑒 = 𝑌𝐿

So, two unknowns correction parameters Δ𝜃1,𝑒, Δ𝑁1,𝑒, can be found from eqs (3.24).
Next iteration requires prescribing all the basic parameters at the beginning of 𝑗 it-

eration. In order to guarantee the convergence of the results, it is desirable to refine the
solution slowly. So, the retardation coefficient 𝜇 will be used again (as in ACM) for refining
the basic initial parameters:

(3.25) 𝜃
𝑗

1,𝑒 = 𝜃
𝑗−1
1,𝑒 + 𝜇Δ𝜃1,𝑒 𝑁

𝑗

1,𝑒 = 𝑁
𝑗−1
1,𝑒 + 𝜇Δ𝑁1,𝑒

Availability of new 𝜃
𝑗

1,𝑒 and 𝑁
𝑗

1,𝑒 allows us to construct new basic geometry, and we
can proceed with this iteration as described above.

4. Adjustment procedure for the retardation coefficient
In the following one of principal novelties of the present study will be outlined. In fact,

this procedure: a) restricts themaximumallowable variation ofmain parameters; b) controls
the process of convergence, by sharply decreasing (by a factor of 2) the allowable change
of basic parameters when Correction parameters change their signs; and slowly increasing
it (by a factor of 1.3), when Correction parameters keep the same signs. Both peculiarities
are accounted for in determination of the above retardation coefficient 𝜇.
Consider the choice of step for ACM. We have a solution at iteration 𝑗 . Consider that

from previous iteration we have the maximal axial force 𝑇 𝑗
max, the number of corresponding

section, where it was attained 𝑖 𝑗 , and the generalized sign of its change, be it either “+”,
or “–”, i.e. SIGN 𝑗 and the value of Rate parameter 𝑅 𝑗 . Determine at the given iteration
𝑗 + 1, the value of 𝑇 𝑗+1

𝑖
(at the section of previous maxima), the maximum value 𝑇 𝑗+1

max and
the corresponding section number, where it is attained, say 𝑖 𝑗+1 . Then determine the value
of SIGN 𝑗+1

(4.1) SIGN 𝑗+1 =

{
+, if 𝑇 𝑗+1

𝑖
≥ 𝑇

𝑗
max

−, if 𝑇 𝑗+1
𝑖

< 𝑇
𝑗
max

and introduce the Rate Acceleration parameter at iteration 𝑗 + 1, i.e AR 𝑗+1

(4.2) AR 𝑗+1 =

{
1.3, if SIGN 𝑗 = SIGN 𝑗+1

0.5, if SIGN 𝑗 ≠ SIGN 𝑗+1
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Now introduce the rate parameter:

(4.3) 𝑅 𝑗+1 = min

{
𝑅 𝑗 · AR 𝑗+1

1

At first iteration we consider that the previous 𝑇0max is and its sign is +, 𝑅0 = 1. Then
compare 𝑇 𝑗+1

max and 𝑇
𝑗
max. The following relations between these quantities are imposed:

(4.4) − 0.4𝑅 𝑗+1 ≤ 𝑇
𝑗+1
max − 𝑇

𝑗
max

𝑇
𝑗
max

≤ 0.9𝑅 𝑗+1

If this requirement holds true, we take that Retardation coefficient 𝜇 to be 𝜇 = 1. If
𝑇

𝑗+1
max < 𝑇

𝑗
max and the left part of (4.4) is violated, then:

(4.5) 𝜇 = 0.4𝑅 𝑗+1

/�����𝑇 𝑗+1
max − 𝑇

𝑗
max

𝑇
𝑗
max

�����
If 𝑇 𝑗+1

max > 𝑇
𝑗
max and the right part of (4.4) is violated, then

(4.6) 𝜇 = 0.9𝑅 𝑗+1

/(
𝑇

𝑗+1
max − 𝑇

𝑗
max

𝑇
𝑗
max

)
Another requirement is that at any circumstance the axial force should not be negative.

Introduce the notion 𝑇 𝑗

min at previous iteration. So, make the requirement:

(4.7)
𝑇

𝑗

min − 𝑇
𝑗+1
min

𝑇
𝑗

min

> 0.5

If it is violated, then introduce an alternative value, 𝜇1, of retardation coefficient:

(4.8) 𝜇1 =
0.5 · 𝑇 𝑗

min

𝑇
𝑗

min − 𝑇
𝑗+1
min

And we take as 𝜇 the min of 𝜇 and 𝜇1.
Similarly, the coefficient 𝜇 is found for SM. The difference is that we operate by 𝑇1,𝑏

and 𝛼1,𝑏 only.

5. Examples of calculation
Here two examples for slack cable are considered: the first one with a gradual change

of geometry (external forces act predominantly in the same direction); the second one with
an abrupt change of geometry. The influence of the choice of initial position (geometry) on



AN EFFICIENT ITERATION PROCEDURE FOR FORM FINDING OF SLACK CABLES . . . 657

the convergence of results according to the proposed accelerated/decelerated procedure is
investigated. Different initial positions are postulated, the only requirement for them being
that the initial deformed length is larger than the length of cable. Of course, this restriction
is not a very limiting one. Note, that all lengths and coordinates are given in meters, m, all
forces are in Newtons, N, and stiffness is in Newtons, too.

5.1. Simple example 1

The length of cable is 100 m. Coordinates of the fixed points are: 𝐵(0, 0) and 𝐸 (𝑋𝑒 =

100, 𝑌𝑒 = 0). This means that physical length is equal to the geometrical distance between
the fixed end points. The points where the vertical forces are applied are: 𝑙1 = 5; 𝑙2 = 10;
𝑙3 = 25; 𝑙4 = 30; 𝑙5 = 70; 𝑙5 = 80. The corresponding values of the vertical (only vertical
ones are considered here) forces are: (–2000, 5000, –3000, 500, 1500, –2000). The sagging
of the cable is given from application of the relatively small value of stiffness 𝑘 , which is
taken to be 𝑘 = 4 · 104 N.

Application of SM

Take the trial initial force and initial angle at left boundary equal to 5000 N, and
0.05 radians, respectively. Note that the actual exact values are about 2847 and 0.25. The
development of geometry is shown on Fig. 2a. As it is shown, when the initial geometry
isnot very far from the correct one the process of refinement of geometry proceeds very
quickly, and at 4th iteration already resembles the correct one, but 28 iterations are needed
to get the exact configuration. This means that the SM approach converges in a relatively
slow manner.

(a) (b)

Fig. 2. Development by SM of the trial geometry: a) initial force 5000 N, and an initial angle 0.05 rad,
(b) initial force 2000 N, and an initial angle –0.15 rad

Another example is shown in Fig. 2b. Here the initial left boundary force and angle are
equal to 2000 N and “minus” 0.15 radians, respectively. As in the former example they are
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not very far from the actual solution, but the initial angle is opposite to the correct one.
Nevertheless, the results are very similar to the previous example, and starting from 4th
iteration the geometry is already close to exact one. On the whole, the refinement process
takes 30 iterations.

Application of ACM

The input data are the initial positions of the points. They are chosen randomly with
only requirement that the geometrical length of cable is larger than its physical length.
Here this condition is always fulfilled, because the physical length and distance between
fixation points are the same, and the length of broken line is always longer than the length
of straight line, which connect the first to the last point. Assume: 𝑦1 = 2.5; 𝑦2 = 5;
𝑦3 = 12; 𝑦4 = 15; 𝑦5 = 15; 𝑦6 = 10. This geometry seems almost specular to the actual
solution. Nevertheless, the process of convergence is very fast, see Fig. 3a. The fifth
iteration is rather close to the actual solution and the process is terminated at the 14th
iteration.

(a) (b)

Fig. 3. Development by ACM of the geometry with iteration number: (a) first trial geometry,
(b) “distant” initial geometry

Next set of input points are derived from the first one, with the positions of the third and
of the sixth point presenting opposite sign. This geometry essentially differs from the actual
one and seems rather “illogical”. Nevertheless, the overall number of iterations remains the
same and equal to 14, while at the 6th iteration the geometry is already close to exact one,
Fig. 3b. This again proves the effectiveness of the method and its superiority with respect
to the SM.
Application of both methods confirms the preliminary judgement that, if the method

converges, it gives the correct result. To prove this, Table 1 shows the results attained at the
termination of the iterative processes.
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Table 1. Accuracy comparison between SM and ACM

Number of
point 𝑖 Position 𝑥 Position 𝑦 Alfa Tension, N

0
0
0

0
0

0.25090683
0.25090683

2847.101383
2847.101382

1
5.18818235
5.18818235

1.32977315
1.32977315

0.77605386
0.77605386

3864.392321
3864.392321

2
9.10134252
9.10134252

5.17047676
5.17047677

−0.69362907
−0.69362907

3586.735800
3586.735798

3
21.66953811
21.66953811

−5.27941951
−5.27941951

0.25090683
0.25090683

2847.101383
2847.101382

4
26.85772046
26.85772046

−3.94964636
−3.94964636

0.07487392
0.07487392

2765.700789
2765.700788

5
69.50360276
69.50360276

−0.75060166
−0.75060164

−0.43843304
−0.43843304

3046.053932
3046.053931

6
79.24727059
79.24727059

−5.31909263
−5.31909262

0.25090683
0.25090683

2847.101383
2847.101382

7
100
100

−0.00000004
0

5.2. A more complex case: example

This case is more complicated. The physical length of cable is 160m. Coordinates of
the fixed end points are: point 𝐵 (0, 0) and 𝐸 (100, 0). Here the physical length of the cable
is much larger than the distance between the fixed end points. The eleven points of vertical
forces application are (5, 7, 22, 37, 40, 45, 90, 111, 120, 150, 155). The corresponding
values of the vertical forces are: (–4000, 2000, –3000, 250, 350, 500, 700, –1000, 990,
–1400, 6500). The cable stiffness is 𝑘 = 4 · 104N.

SM application

The trial initial force and initial angle at left boundary are taken to be equal to 6000 N,
and 0.03 radian, respectively. Note that exact ones are about 3633 N and –1,44 radians.
Thus, the trial angle is rather different from the correct one. The development of geometry
with iterations is shown in Fig. 4a. As the initial geometry isvery far from the correct one,
the process of refinement develops slowly. The changes in the geometry are rather sharp and
in right direction (towards the correct one) at the beginning, but successively develops very
slowly. Therefore, although the 50th iteration was relatively close to the correct geometry, it
took 858 iterations to get the correct one. This fact may cast some doubts as to the efficiency
of the SM approach.
The results of next tests may appear somewhat unexpected. The initial trial angle is

chosen to be 0.4, which is rather different from correct one, and an initial tension force is
set to be equal to 2500. In this case the change of geometry proceeds very slowly due to the
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(a) (b)

Fig. 4. Development of the geometry of example 2 by SM for initial values: (a) force equal to 6000 H,
and angle to 0.03, b) force equal to 2500 N, and angle 0.4 – first 58 iterations

retardation coefficient and after 58th iteration it ceases to change at all. The reason is that
the new calculated geometry at each new iteration deviates from basic one in a different
direction. As a consequence, the Rate Acceleration coefficient is taken to be 0.5 according
to Eq. (4.2) and this fact prevents the change of geometry.
In our opinion, the reason in this divergence of results lays in the nature itself of the

Shooting Method. Its simplicity and the small number of unknowns results in poor stability
of complex tasks. Reference can be made to [17, 18], where the study of bending and
elongation of a pipe due to interaction with ground shows a similar behavior.

ACM application

Input initial positions of points are chosen rather randomly, provided that overall length
of the cable is larger than its physical length. They are 𝑦1 = 7.5; 𝑦2 = 10.5; 𝑦3 = 33;
𝑦4 = 55.5; 𝑦5 = 60; 𝑦6 = 67.5; 𝑦7 = 105; 𝑦8 = 73.5; 𝑦9 = 60; 𝑦10 = 15; 𝑦11 = 7.5. In spite
that initial geometry differs significantly from the correct one, the results obtained are very
encouraging. They are shown is Fig. 5a. The convergence is very fast and the correct result
is attained at the 26th iteration only.
Another set of initial points is derived from the first set by changing the signs at

some points 𝑦1 = −7.5; 𝑦2 = −10.5; 𝑦3 = 33; 𝑦4 = 55.5; 𝑦5 = −60; 𝑦6 = −67.5;
𝑦7 = −105; 𝑦8 = −73.5; 𝑦9 = 60; 𝑦10 = 15; 𝑦11 = −7.5. Evidently, this trial geometry is
quite “illogical” and some convergence problems may be expected. As a result, the whole
number of iterations is 73 – not an exceedingly high number, given that the cable is very
slack, the number of forces is large, the initial geometry is “strange” and the axial stiffness
of the cable is quite small.
As to comparison of the accuracy of both methods for the example 2. Table 2 gives the

whole set of calculated results for this example. The all numbers were actually the same
in case of convergence, so in Table 2. we do not mention the particular method or initial
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(a) (b)

Fig. 5. Development of geometry of example 2 by ACM: (a) first trial geometry,
(b) second trial geometry

geometry. The data confirms once again that both procedures converge to the exact solution
and that the accuracy depends only on the termination condition.

Table 2. Calculated results for example 2 in case of convergence

Point
num.,
𝑖

𝑥, m 𝑦, m angle force, N
Point
num.,
𝑖

𝑥, m 𝑦, m angle force, N

0 0 0 –1.4461 3633.04 7 53.0760 27.9434 –0.7306 606.673

1 0.6783 5.4117 0.71859 600.273 8 68.9540 13.7177 0.92144 747.259

2 2.2064 4.0753 –1.2963 1667.22 9 74.4977 21.019 –0.7182 600.046

3 6.4411 19.115 1.25759 1466.52 10 97.4273 0.9839 1.14834 1102.06

4 11.232 4.3223 1.19498 1231.09 11 99.5338 5.6700 –1.4887 5513.37

5 12.367 1.44584 1.05406 914.585 12 100 0 – –

6 14.893 –3.0007 0.57866 539.716 – – – – –

6. Conclusions

A new algorithm for the form finding of cables under concentrated forces has been
presented with reference to two different methods: the shooting method, SM, which is the
differential implementation of the Irvine’s method [1] and the absolute coordinate method,
ACM. The emphasis of paper is on investigation of influence of the initial trial form of
cable on the convergence of results. Numerical examples with random initial configurations
for a very slack cable have been analysed.
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The goal of the present study is not the solution of any particular task, because any
method would be able to cope with any problem, provided that the investigator can single
out the convergency problem and change the initial geometry or the rules and coefficients
of refinement of the geometry. The scope of the work has been to establish a user inde-
pendent convergent procedure for a slack cable under concentrated forces, which can be
extended to complex structures. The proposed ASM method combined with the original
acceleration-retardation procedure of form refinement represents the result of the study.
Limitations of the shooting method, on the contrary, have been pointed out even in presence
of sophisticated form finding procedures. Overall:
1. Linearized equations in the framework of ACM, where positions of force application
points were chosen as a set of governing unknowns, were derived.

2. The exact and linearized equations in the framework of SM, whose goal is to relate
the positions and inner forces at each point with those at the previous one, have been
derived analytically. This restricts the problem at each iteration to only 2 unknown
values at the beginning of the cable.

3. An original iteration procedure of form finding has been implemented, which is
based on: a) notions of maximal allowable changes for chosen parameters; and b)
an acceleration-retardation procedure which takes into account whether the process
converges (the solution moves in the same direction at two consecutive iterations) or
diverges (maximums of parameters become smaller at next iteration). This procedure
is alternative to the commonly applied Newton method.

4. ACMoperates by a number of unknownswhich is proportional to number of elements
(outer loads). So, it is very flexible in accounting (reacting) for any deviances of initial
form. Combined with the proposed retardation/acceleration procedure it exhibits an
excellent convergence.
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