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Abstract

The presence of a binary variable in the cointegrated VAR (CVAR) model
is most often interpreted as the structural break affecting the data generating
process. It is proved in the paper that to enjoy this interpretation the binary
variable must appear simultaneously inside and outside the cointegration space.
In order to test for the break we advocate to employ the Wald statistic, however,
its critical values and the power had to be simulated separately for the possible
change of the constant, the trend, and both. The experiments were designed for
different sizes of the cointegrating space, number of variables, the span of the
break, normally and t-distributed errors. It is shown that the power of the test
depends mostly on the magnitude of the break and the sample size while other
factors are of secondary importance. In order to test for the break at unknown
period the supWald statistic was proposed.
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1 Introduction
Structural breaks are a relatively common problem, especially in empirical studies
on transforming economies utilising the time series, which leads to the non-normal
distribution of residuals and greatly hinders statistical inference (testing). It is usually
solved by the introduction of binary variables (see Juselius, 2006). However, for a
binary variable to represent a real structural break in the data generating process
(DGP), it must be present inside and outside of the cointegration space in the
cointegrated VAR (CVAR) model at the same time (see Section 2).
In testing for the presence of structural break in a known period, the Wald statistic
is worth considering (see Sobreira and Nunes 2012, Nielsen 2004). A structural break
in the deterministic component of the DGP within the system of nonstationarity
variables causes that the distribution of the Wald statistic is nonstandard (see
Section 3). Then, the critical values need to be simulated through the Monte Carlo
experiments (see Section 4). If the structural break is not known, which is common
in empirical applications, the appropriate testing procedure must also be applied (see
Section 3).
Summing up, the paper focuses on determining the appropriate specification of a
CVAR model and then testing it for the presence of various structural breaks (a level
break, a trend break, and both) in the deterministic components. The power and size
of the Wald test and the influence of specific conditions (e.g. the break point values,
error distribution) are simulated and then analyzed (see Section 4).

2 CVAR in the presence of the structural breaks in
the deterministic part of the DGP

The implications of the presence of the deterministic terms in a VAR process with
the unit root can be explored by defining the DGP as follows:

vt = yt + Hdt, (1)

where yt denotes M × 1 vector of M stochastic variables integrated of order one,
dt =

[
1

... t
]T

, H =
[
h1

... h2

]
- M × 2 matrix of parameters.

Equation (1) defines the DGP as the explicit sum of the zero mean stochastic
part and the deterministic component that can contain any deterministic or binary
variables (e.g. a constant, a trend, specific variables accounting for structural breaks).
Therefore, the mean of the yt variables is directly specified by the deterministic
term and is independent of the stochastic component parameters. This is the
main advantage of setting up the process in the above form (see Lütkepohl 2005,
p. 256–258).
The second component of (1) decomposes into (see Johansen and Nielsen 2018):

Hdt = H0d∗t + H1∆d∗t , (2)
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where d∗t = t, ∆d∗t = 1, H0 = h2, H1 = h1.
Let us assume that a single structural break affects both deterministic components of
the DGP, that is constant and trend:

vt = yt + h1 + h2t+ h3u1t + h4u2t, (3)

where

u1t =
{

1 for t ≥ t0
0 for t < t0

, u2t =
{
t− (t0 − 1) for t ≥ t0
0 for t < t0

and consequently in (2):

d∗t =
[
t

u2,t

]
, ∆d∗t =

[
1
u1,t

]
, H0 =

[
h2 h4

]
, H1 =

[
h1 h3

]
.

Multiplying both sides of (3) by lag polynomial Π(L) gives

Π(L)vt= Π(L)yt + Π(L)h1 + Π(L)h2t+ Π(L)h3u1t + Π(L)h4u2t, (4)

where Π(L) = I− LΠ1 − L2Π2 − . . .− LSΠS . Matrices Π1,Π2,. . ., ΠS include the
multipliers of the VAR representation Π(L)yt = ξt, S defines the lag length of the
VAR process, and ξt is M × 1 vector of white-noise error terms.
It can be easily shown that the components of the right hand side of the above
equation are equal, respectively, to (for the details see Gosińska 2015)

Π(L)h1 = −Πh1, (5a)

Π(L)h3u1t = −Πh3u1,t−1 + h3∆u1,t +
S−1∑
s=1

(−Γs)h3∆u1,t−s, (5b)

Π(L)h2t = −Πh2(t− 1) + Ψh2, (5c)

Π(L)h4u2t = −Πh4u2,t−1 + Ψh4u1,t +
S−2∑
s=0

 S−1∑
j=s+1

Γj

h4∆u1,t−s, (5d)

where Π =
∑S
s=1 Πs − I, Γi = −

∑S
s=i+1 Πs, Ψ = I +

∑S−1
s=1 sΠs+1, Πs are the

matrices of the lag polynomial Π(L).
Provided matrix Π = ABT is of reduced rank, the CVAR representation with a
constant, a trend, and breaks in both can be written as (see different parametrisation
in Trenkler et al. 2006)

∆vt = A
[
BTvt−1 + g1 + g2(t− 1) + g3u1,t−1 + g4u2,t−1

]
+
S−1∑
s=1

Γs∆vt−s + f2 +

+
S−1∑
s=0

f3,s∆u1,t−s + Ψh4u1,t +
S−2∑
s=0

f4,s∆u1,t−s + ξt (6)
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for t = S+ 1, S+ 2, . . ., where M ×R matrices B and A have standard interpretation
of cointegrating vectors and weights, R is the size of the cointegration space, and

gi = −BThi, i = 1, 2, 3, 4,
f2 = Ψh2,

f3,s =
{

h3 for s = 0
−Γsh3 for s = 1, 2, . . . , S − 1

,

f4,s =
S−1∑
j=s+1

Γjh4,

or in a more compact form as

∆vt = AB∗Tv∗t−1 +
S−1∑
s=1

Γs∆vt−s + F1∆d∗t +
S−1∑
s=0

F2
s∆2d∗t−s + ξt, (7)

where

v∗t−1 =
[
vt−1
d∗t−1

]
,

B∗T =
[
BT g2 g4

]
,

F1 =
[
f1
2 f1

4
]
,

F2
s =

[
0 f2

4,s
]
,

f1
2 = Ψh2 + Ag1,

f1
4 = Ψh4 + Ag3,

∆2d∗t−s =
[

0
∆u1,t−s

]
,

f2
4,s =


f3,s −Ag3 + f4,s for s = 0
f3,s + f4,s for s = 1, 2, ..., S − 2
f3,s for s = S − 1

.

The maximum likelihood estimation of (7) can be conducted by reduced rank

regression of ∆vt on
[
vt−1
d∗t−1

]
corrected for

[
∆vt−1 . . . ∆vt−S+1 ∆d∗t ∆2d∗t ∆2d∗t−1 . . . ∆2d∗t−S+1

]
,

assuming that the zero regressors have been removed and A, B, g2, g4, F1, F2
s consist

of freely-varying parameters. Although Johansen (1995) method refers to
[
vt−1
d∗t

]
, the
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asymptotic properties of the parameter estimators are the same in both cases, which
can be shown by considering two different representations of the CVAR, assuming
DGP equal to (3) and S = 1:

∆vt = A(BTvt−1 −BTH0d∗t ) + ((ABT + I)H0 −ABTH1)∆d∗t +
+ (ABT + I)H1∆2d∗t + ξt (8)

and

∆vt = A(BTvt−1 −BTH0d∗t−1) + (H0 −ABTH1)∆d∗t +
+ (ABT + I)H1∆2d∗t + ξt. (9)

The second representation is an equivalent to (7) for S = 1. The estimation procedure
for (8) and (9) is based on two extended models with different sets of parameters:

∆vt = A(BTvt−1 + Gd∗t ) + F+
1 ∆d∗t + F2∆2d∗t + ξt (10)

∆vt = A(BTvt−1 + Gd∗t−1) + F1∆d∗t + F2∆2d∗t + ξt, (11)

where G = −BTH0, F+
1 = (ABT + I)H0 − ABTH1, F2 = (ABT + I)H1,

F1 = H0 −ABTH1, because of

F+
1 + AG = F1, (12)

(11) is the reparameterization of (10). Hence, (10) and (11) are the same statistical
models. An analogous relation between F+

1 and F1 occurs in the case of a CVAR
with a structural break in the level only (then Hdt = h1 + h3u1t).
Summing up, Equation (8) is the reparameterization of (9) and consequently of (7)
for a more general case. Accordingly, the maximum likelihood estimation procedure
and the asymptotic properties of the estimators correspond to those considered in
Johansen (1995) and Johansen and Nielsen (2018).
It is notable that the regressors in d∗t restricted to the cointegration space are one-
period lagged in (9) but not in (8). Representations (9) and (7) lead to the following
conclusions. Firstly, the presence of a binary variable in the cointegration space
in period t amounts to assuming the occurrence of a structural break in the data
generating process in period t − 1. Secondly, if a binary variable (or a trend break)
appears in the cointegration space to account for a structural change in the DGP,
the appropriate deterministic variables must also appear outside of the cointegration
space. Thirdly, it is inappropriate to interpret the presence of a separate binary
variable outside of the cointegration space as resulting from a structural change unless
it modifies the constants of the cointegration vectors.
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3 Testing for structural break in the deterministic
part of DGP

Testing for the presence of a structural break is considered in two dimensions. In the
first one, it depends on the type of a structural break (a break in a constant, a trend,
and both). In the second one, whether the timing of the break is known or unknown
is important.

3.1 The break occurs in the known period t0

Let us initially consider the general case of a break. Under the null hypothesis, all
parameters representing a structural break in the cointegration space (in vectors gi,
where i = 3, 4, and i = 3 for the level break, and i = 4 for the trend break) and
short-term parameters associated with binary variables (ujt, j = 1, 2) are equal to
zero. Vector hi decomposition in the stationary and nonstationary directions yields
the following hypotheses:

H0 : BThi = 0 ∧BT
⊥hi = 0, (13)

H1 : BThi 6= 0 ∨BT
⊥hi 6= 0,

where B⊥is an M × (M −R) full column rank matrix satisfying BTB⊥ = 0.
Note that B̂⊥(B̂T

⊥B̂⊥)−1B̂T
⊥ + B̂(B̂T B̂)−1B̂T = I, thus estimators B̂T ĥi and B̂T

⊥ĥi
are asymptotically independent (see Sobreiraa and Nunes, 2012), therefore:

WALD = WALDB +WALDB⊥ (14)

where WALDB and WALDB⊥ are the Wald statistics for testing BThi = 0 and
BT
⊥hi = 0, respectively and are equal to

WALDB = (ΘBĥ)T [ΘBD̂
2(ĥ)ΘT

B ]−1(ΘBĥ),

WALDB⊥ = (ΘB⊥ ĥ)T [ΘB⊥D̂
2(ĥ)ΘT

B⊥
]−1(ΘB⊥ ĥ),

where ΘB and ΘB⊥ are appropriate for the particular type of the structural break
restriction matrices (see Appendix).
In order to determine the value of the above Wald statistic the parameters of interest
in the direction of B and B⊥ (in the sense of Saikkonen and Lütkepohl 2000) must
be estimated. The method consists of three steps.
Firstly, the parameters of the stochastic components A, B, Γ1, Γ2, . . . , ΓS−1, Ω are
estimated by a conventional reduced rank regression (see Johansen 1995). Secondly, in
the general case, the parameters of the deterministic part hB̂⊥,i

and hB̂,i, i = 1, 2, 3, 4
(see Equation (3)), are estimated by a generalized least squares method from the
equation:

Q̂T Π̂(L)vt =
4∑
i=1

(
K̂B̂,ithB̂,i + K̂B̂⊥,it

hB̂⊥,i

)
, (15)
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where

K̂B̂⊥,it
= Q̂T K̂itB̂⊥(B̂T

⊥B̂⊥)−1,

hB̂⊥,i
= B̂T

⊥hi,

K̂B̂,it = Q̂T K̂itB̂(B̂T B̂)−1,

hB̂,i = B̂Thi,

K̂1t = Π̂(L) =


I, t = 1
I−

∑t−1
j=1 Π̂j , t = 2, . . . , S

−ÂB̂T , t = S + 1, . . . , T
,

K̂2t = Π̂(L)t =


I, t = 1
tI−

∑t−1
j=1(t− j)Π̂j , t = 2, . . . , S

Ψ̂− (t− 1)ÂB̂T , t = S + 1, . . . , T
,

K̂3t = Π̂(L)u1t =


0, t < t0

I, t = t0

I−
∑t−1
j=1 Π̂j , t = t0 + 1, . . . , t0 + S − 1

−ÂB̂T , t = t0 + S, . . . , T

,

K̂4t = Π̂(L)u2t =

=


0, t < t0

I, t = t0

(t− t0 + 1)I−
∑t−1
j=1(t− t0 + 1− j)Πj , t = t0 + 1, . . . , t0 + S − 1

Ψ̂− (t− t0)ÂB̂T , t = t0 + S, . . . , T

.

Defining the Q matrix as QQT = Ω−1 results in the spherical covariance matrix of
the error term. This condition is satisfied if

Q̂ =
[
Ω̂−1Â(ÂT Ω̂−1Â)−1/2 ... Â⊥(ÂT

⊥Ω̂Â⊥)−1/2
]

(see Trenkler et al. 2006). The matrices of the lag polynomial Π̂(L) can be written
as Π̂1 = IM + ÂB̂T + Γ̂1, Π̂2 = Γ̂j − Γ̂j−1, Π̂S = −Γ̂S−1, j = 2, . . . , S − 1.
In the third step the Wald statistic is used for testing. Three different cases can be
considered: WALD in case of simultaneous break in level and trend (i = 3, 4 in (14)
and (15)), WALDC – break in level (i = 3) and WALDT – break in trend (i = 4).
The asymptotic properties of estimators in the deterministic part of DGP, derived
by Saikkonen and Lütkepohl (2000) and Trenkler et al. (2006), lead to the following
conclusions. Firstly, the vector of parameters h3 is not estimated consistently in the
direction of BT

⊥ but is bounded in probability. Secondly, the asymptotic distribution
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of h4 in the direction of BT
⊥ depends on the break date. Thirdly, estimators h3

and h4 are consistent in the direction of BT . Due to the consistency problems of
parameters’ estimators relating to the deterministic part, the asymptotic distributions
of the considered statistics are not straightforward. Nevertheless, the critical values
and the properties of WALD, WALDC and WALDT can be simulated.

3.2 Unknown break period
If the period in which a break occurs is not known, the following generalization of the
Wald statistic can be used (see Andrews 1993):

supWALD = sup
τ

WALD(τ), (16)

where τ ∈ (0, 1) defines the break date, t0 = τT and T the sample size.
In practice, an unknown structural break corresponds (assuming only one break point)
to the value of τ , which is related to the maximum value of the Wald statistic.
Assuming that h3(τ) and h4(τ) are vector of parameters associated with:

u1t =
{

1 for t ≥ [τT ]
0 for t < [τT ]

and u2t =
{
t− ([τT ]− 1) for t ≥ [τT ]
0 for t < [τT ]

,

the null hypothesis for supWALD tests are respectively:

H0 : h3(τ) = 0 ∧ h4(τ) = 0 – a simultaneous break in the level and the trend,
H0 : h3(τ) = 0 – a level break,
H0 : h4(τ) = 0 – a trend break.

The distributions of the above test statistics are not standard, thus the critical values
need to be simulated.

4 Monte Carlo Simulations
The critical values of the Wald statistic for each case (a level break, a trend break,
and both) should be simulated under the null hypothesis hi = 0, i = 3, 4 for the
5% significance level. Additionally it was assumed that parameters associated with
remaining deterministic variables which are present in DGP and which are not subject
to the null hypothesis are equal to zero (the Wald statistic is invariant to them).
The stochastic component of the DGP, assuming R cointegrating vectors is given by
(see Toda 1994)

yt =
[
ρIR 0
0 IM−R

]
yt−1 + et, (17)
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where et ∼ N(0, I) and |ρ| < 1 is the autoregressive parameter. The deterministic
components are set to zero in the DGP, but they are taken into account while
estimating and testing.
The critical values for WALD, WALDT and WALDC tests depend on the number
of observations (T ), the number of variables in the system (M), the value of the
autoregressive parameter (ρ), the number of cointegrating vectors (R) and the timing
of the break (τ defines the break fraction, see (16)). Therefore, they need to be
simulated individually for each case. For an empirical model, the critical values can
be calculated using a data-driven approach (the critical values for specific cases are
presented in Appendix).
The power of tests was determined assuming the alternative hypothesis, which implies
the presence of the structural break in the data generating process.

Table 1a: The power of the WALD test, τ = 0.5, ρ = 0.5, n = 10000

WALD ϑ = 0.05, ω = 0.5 ϑ = 0.075, ω = 0.75 ϑ = 0.1, ω = 1
K R T = 100 T = 150 T = 200 T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

M = 4
3 1 0.0766 0.2672 0.7115 0.1627 0.6825 0.9824 0.3436 0.9403 0.9993
2 2 0.1037 0.4161 0.9106 0.2480 0.8848 0.9988 0.5164 0.9900 0.9999
1 3 0.1893 0.7674 0.9966 0.5095 0.9927 1 0.8467 0.9999 1

M = 5

4 1 0.0662 0.1591 0.5385 0.1230 0.4826 0.9475 0.2269 0.8393 0.9968
3 2 0.0790 0.2387 0.7459 0.1599 0.6919 0.9913 0.3391 0.9480 0.9968
2 3 0.1123 0.4328 0.9463 0.2615 0.9114 0.9994 0.5627 0.9956 1
1 4 0.1937 0.8081 0.9981 0.5378 0.9959 1 0.8758 0.9998 1

Table 1b: The power of the WALDC test, τ = 0.5, ρ = 0.5, n = 10000

WALDC ω = 1 ω = 1.5 ω = 2
K R T = 100 T = 150 T = 200 T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

M = 4
3 1 0.7380 0.8918 0.9440 0.8988 0.9653 0.9816 0.9538 0.9845 0.9931
2 2 0.6253 0.7634 0.8348 0.7910 0.8888 0.9261 0.8766 0.9353 0.9567
1 3 0.4554 0.5612 0.6225 0.6116 0.6905 0.7435 0.7061 0.7718 0.8063

M = 5

4 1 0.7313 0.9170 0.9683 0.9223 0.9794 0.9937 0.9664 0.9932 0.9972
3 2 0.6678 0.8349 0.9056 0.8596 0.9408 0.9671 0.9314 0.9746 0.9888
2 3 0.5895 0.7283 0.7992 0.7757 0.8567 0.9004 0.8624 0.9178 0.9438
1 4 0.4336 0.5418 0.5993 0.5884 0.6781 0.7204 0.6821 0.7590 0.7951

If there is a simultaneous break in level and trend the DGP is defined as follows

vt = yt + h3u1t + h4u2t, (18)

where yt is defined by (17), while u1t and u2t are given by
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Table 1c: The power of the WALDT test, τ = 0.5, ρ = 0.5, n = 10000

WALDT ϑ = 0.05 ϑ = 0.1 ϑ = 0.15
K R T = 100 T = 150 T = 200 T = 100 T = 150 T = 200 T = 100 T = 150 T = 200

M = 4
3 1 0.0525 0.1349 0.4126 0.1182 0.5610 0.9478 0.2495 0.8752 0.9935
2 2 0.0759 0.2845 0.8145 0.2466 0.9277 0.9994 0.6221 0.9949 0.9997
1 3 0.1409 0.7093 0.9925 0.6963 0.9995 1.0000 0.9710 1.0000 1.0000

M = 5

4 1 0.0518 0.0993 0.2574 0.0829 0.3437 0.8561 0.1602 0.7007 0.9739
3 2 0.0610 0.1548 0.5492 0.1404 0.7285 0.9908 0.3641 0.9570 0.9994
2 3 0.0793 0.3213 0.8815 0.3194 0.9661 0.9997 0.7430 0.9970 1.0000
1 4 0.1508 0.7591 0.9969 0.7519 0.9996 1.0000 0.9824 1.0000 1.0000

u1t =
{

1 for t ≥ [τT ],
0 for t < [τT ],

and u2t =
{
t− ([τT ]− 1) for t ≥ [τT ] ,
0 for t < [τT ] .

It was assumed that the structural break in trend affects every variable in the system
with the same magnitude, h4 = ϑ[1]M×1, where [1]M×1 denotes a vector of ones, and
ϑ = {0.05, 0.1, 0.15} . The parameters in vector h3 are assumed to be proportional to
the standard deviation of the process, h3 = ωδy, where δy is aM×1 vector of standard
deviations for variables in y and ω = 10 · ϑ, which implies that ω = {0.5, 0.75, 1} (see
Perron and Yabu 2007). For each individual case, the appropriate critical values were
simulated.
Break in level assumes h4 = 0 in (18). The values of the parameters associated
with the structural break (vector h3) were set to be proportional to the mean of the
process, h3 = ωh1. The power of the WALDC test was simulated for three different
values of ω, ω = {1, 1.5, 2}.
In the case of break in trend h3 = 0 in (18), and as previously, h4 = ϑ[1]M×1
but ϑ = {0.05, 0.075, 0.1}. Tables 1a, 1a, 1c present how the power of particular tests
varies with the amplitude of the break (ω, ϑ), the sample size T ∈ {100, 150, 200}, the
number of variables (M = 4, 5), and the number of cointegrating vectors R ∈ (0,M).
In power simulations it was assumed that the structural break occurs in the middle
of the sample (τ = 0.5), while the autoregressive parameter is ρ = 0.5. It can be
concluded that in all cases (WALD, WALDT , WALDC) the power of test increases
with the sample size and the magnitude of the break as could be expected. Similar
power manifests itself for the same number of common stochastic trends (K).
In the next experiments additional properties of the proposed tests were analyzed.
Firstly, it was checked whether the power of the tests is sensitive to the error terms
distribution.
The power was recalculated for the t-Student(5) distributed residuals with 5 degrees
of freedom. For all tests the process generating the stochastic component was defined
by (17) with et ∼ t-Student(5). The results lead to the conclusion that the power of
tests is not significantly affected by the error’s distribution (see Table 2).
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Table 2: The impact of errors’ distribution on the power of the WALD, WALDT ,
WALDC for different break sizes for T=200, M=4, R=2

WALD ϑ = 0.05, ω = 0.5 ϑ = 0.075, ω = 0.75 ϑ = 0.1, ω = 1
K R Normal t-Student(5) Normal t-Student(5) Normal t-Student(5)

3 1 0.7115 0.5316 0.9824 0.9374 0.9993 0.9975
2 2 0.9106 0.7226 0.9988 0.9889 0.9999 0.9997
1 3 0.9966 0.9509 1 0.9998 1 1.0000

WALDC ω = 1 ω = 1.5 ω = 2
K R Normal t-Student(5) Normal t-Student(5) Normal t-Student(5)

3 1 0.9440 0.9375 0.9816 0.9785 0.9931 0.9917
2 2 0.8348 0.8298 0.9261 0.9212 0.9567 0.9511
1 3 0.6225 0.6184 0.7435 0.7394 0.8063 0.8087

WALDT ϑ = 0.05 ϑ = 0.1 ϑ = 0.15
K R Normal t-Student(5) Normal t-Student(5) Normal t-Student(5)

3 1 0.4126 0.2403 0.9478 0.8249 0.9935 0.9749
2 2 0.8145 0.5333 0.9994 0.9895 0.9997 0.9996
1 3 0.9925 0.9211 1.0000 1.0000 1.0000 1.0000

Table 3: The impact of τ on the power of WALD, WALDT , WALDC tests for T=200,
M=4, R=2

WALD
ω / ϑ τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

0.05/0.05 0.5743 0.5674 0.7324 0.8554 0.9106 0.9358 0.9279 0.8996 0.7993
0.075/0.75 0.8884 0.9320 0.9896 0.9979 0.9988 0.9992 0.9985 0.9979 0.9894
1.0/0.1 0.9827 0.9966 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000 0.9998

WALDC

ω τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
1 0.9134 0.8753 0.8512 0.8368 0.8348 0.8370 0.8553 0.8810 0.9128
1.5 0.9602 0.9441 0.9257 0.9284 0.9261 0.9217 0.9342 0.9429 0.9632
2 0.9806 0.9681 0.9606 0.9536 0.9567 0.9609 0.9628 0.9666 0.9820

WALDT

ϑ τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
0.05 0.1064 0.3600 0.6458 0.7739 0.8145 0.7801 0.6467 0.3678 0.1023
0.1 0.3076 0.9489 0.9967 0.9987 0.9994 0.9986 0.9976 0.9631 0.3443
0.15 0.6643 0.9991 1.0000 1.0000 0.9997 0.9999 0.9999 0.9996 0.7146

Furthermore, the influence of the break point on the power of the
tests was analysed. Nine values for the break fraction were considered
τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for the system of four variables with
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two cointegrating vectors. The power of the WALDC test proved to be invariant to
the timing of the break. On the contrary, the WALD and WALDT have the smallest
power if the structural break appears at the beginning or at the end of the sample
while for τ ∈ [0.3, 0.7] the power is not influenced significantly by the timing of the
break (see Table 3).

Table 4: The impact of ρ on the power of WALD, WALDC , WALDT tests for T=200,
M=4, R=2

WALD
ω / ϑ ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

0.05/0.05 0.9997 0.9990 0.9967 0.9807 0.9106 0.7112 0.3766 0.1558 0.0882
0.075/0.75 1.0000 1.0000 1.0000 0.9998 0.9988 0.9833 0.8415 0.4721 0.2178
1.0/0.1 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9863 0.8159 0.4587

WALDC

ω ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
1 0.8516 0.8539 0.8433 0.8393 0.8348 0.8188 0.8005 0.7720 0.7485
1.5 0.9318 0.9289 0.9282 0.9247 0.9261 0.9105 0.9087 0.8892 0.8799
2 0.9643 0.9591 0.9602 0.9591 0.9567 0.9492 0.9455 0.9368 0.9301

WALDT

ϑ ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
0.05 0.9993 0.9971 0.9894 0.9464 0.8145 0.5175 0.2252 0.0878 0.0550
0.1 1.0000 1.0000 1.0000 0.9999 0.9994 0.9886 0.8693 0.4183 0.1450
0.15 1.0000 1.0000 1.0000 1.0000 0.9997 0.9991 0.9840 0.8122 0.3526

The impact of the value of the autoregressive parameter in the DGP on the power
of the proposed tests was estimated for ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
The estimation results are presented in Table 4. The power of the WALDC test is
relatively insensitive to the value of ρ, whereas the power of the WALD and WALDT
tests is the smallest for high values of ρ, i.e. ρ ∈ [0.8, 0.9] and small magnitude of the
break.
In the fourth simulation experiment the size properties of tests were considered. The
empirical rejection frequencies of the true null hypothesis are very close to 5% for all
tests (see Table 5).
Finally, the properties of supWALD, supWALDT , supWALDC were analyzed by
calculating the probabilities of obtaining the maximum value of the Wald statistic
in the same break date, which was assumed in the data generating process. In the
first step, data with a structural break in the deterministic component (the level, the
trend, and both) were generated for τ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. In the second
step, a τ with the maximum value of the Wald statistic was determined. The number
of replications was equal to 500.
In case of models with level break and simultaneous break in level and trend, the
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Table 5: The size of the WALD, WALDC , WALDT tests

WALD WALDC WALDT

R T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

M = 4
1 0.0525 0.0531 0.0503 0.0528 0.0455 0.0498
2 0.0537 0.0504 0.0516 0.0501 0.0548 0.0492
3 0.0516 0.0482 0.0512 0.0511 0.0485 0.0499

M = 5

1 0.0495 0.0515 0.0444 0.0526 0.0468 0.0511
2 0.0526 0.0508 0.0450 0.0477 0.0515 0.0447
3 0.0529 0.0471 0.0468 0.0466 0.0537 0.0460
4 0.0499 0.0514 0.0496 0.0497 0.0507 0.0510

Table 6: The probabilities of obtaining the maximum value of the Wald statistic in the
same break date, which was assumed in the data generating process for supWALD,
supWALDT , supWALDC

sup WALD
ϑ, ω τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

ϑ = 0.05, ω = 0.5 0.5540 0.6120 0.6280 0.6560 0.6560 0.6080 0.5580
ϑ = 0.1, ω = 1 0.9020 0.9040 0.9080 0.9120 0.8980 0.8860 0.8800
ϑ = 0.15, ω = 1.5 0.9620 0.9660 0.9720 0.9720 0.9640 0.9640 0.9600

sup WALDT

ϑ τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8
0.05 0.1440 0.2140 0.4680 0.6940 0.4400 0.1900 0.1280
0.1 0.2180 0.3940 0.7340 0.9260 0.6780 0.3340 0.1460
0.15 0.3340 0.6620 0.9160 0.9760 0.8440 0.5140 0.2340

sup WALDC

ω τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8
0.5 0.584 0.6140 0.6460 0.693 0.6720 0.6340 0.585
1 0.97 0.9840 0.9780 0.971 0.9780 0.9900 0.9700

1.5 0.999 1 1 0.999 0.9980 1 0.9980

results are not influenced by the break point (see Table 6), while in case of supWALDτ
the concerned probability is the highest for τ = 0.5. As expected, in each case the
probability of identifying the true break point increases as ω and ϑ increase.

5 Conclusions
The research has shown that a structural break occurring in the DGP in period t− 1
requires the presence of a binary variable in the cointegration vectors in period t.
The appropriate binary variable must be simultaneously added to the outside of the
cointegration space.
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The Monte Carlo simulations prove that the power of the proposed tests while used
for testing for the presence of structural break in the deterministic part of data
generating process increases with the sample size and the magnitude of the break
and is not significantly affected by the distribution of the error terms (normal versus
t-Student(5)).
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Appendix

Defining h =
[
hT

B̂,1
hT

B̂⊥,1
hT

B̂,2
hT

B̂⊥,2
hT

B̂,3
hT

B̂⊥,3
hT

B̂,4
hT

B̂⊥,4

]T
,

restriction matrices for WALD are as follows

ΘB =
[
0R×2M IR×R 0R×(M−R) 0R×R 0R×(M−R)
0R×2M 0R×R 0R×(M−R) IR×R 0R×(M−R)

]
,

ΘB⊥ =
[
0(M−R)×2M 0(M−R)×R I(M−R)×(M−R) 0(M−R)×R 0(M−R)×(M−R)
0(M−R)×2M 0(M−R)×R 0(M−R)×(M−R) 0(M−R)×R I(M−R)×(M−R)

]
,

analogously for WALDC

ΘB =
[
0R×2M IR×R 0R×(M−R) 0R×M

]
,

ΘB⊥ =
[
0(M−R)×2M 0(M−R)×R I(M−R)×(M−R) 0(M−R)×M

]
,

and for WALDT

ΘB =
[
0R×3M IR×R 0R×(M−R)

]
,

ΘB⊥ =
[
0(M−R)×3M 0(M−R)×R I(M−R)×(M−R)

]
.
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Table A1: Simulated critical values of WALD, WALDC and WALDT (τ = 0.3,
ρ = 0.5, n = 100000)

WALD WALDC WALDT

K R T=100 T=150 T=200 T=100 T=150 T=200 T=100 T=150 T=200
M=2 1 1 27.907 21.258 18.682 16.22 13.517 12.48 21.32 15.858 13.757

M=3 2 1 49.409 35.507 30.327 29.1 22.871 20.38 38.095 27.170 22.846
1 2 59.638 38.913 32.825 33.36 24.571 21.507 48.997 31.176 25.655
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