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Abstract
All plants contain varying levels of phenolic acids (metabolites) thus playing an important 
role in resistance mechanisms as constituents of cell walls, as constitutive antimicrobial 
compounds of plants or induced in response to infection against many diseases, in par-
ticular fusarium head blight caused by Fusarium species. To this end, the objective of this 
research was to study the variation in phenolic acid composition during the kinetics of 
filling wheat grains, in order to determine the best variety resistant to fusarium head blight. 
For this purpose, free and bound phenolic analyses were carried out by HPLC-DAD on 
five durum wheat varieties at the stage 5 to 8 days after the flowering stage (early grains). 
We showed that at the level of the samples analyzed, several phenolic acids were present at 
different concentrations, but others were absent [cis-ferulic acid (free phenolic acid), and 
sinapic acid (bound phenolic acid)]. The results also showed that the content of bound 
phenolic acids was much higher than that of free phenolic acids in all varieties. In addition, 
these phenolic acids existed in free soluble form or were mostly present in insoluble form 
bound to cell walls. For free acids, the results showed that significant amounts of trans-
ferulic acid were detected in comparison to all free phenolic acids (56.72 µg · g–1 DM for 
G10). For bound acids, ferulic acid is the main bound phenolic acid which has much high-
er levels (4913.92 µg · g–1 DM for G1), followed by p-coumaric acid (3098.99 µg · g–1 DM 
for G1). Moreover, the sum of monomers (bound acids) was much higher than that of 
dehydrodiferulic acids (DiFA).
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Introduction

Worldwide, fusarium head blight (FHB) is a destruc-
tive cereal disease which primarly affects wheat and 
barley (Bai and Shaner 2004; Osborne and Stein 2007; 
Valverde-Bogantes et al. 2020). In Europe, this disease 
is considered to be one of the major diseases of cereals, 
and is mainly caused by several fungi of Fusarium ge-
nus. Particularly, Fusarium species pose a serious threat 
to food security due to their ability to produce a wide 
range of mycotoxins, including type B trichothecenes 
(Gauthier et al. 2015; Atanasova-Penichon et al. 2016; 

Gauthier et al. 2016). In Algeria, a preliminary study 
on the situation of fusarium head blight in wheat was 
carried out to identify the main species associated 
with this disease and also to show its consequences 
in the agro-ecological zones of durum wheat cultiva-
tion (Abdallah-Nekache et al. 2019). The severity of 
fusarium head blight in a given area is determined by 
environmental factors during critical phases of the dis-
ease’s development (Kriss et al. 2010). In particular, ear 
infection develops e.g., when flowers open (flowering 
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stage), and can be aided by excessive humidity or hu-
mid conditions combined with warm temperatures 
(Shah et al. 2018; Lozowicka et al. 2022). Faced with 
this health situation, it is critical to implement effec-
tive and long-term management techniques to lower 
the disease’s health risk (Atanasova-Penichon et al. 
2016). The creation of varieties resistant to fusarium 
head blight continues to be the most efficient method 
of control (Gervais et al. 2003; Dhokane et al. 2016; 
Khaledi et al. 2017). As a result, plant phenolic com-
pounds are known to have an important role in plant 
defense against pathogen infections (Lattanzio 2013). 
Specifically, phenolic compounds may have an impor-
tant role in wheat cultivar resistance to fusarium head 
blight, mainly caused by F. culmorum (Siranidou et al. 
2002; Jung et al. 2010). In particular, the phenolic acids 
of wheat are metabolites which actively participate in 
the defense system against Fusarium species and they 
are likely to affect resistance to fusarium head blight 
(FHB) (Chrpová et al. 2021).

Phytochemicals, such as phenolic compounds, are 
present in cereals (van Hung 2014). Thus, phenolic 
acids, which are significant phenylpropanoids, are 
the most frequent type of cereal phenolic compounds 
and are also found in many other plants (Atanasova-
Penichon and Richard-Forget 2014; Boz 2015; Le-
váková and Lacko-Bartošová 2017). In cereals, they 
are derived directly from either hydroxycinnamic or 
hydroxybenzoic acids (El Gharras 2009; Nicoletti et al. 
2013; Atanasova-Penichon and Richard-Forget 2014). 
There are two forms of phenolic acids, soluble (free) 
and insoluble (bound). The first form can be free or 
conjugated by ester or glycosidic bonds, whereas the 
second is linked to the cell wall by ester or ether bonds 
(Nicoletti et al. 2013; Atanasova-Penichon and Rich-
ard-Forget 2014). According to research carried out 
by Brandolini et al. (2013), more than 90% of phenolic 
acids were in bound form in three Triticum species. In 
addition, phenolic acids mainly exist in bound form in 
rice grains and wheat flour (Shao et al. 2021). In wheat 
flours, different extraction rates were carried out which 
showed significant variation in the composition of free 
and bound phenolic acids (Wang et al. 2013).

According to laboratory tests, the main phenolic 
acids found in triticale and wheat were ferulic, cou-
maric, and protocatechuic acids. Triticale was similarly 
high in gallic acid. Barley was high in ferulic, coumar-
ic, hydroxybenzoic, and gallic acids. Ferulic, p-cou-
maric, gallic, and syringic acids were abundant in corn 
(Kandil et al. 2012). Thus, wheat (genus Triticum) is re-
garded as a significant source of polyphenols, however, 
there is little information about their compositions 
and concentrations in different species of Triticum ge-
nus (Leváková and Lacko-Bartošová 2017). Analysis of 
free, conjugated and bound phenolic acid content in 

the grains of some wheat varieties resulted in the de-
termination of various phenolic acids namely ferulic, 
sinapic, p-coumaric, vanillic, 4-hydroxybenzoic, cis-
isomers of ferulic acid and sinapic acid (Paznocht et al. 
2020). In particular, ferulic acid is considered to be 
the most abundant and major phenolic acid con-
tained in wheat grain at all stages of crop development 
(McKeehen et al. 1999; Anson et al. 2009; Leváková 
and Lacko-Bartošová 2017). In addition to ferulic acid, 
vanillic and syringic acids were the main phenolic ac-
ids in the wheat bran studied (Kim et al. 2006).

The objective of this research was to carry out bio-
chemical analyses in the laboratory of phenolic acids 
having a key role in resistance to fusarium head blight. 
The work was focused on conducting a comparative 
analysis of the composition of free and cell wall-bound 
phenolic acids in early grains of two selected lines 
and three marketed parental varieties. The presence 
of these phenolic acids in early wheat grains, the vari-
ation of their composition during the filling kinetics 
of wheat grains and in response to Fusarium infec-
tion were studied. In our research, free soluble and in-
soluble wall-bound phenolic acids were examined in 
the flowering stage (5 to 8 days after flowering) (early 
grains).

Materials and Methods

The plant material used in our present work included 
a total of five durum wheat varieties, including three 
parental varieties with codes for each variety: G10 – 
Ardente, G11 – Waha, G9 – Simeto, and two genea-
logical lines carrying the symbols G1 and G4, com-
posed of seeds resulting from diallel crosses between 
five parents: Ardente, Waha, Simeto, Vitron, and Saadi, 
obtained from the Laboratory of Crop Productions, 
ENSA, El-Harrach, Algiers. G9, G10 and G11 are the 
most susceptible varieties to fusarium head blight 
(Hadjout et al. 2017).

Extraction of free soluble phenolic acids

Phenolic extraction was carried out on ears harvest-
ed at the flowering stage (5 to 8 days after flowering) 
(BBCH: 61). These were frozen at –80°C and lyophi-
lized for 48 h. All samples were ground with a cen-
trifugal mill (Tissuelyser, Retsh, Germany) (0.50 mm 
grid).

For the extraction of free phenolic acids, 1 g of 
ground sample was put directly into a 50 ml tube. Li-
pid compounds were eliminated with a hexane extrac-
tion. Wheat powder was extracted twice with 5 ml of 
hexane, and stirred for 10 min at room temperature. 



Salah Hadjout et al.: Comparative evaluation of free and bound phenolic acid contents in early grains of durum wheat line … 289

After centrifugation at 2800 rcf for 5 min, the organic 
phase was eliminated and the sample in the corning 
was dried under the hood for about 60 min. Then, the 
compounds of interest were extracted with a 10 ml 
mixture of methanol/water (80 : 20, v/v), purged with 
nitrogen for 10 s and agitated on a stirring wheel for 
30 min. The samples were then centrifuged for 10 min 
at 2800 rcf.

Supernatants contained free phenolic compounds, 
and the pellets (solid part) contained phenolic com-
pounds bound to the cell wall. An 8 ml volume of the 
supernatant was taken from the solid part and dried 
on a Petri dish overnight to allow the extraction of the 
bound phenolic acids. After methanol/water (80 : 20, 
v/v) extraction of phenolic compounds, free phenolic 
acids were extracted by liquid-liquid extraction with 
ethyl acetate. They were concentrated twice by evapo-
ration under nitrogen flow at 40°C, and 6 ml of wa-
ter were added. Aqueous solutions were acidified with 
1 M HCl at a pH of 2 then 10 ml of ethyl acetate were 
added. At this pH, phenolic acids are more soluble in 
the organic phase than in the aqueous phase. The sam-
ple was stirred for 5 min and centrifuged for 5 min at 
2800 rcf. Then, 8 ml of the organic phase (upper) was 
taken from a 10 ml glass tube, and evaporated to dry-
ness under nitrogen flow. Before the HPLC-DAD as-
say, the extract was taken up with 200 μl of MeOH/
water (50 : 50, v/v) and filtered through 0.22 μm poros-
ity filter paper.

Extraction of insoluble phenolic acids bound 
to cell walls

Bound phenolic acids were extracted from about 
100 mg of the solid part (finely ground grains). Four 
milliliters of sodium hydroxide (2 M) were added to 
the tube. After purging with nitrogen for 10 s, the tube 
was shaken for 2 h. Then, the filtrates were acidified 
to pH 2 using hydrochloric acid (12 M). The samples 
were then extracted with 5 ml of ethyl acetate. After 
centrifugation at 2800 rcf for 5 min, 4 ml of the ethyl 
acetate phase were placed in a 10 ml glass tube. The 
extraction was repeated a second time and 8 ml of the 
organic phase were evaporated to dryness at 40°C un-
der nitrogen flow. Finally, the dry samples were taken 
up in 500 μl of a methanol/water mixture (50 : 50, v/v) 
and filtered through a 0.22 μm porosity filter.

HPLC-DAD phenolic acids determination 

Phenolic acids (free and bound) were analyzed by 
1100 Series High Performance Liquid Chromatog-
raphy (HPLC) system (Agilent, Massy, France) cou-
pled to an Agilent photodiode array detector (DAD) 
according to a modified protocol described by Atan-
asova-Penichon et al. 2014. This method has been 

developed to separate many phenolic acid compounds: 
chlorogenic acid, p-coumaric acid, trans-ferulic acid, 
sinapic acid, syringic acid, protocatechuic acid, va-
nillic acid, ferulic acid, 8-5´-dehydrodiferulic acid 
(8-5’-DiFA), 5-5´-dehydrodiferulic acid (5-5´-DiFA), 
8-O-4´-dehydrodiferulic acid (8-O-4´-DiFA) and 8-5´-
benzofurandehydrodiferulic acid (8-5´-benzofuran-
DiFA). These compounds and some of their charac-
teristics are reported in Table 1. The separation of the 
phenolic acids was carried out on a Kinetex XB-C18 
100 Å (150 by 4.6 mm, 2.6 µm) (Phenomenex, Le Pecq, 
France) maintained at 45°C. The mobile phase consist-
ed of water acidified with 0.20% formic acid (v/v) (sol-
vent A) and acetonitrile acidified with 0.20% formic 
acid (v/v) (solvent B). Phenolic acids were separated 
by an elution gradient as follows: from 5 to 15% of B in 
30 min, from 15 to 50% of B in 10 min, from 50 to 90% 
of B in 5 min, 90% B for 3 min, 90 to 5% B in 1 min, 
and 5% B for 10 min. The injection volume was 5 μl 
and the flow rate was maintained at 1 ml/min for a to-
tal duration of 68 min. UV-VIS spectra were recorded 
from 200 to 550 nm and chromatographic peaks were 
measured at 260 nm, 280 nm and 320 nm, according to 
the phenolic acids studied. Monomeric phenolic acids’ 
quantification and ferulic acid dimers were carried out 
using an external calibration performed with stand-
ard solutions of phenolic acids prepared from pure 
commercial powders purchased from Sigma-Aldrich 
(France).

Table 1. Characteristics of phenolic compounds separated by 
the HPLC analysis method developed during the study

Phenolic compounds
RT  

[min]
λmax 

[nm]

Phenolic acids (derived from benzoic acids)

Protocatechuic acid 8.86 260

Vanillic acid 18.90 260

Syringic acid 21.70 280

Phenolic acids (derived from cinnamic acids)

Ferulic acid 33.60 320

p-coumaric acid 28.10 320

Sinapic acid 33.80 320

Chlorogenic acid 16.60 320

Dehydrodiferulic acids (DiFA)

8-5’-DiFA (open form) 38.80 320

5-5’-DiFA 42.80 320

8-O-4’-DiFA 43.90 320

8-5’-benzofuran-DiFA (benzofuran form) 44.10 320

RT – retention time; λmax – lambda max; p-coumaric acid – para-co-
umaric acid; 8-5´-DiFA – 8-5´-dehydrodiferulic acid; 5-5´-DiFA – 5-5´-
dehydrodiferulic acid; 8-O-4´-DiFA – 8-O-4´-dehydrodiferulic acid; 8-5´-
benzofuran-DiFA – 8-5´-benzofurandehydrodiferulic acid
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Statistical analysis 

For variance analysis, statistical analysis of all results 
was performed using statgraphics software version 
15.1.0. Then, means multiple comparison was carried 
out using LSD test (Least Significant Difference) to de-
termine homogeneous groups at the 5% significance 
level.

Results

At 5 to 8 days after flowering (early grains), free and 
cell wall-bound phenolic acids content of the varieties 
studied was analyzed by HPLC-DAD and presented in 
Table 2.

Phenolic acid analysis results in the early grains 
showed that the contents of bound phenolic acids were 
much higher than that of free phenolic acids at the 
flowering stage. 

In early grains, analytical results for free phenolic 
acids revealed the absence of cis-ferulic acid. However, 
chlorogenic, p-coumaric, trans-ferulic, sinapic, syring-
ic, protocatechuic and vanillic acids were detected in 
a variety of ears. Indeed, chlorogenic and protocate-
chuic acid contents were very low, while slightly higher 
contents were detected in p-coumaric, syringic, vanil-
lic acids and sinapic acid with slightly higher amounts 
than in the last three acids. Finally, trans-ferulic acid 
was detected with significant amounts compared to all 
free phenolic acids in early grains. In all cases, the va-
lues   were relatively very close for all varieties.

Statistically, the G1 line did not show a significant 
difference with the other varieties for the content of 
chlorogenic, p-coumaric, trans-ferulic, syringic and 
vanillic acids. However, it showed a significant dif-
ference with the G11 variety for sinapic (F = 3.37; 
p < 0.05) and protocatechuic (F = 3.48, p < 0.05) acids.

For bound phenolic acids at the level of the early 
grains, the absence of sinapic acid was noted and the 
presence of p-coumaric, ferulic, syringic, vanillic ac-
ids and dehydrodiferulic acids (8-5’-DiFA, 5-5’-DiFA, 
8-O-4’-DiFA and 8-5’-benzofuran-DiFA) was seen. In 
particular, ferulic acid was the main bound phenolic 
acid which had much higher levels.

Statistical analysis revealed that the G1 line showed 
significant differences with G4, G9 and G11 for p-cou-
maric acid, with G9 and G11 for ferulic acid, with G4, 
G9 and G10 for syringic acid and with G9 and G11 for 
dehydrodiferulic acids (8-5’-DiFA, 5-5’-DiFA, 8-O-4’- 
-DiFA and 8-5’-benzofuran-DiFA), sum of cell-wall-
bound monomers and sum of cell-wall-bound DiFA. 
No significant differences were observed between the 
G1 line and other varieties for vanillic acid.

As a result, the G1 line was still in first position with 
the highest content of bound phenolic acids compared 
to the other varieties. It showed 3098.99 µg · g–1 of DM 
in p-coumaric acid, 4913.92 µg · g–1 DM in ferulic acid, 
27.06 µg · g–1 DM in syringic acid, 24.42 µg · g–1 DM 
in vanillic acid, 90.35 µg · g–1 DM in 8-5’-DiFA,  
273.38 µg · g–1 DM in 5-5’-DiFA, 522.71 µg · g–1 DM 
in 8-O-4’-DiFA, 413.06 µg · g–1 DM in 8-5’-benzofuran- 
-DiFA, 8064.39 µg · g–1 DM in monomers and 1299.48 
in dehydrodiferulic acids.

According to these results, syringic and vanillic ac-
ids were present in a variety of ears but in low quan-
tities and a difference between varieties which was 
not important. For dehydrodiferulic acids, the results 
showed that their composition was less important than 
that of ferulic and p-coumaric acids but it was more 
important than that of syringic and vanillic acids. In-
deed, the 8-5’-benzofuran-DiFA and the 8-O-4’-DiFA 
are the two main acids of dehydrodiferulic acid, thus 
representing quantities substantially similar to each 
other. The 5-5’-DiFA was the third dehydrodiferulic 
acid and finally came the 8-5’-DiFA with lower levels 
than the other dehydrodiferulic acids. Moreover, the 
sum of the monomers was much higher than dehy-
drodiferulic acids at the level of all varieties.

Comparing varieties, the content of all bound phe-
nolic acids (monomeric form and dehydrodiferulic 
acids) in the G1 line was much higher than in other 
varieties, especially with susceptible varieties (G9 and 
G11), except for vanilic acid from which no significant 
differences were observed. For this last acid, the G1 
line presented a lower content than G4, G10 and G11 
varieties. It can be assumed that this line had not yet 
formed its cell walls.

Discussion

We focused our discussion on the variation of phenolic 
acid levels at the flowering stage of durum wheat. In-
deed, phenolic acids are major phenylpropanoids and 
are derived directly from either cinnamic acid or ben-
zoic acid (Atanasova-Penichon et al. 2016). In cereals, 
benzoic acid derivatives include gallic, p-hydroxyben-
zoic, vanillic, syringic and protocatechuic acids while 
cinnamic acid derivatives include caffeic, chlorogenic, 
p-coumaric, sinapic and ferulic acids (Das and Singh 
2015; Atanasova-Penichon et al. 2016). Indeed, phe-
nolic acids found in cereals exist in a soluble form (free 
form), either conjugated esterified in sugar or in an 
insoluble form (form bound to cell walls), specifically, 
bound to various polysaccharides and lignin by ester 
and ether bounds (Atanasova-Penichon et al. 2016; 
Žilić 2016).
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In our study, the following free phenolic acids: 
chlorogenic, p-coumaric, trans-ferulic, sinapic, sy-
ringic, protocatechuic and vanillic acids were detect-
ed in wheat ears at the level of all varieties. Several 
studies have reported the presence of these different 
phenolic acids in wheat (Onyeneho and Hettiarach-
chy 1992; Zhou et al. 2004; Kim et al. 2006). Mccal-
lum and Walker (1991) studied changes in soluble hy-
droxycinnamic acids during wheat grain development. 
The HPLC analysis revealed that the trans-ferulic acid 
level decreased in the soluble fraction, but the bound 
fraction increased steadily during grain development. 
Moreover, comparison of the studied cultivars revealed 
significant differences in ferulic acid content per grain 
20 days after emergence of the ear but little difference 
at maturity. Sinapic acid is the second major acid.

For the five varieties, ferulic acid is an insoluble 
phenolic acid bound to the walls, largely predominant 
with higher contents. This result is comparable with 
other research that has reported it to be the most abun-
dant in wheat bran (Zhou et al. 2004; Parker et al. 2005; 
Kim et al. 2006; Moore et al. 2006; Mpofu et al. 2006). 
It is also known that the ferulic acid content varies 
between wheat varieties (Moore et al. 2006; Mpofu et 
al. 2006). In plants, ferulic acid is largely predominant 
in grains and it clearly has an inhibitory effect on the 
biosynthesis of toxins by all Fusarium isolates tested, 
including different chemotypes and species cultivated 
in vitro (Boutigny et al. 2009). Furthermore, ferulic 
acid is the most abundant primary phenolic acid in 
wheat grain, and is mainly responsible for the antioxi-
dant activity of wheat, especially the bran fraction (Le-
váková and Lacko-Bartošová 2017). The second major 
bound acid is p-coumaric acid. Also, Boutigny (2007) 
reported that a few days after the flowering stage 
(10–12 and 20 days after flowering), p-coumaric acid 
was the second major phenolic acid. This same re-
searcher also found that at the mature stage, p-coumar-
ic acid represents the main phenolic acid after ferulic 
acid. Qualitative variations in phenolic acid contents 
have already been observed during wheat grain matu-
ration (McKeehen et al. 1999). Research by Atanasova-
Penichon et al. (2012) reported that the accumulation 
of phenolic compounds varies considerably during 
grain filling and the level is generally highest at the 
beginning of grain filling, as reported in corn. In ad-
dition, several previous studies have shown that the 
nature of grain phenolic acids varies between wheat 
varieties (Régnier and Macheix 1996; Lempereur et al. 
1997; Lempereur et al. 1998; Peyron et al. 2002; Moore 
et al. 2006; Mpofu et al. 2006). These compounds could 
be good candidates for mycotoxin biosynthesis reduc-
tion characteristics in grains (Boutigny et al. 2008).

At 5 to 8 days after flowering, bound phenolic acid 

contents are much higher than that of free phenolic 
acids in all varieties. Work by Mccallum and Walker 
(1991), reported that bound insoluble phenolic acids 
are predominant. For the monomeric form, ferulic 
acid is the main acid, followed by p-coumaric acid. 
The content for these two acids is very important for 
all varieties. These results corroborate those obtained 
by McKeehen et al. (1999) who noted that the resist-
ant cultivar (cv. Sumai) synthesized higher concentra-
tions of bound ferulic acid than the susceptible cultivar 
(cv. Roblin) in the first 25 days after anthesis. Indeed, 
ferulic acid content in the Sumai cultivar was twice 
that of Roblin at 7 days after anthesis (1400 against 
700 µg · 100 grains–1). Together with ferulic acid, p-cou-
maric acid can contribute significantly to plant resist-
ance mechanisms through cell wall enrichment and 
lignification (Atanasova-Penichon et al. 2016). Since 
anthesis occurs when cultivars are most susceptible 
to infection, results of McKeehen et al. (1999) suggest 
that ferulic and p-coumaric acids may potentially con-
tribute to disease resistance.

Conclusions

Phenolic acids can be a very interesting lead to identi-
fying varieties accumulating selected toxins. To better 
identify potential biochemical characters that could 
be related to the lower susceptibility to fusarium head 
blight of the selected G1 line, we compared the phenol-
ic acid compositions in early grains of the five varieties 
considered in the present study. Overall phenolic acid 
composition results indicated that there was a pre-
dominance of monomeric forms and dehydrodiferulic 
acids (DiFA) in the ears of the five durum wheat varie-
ties harvested at the flowering stage, as well as higher 
concentrations of free and cell wall-bound phenolic 
acids in the G1 line ears. Furthermore, our data prob-
ably represent a new argument for the role of cell wall 
composition in Fusarium resistance. We suggest that 
cell-wall traits could potentially be used as molecular 
markers for breeding durum wheat cultivars with in-
creased resistance to fusarium head blight. Moreover, 
it would certainly be very relevant to consider, in addi-
tion to phenylpropanoids, other candidate compounds 
involved in cell-wall composition.
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