
WARSAW UNIVERSITY OF TECHNOLOGY Index 351733

FACULTY OF CIVIL ENGINEERING
COMMITTEE FOR CIVIL AND WATER ENGINEERING

POLISH ACADEMY OF SCIENCES ISSN 1230-2945

DOI: 10.24425/ace.2023.145267

ARCHIVES OF CIVIL ENGINEERING

Vol. LXIX ISSUE 2 2023
© 2023. Marian Giżejowski, Anna Barszcz, Paweł Wiedro. pp. 265 –289
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (CCBY-NC-ND4.0, https://creativecommons.org/licenses/by-nc-nd/4.0/),which permits use, distribution, and reproduction
in any medium, provided that the Article is properly cited, the use is non-commercial, and no modifications or adaptations are made.

Research paper

Refined energy method for the elastic flexural-torsional
buckling of steel H-section beam-columns

Part II: Comparison and verification for elements
LTU and LTR

Marian Giżejowski1, Anna Barszcz2, Paweł Wiedro3

Abstract: In investigations constituting Part I of this paper, the effect of approximations in the flexural-
torsional buckling analysis of beam-columns was studied. The starting point was the formulation
of displacement field relationships built straightforward in the deflected configuration. It was shown
that the second-order rotation matrix obtained with keeping the trigonometric functions of the mean
twist rotation was sufficiently accurate for the flexural-torsional stability analysis. Furthermore, Part
I was devoted to the formulation of a general energy equation for FTB being expressed in terms
of prebuckling stress resultants and in-plane deflections through the factor 𝑘1. The energy equation
developed there was presented in several variants dependent upon simplified assumptions one may
adopt for the buckling analysis, i.e. the classical form of linear eigenproblem analysis (LEA), the form
of quadratic eigenproblem analysis (QEA) and refined (non-classical) forms of nonlinear eigenproblem
analysis (NEA), all of them used for solving the flexural-torsional buckling problems of elastic beam-
columns. The accuracy of obtained analytical solutions based on different approximations in the elastic
flexural–torsional stability analysis of thin-walled beam-columns is examined and discussed in reference
to those of earlier studies. The comparison is made for closed form solutions obtained in a companion
paper, with a scatter of results evaluated for 𝑘1 = 1 in the solutions of LEA and QEA, as well as for
all the options corresponding to NEA. The most reliable analytical solution is recommended for further
investigations. The solutions for selected asymmetric loading cases of the left support moment and
the half-length uniformly distributed span load of a slender unrestrained beam-column are discussed
in detail in Part II. Moreover, the paper constituting Part II investigates how the buckling criterion
obtained for the beam-column laterally and torsionally unrestrained between the end sections might
be applied for the member with discrete restraints. The recommended analytical solutions are verified
with use of numerical finite element method results, considering beam-columns with a mid-section
restraint. A variant of the analytical form of solutions recommended in these investigations may be used
in practical application in the Eurocode’s General Method of modern design procedures for steelwork.
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1. Introduction
The closed form solutions obtained in a companion paper [7] are dealt with in this

paper. The solutions obtained there may be directly used for single span bisymmetric I
and H shaped beam-columns being laterally and torsionally unrestrained (LTU) between
supports, the boundary conditions of which are simply supported with end sections free to
warp. Flexural-torsional buckling (FTB) of beam-columns with discrete lateral-torsional
restraint (LTR) is affected by a continuity of lateral displacements and twist rotation, and
their derivatives of minor axis rotation and twist over the lateral-torsional (LT) restraints.
For an estimation of the critical state of beam-columns with discrete LT restraints, a simple
approximate solution for the so-called critical segment may be adopted, cf. Salvadori [13,
15, 16]. Such a solution requires to consider the critical state of segments being spanned
between the support and the neighbouring LT restraint or between two neighbouring LT
restraints, assuming a discontinuity of the beam-column segments with regard to the out-of-
plane postbuckling deformation state components and their derivatives. Then, the stability
curve 𝑀𝑦,max − 𝑁 created for the critical segment of the lowest critical load multiplier is
a lower bound envelope of the curves predicted for all the other segments. The estimation
method based on this approximation is named the Salvadori’s method. This method is
adopted hereafter for LTR cases, together with the NEA Option 1a presented in [7].

2. Comparison and verification of analytical solutions
for LTU beam-columns

2.1. Beam-columns of symmetric bending moment distribution

In this subchapter, the solution of present study according to the Option 1a in the
companion paper [7] is compared with that of a non-classical form developed by Mohri
et al. [12]. One may notice that the non-classical solution to be compared with is valid
only for symmetric bending moment diagrams. The general solution presented in [12] is
expressed as follows:

(2.1) 𝑀𝑦,max = 𝐶1𝑁𝑧

𝐶2𝑧𝐹 ±

√︄
(𝐶2𝑧𝐹 )2 +
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and other notation as

explained in the companion paper [7].
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The constant 𝐶1 is dependent upon the moment distribution along the member length
while 𝐶2 is associated with off-shear centre line load application and dependent upon the
load distribution along the member length (the values of constant 𝐶1 and 𝐶2 given in the
numerators of 𝐶1 and 𝐶2, respectively, are those from Table 1 of Mohri et al. [12]).
Eq. (2.1) is equivalent to the following:(√︄

𝑘1
𝜁

1
𝐶1

𝑀𝑦,max

𝑀𝑐𝑟 ,0

)2
=

(
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) (
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) (
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𝜁 = 1 +

2𝑀𝑦,max𝐶2𝑧𝐹

𝐶1𝑖
2
0𝑁𝑇

(
1 − 𝑁

𝑁𝑇

)
The relationships between the coefficients of Option 1a of the present study and those

of Mohri et al. [12] holding for the symmetric loading pattern yield:

1
𝐶𝑏𝑐

=

√︄
𝑘1
𝜁

1
𝐶1

1
𝐶1

→ 1
𝐶𝑏𝑠,rem

2𝑀𝑦,max𝐶2

𝐶1
→ 𝐶𝑏𝐹

One can notice that𝐶𝑏𝑠,rem of present study corresponds to the coefficient𝐶1 developed

by Mohri et al. in [12] while 𝐶𝑏𝐹 corresponds to
2𝑀𝑦,max𝐶2

𝐶1
calculated from the data

given by Mohri et al. [12]. The conclusion is that the conversion factors 𝐶𝑏𝑠,rem and 𝐶𝑏𝐹

of present study can be directly related to those obtained in [12] for cases of the symmetric
loading, and they are the same as those predicted for beams in [2, 3]. The final conclusion
is that for equal and opposite end moments (𝜓𝑀 = 1) and no span loads, as well as for
span shear centre loads (for 𝜓𝑞 = 𝜓𝑄 = 1) with no end moments, solutions based on the
Option 1a of this study, for any symmetric loading case, are the same as those predicted
in studies of Mohri et al. [12]. Since the analytical model presented in [12] was verified
by numerical finite element simulations based on the model built in ABAQUS software,
showing a sufficient accuracy of the analytical model developed there, the same accuracy
is kept for the solution developed in the present study.

2.2. Beam-columns of asymmetric bending moment distributions

Firstly, the comparison is made for the equivalent uniform moment factors of two load
cases of the left end moment (Fig. 1) and half-length uniformly distributed load placed at
the section shear centre (Fig. 2).
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Fig. 1. Unrestrained beam-columnwith left end
moment; a) static scheme, b) total moment dia-
gram, c) symmetric moment component, d) an-

tisymmetric moment component

Fig. 2. Unrestrained beam-column with half-
length uniformly distributed load; a) static
scheme, b) total moment diagram, c) symmet-
ric moment component, d) antisymmetric mo-

ment component

The equivalent uniform moment factors do not depend upon the beam-column length
but for NEA based solutions depend upon the section property factor 𝑘1. The structure of
equivalent uniform moment factor depends upon the assumptions used for 𝑀𝑦 and 𝑀𝑧 as
explained in a companion paper [7]. Table 1 summarizes the NEA solutions based on the
non-classical energy formulation presented there. The solutions based on LEA and QEA
are summarized in Table 2.

Table 1. Comparison of the equivalent uniform moment factors for the non-classical energy formu-
lation in which the minor axis moment of the energy equation is that of the second order
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of NEA 𝑀𝑦 𝑀𝑧
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Continued on next page
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Table 1 – Continued from previous page

Type Moment
Equivalent uniform moment factor 𝐶𝑏𝑐
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∗) The upper bound solution of
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𝑀𝑐𝑟 ,0
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𝑁

𝑁𝑐𝑟
≤ 1 where

𝑁𝑐𝑟 = min
(
𝑁𝑦 , 𝑁𝑧 , 𝑁𝑇

)
In order to illustrate the analytical model solutions of present study for considered

loading cases, the bisymmetric wide flange double-tee section is adopted, the properties of
which are given in Table 3 (the section adopted is equivalent to a hot-rolled HEB 300 but
consists of flange and web rectangle shape plates).
A proposal based on LBA and based on the decomposition of unequal end moments

into symmetric and antisymmetric components was developed by Cuk and Trahair [5]. The
solution was later presented in the form dependent upon the equivalent uniform moment
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Table 2. Comparison of the equivalent uniform moment factors for QEA and LEA formulations in
which the minor axis moment is that of the first order

Type of
analysis

Curvature
𝑣′′0

Moment
𝑀𝑧

Equivalent uniform moment factor
𝐶𝑏𝑐

QEA −
𝑀 𝐼
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𝑁

𝑁𝑐𝑟 ,op
≤ 1,

where 𝑁𝑐𝑟 ,op = min (𝑁𝑧 , 𝑁𝑇 )
∗∗) In conjunctionwith in-plane equilibrium set in the undeflected configuration, i.e. the amplification

factor 1
/ (
1 − 𝑁

𝑁𝑦

)
= 1.

Table 3. Section properties of the equivalent section used in numerical models

A 𝐼𝑦 𝐼𝑧 𝐼𝑇 𝐼𝑤 𝑊𝑦,𝑝l 𝑊𝑧, 𝑝l 𝑘1

mm2 mm4 mm6 mm3 mm3 –

142.8
×102

24187
×104

8553
×104

145
×104

1688
×109

1790×
103

863
×103 0.646

factor 𝐶𝑏𝑐 by Trahair et al. [16]. Such a proposal may be extended for any combined load
case and written down as follows:

(2.2)
1

𝐶𝑏𝑐

=
𝑀𝑦,𝑠,max

𝑀𝑦,max

1
𝐶𝑏𝑠

+
(
𝑀𝑦,𝑎,max

𝑀𝑦,max

)3 1
𝐶𝑏𝑎

(
1 − 0.575 𝑁

𝑁𝑧

)
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where: 𝐶𝑏𝑠 – equivalent uniform symmetric moment component factor (equal to unity for
equal and opposite moments, refer to Fig. 1a), 𝐶𝑏𝑎 – equivalent uniform antisymmetric
moment component factor (approximated by taking 2.5 for equal end moments of the same
direction, refer to Fig. 1b); the other symbols are the same as in the companion paper [7].
For the purpose of comparisonwith other solutions, the numerical values of𝐶𝑏𝑠 and𝐶𝑏𝑎

factors in Eq. (2.2) may be taken as those used in the Timoshenko Energy Method [14,15],
cf. Barszcz at al. [3], and confirmed by a general derivation presented in Barszcz et al. [2]
for the elastic lateral-torsional buckling of beams.
Figure 3 shows the 𝑀𝑦,max/𝑀𝑐𝑟 ,0 = 𝐶𝑏𝑐

√︁
𝐹 (𝑁) factors for the left end moment load

case presented in Fig. 1a, from the analytical solutions summarized in Table 1, together with
𝐹 (𝑁) = 𝐹3 (𝑁) and 𝑁/𝑁𝑦 = (1−𝑘1) (𝑁/𝑁𝑧), and in Table 2, together with 𝐹 (𝑁) = 𝐹2 (𝑁).
The section properties are given in Table 3. The analytical solutions are compared with
that of Eq. (2.2) with 𝐶𝑏𝑠 and 𝐶𝑏𝑎 factors as given in Cuk and Trahair [5] and with the
solution presented by Bijak [4].

Fig. 3. Comparison of factor 𝑀𝑦,max/𝑀𝑐𝑟 ,0 for the left end moment load case
and 𝜆𝐿𝑇 = 1, 6

Figure 4 shows the 𝑀𝑦,max/𝑀𝑐𝑟 ,0 factors, from the analytical solutions summarized in
Table 1 and Table 2, for the left half-length uniformly distributed load case presented in
Fig. 1b. The analytical solutions are compared with that of Bijak [4], being equivalent to
Eq. (2.15) of a companion paper [7] in which 𝑁/𝑁𝑧 and 𝑁/𝑁𝑧𝑎 are linear multipliers to
the reciprocals of elementary conversion factors squared, and that of Trahair et al. [16], in
the form of Eq. (2.2) in which 𝐶𝑏𝑠 = 𝐶𝑏𝑠,rem, 𝐶𝑏𝑎 = 𝐶𝑏𝑎,rem of the present study are used.
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Fig. 4. Comparison of factor 𝑀𝑦,max/𝑀𝑐𝑟 ,0 for the left half-length uniformly distributed
load case and 𝜆𝐿𝑇 = 2.0

General observations from the comparison of analytical solutions are as follows:
1. Stability limit curves 𝑀𝑦,max/𝑀𝑐𝑟 ,0 based on the classical solutions (LEA, Cuk and
Trahair [3] and Trahair at al. [12]) are almost identical. The QEA solution is well
above those based on the classical energy LEA method. The differences between
the QEA solution and the other classical ones considered herein are dependent upon
the slenderness ratio. For smaller slenderness ratio values, the QEA solution gives
lower values of 𝑀𝑦,max/𝑀𝑐𝑟 ,0 (except the extreme situation of 𝑁/𝑁𝑧 = 1 where all
the solutions coincide).

2. In the range of the moment effect dominating over that of the effect of compressive
force, the LEA curves are placed well below those based on NEA. On the other hand,
in the range of the compressive force effect dominating over that of the moment one,
the tendency is such that all the results are closer to each other for LTU beam-columns
and coinciding at the point of 𝑁𝑐𝑟 ,op = min (𝑁𝑧 , 𝑁𝑇 ) � 𝑁𝑦 .

3. NEA solutions of 𝑀𝑦,max/𝑀𝑐𝑟 ,0 of present study, are placed well above those of
classical solutions. This confirms the observation well known from the subject liter-
ature, e.g. Trahair [15] and Trahair at al. [16], that there is a great influence of the
prebuckling deformation state on the lateral-torsional critical state and therefore also
on the interaction between the instability modes in relation to compression alone and
to major axis bending alone.

4. NEA Option 1a solution, that for symmetric loading patterns coincides with that of
Mohri et al. [12], may be used for engineering practice since: a) it includes prebuck-



REFINED ENERGY METHOD FOR THE ELASTIC FLEXURAL-TORSIONAL . . . Part II 273

ling modes of failure, b) it requires the evaluation of less moment integral factors
than that of the Option 1b, c) it results in the lower predictions of 𝑀𝑦,max/𝑀𝑐𝑟 ,0 than
the other NEA solutions. Such a solution is then recommended for the verification
exercise and for comparison with numerical finite element results for asymmetric
loading cases presented in the following section of this paper.

5. Finally, one has to bear in mind that the classical energy formulation coefficients
𝐶𝑏𝑠,cem, 𝐶𝑏𝑎,cem used in LEA may lead to unsafe results of LTB for combined load
cases in which endmoments are acting together with span loads, cf. Barszcz et al. [2].
Figs. 3 and 4 proved that the NEA Option 1a solution of present study and using
coefficients 𝐶𝑏𝑠,rem, 𝐶𝑏𝑎,rem leads to more accurate predictions.

In the following, the analytical solution of NEA Option 1a from Table 1 is verified with
use of results from numerical simulations. Numerical simulations are obtained with use of
two worldwide recognized codes, namely Abaqus [1] and LTBeamN [11].
The line modeling technique conforming the Vlasov theory and using 7 degrees of

freedom per node is adopted in the LTBeamN software.
The shell model of S4R, adopted in the Abaqus software, with a size of approximately

30 mm by 30 mm for flanges and the web of considered double-tee section is used. The
boundary conditions for end sections are modelled using rigid sub-contours for two flanges
and one sub-contour for the web with shell elements multipoint constrained as shown in
Giżejowski et al. [10], cf. Fig. 5. Boundary conditions conform with the Vlasov theory of
thin-walled sections so that the results from analytical models and from computer codes
LTBeamN and Abaqus could be directly compared.

Fig. 5. Modelling of end section boundary conditions

Firstly, numerical simulations based on Linear Buckling Analysis (LBA) in the form of
Linear Eigenproblem Analysis (LEA) are carried out by assuming the elastic behaviour in
both LTBeamN and Abaqus codes for the ideally straight and residual stress free member.
Next, numerical simulations based on Nonlinear Buckling Analysis (NBA) are carried
out, using enhanced large displacement Geometrically and Materially Nonlinear Analysis
(GMNA+) and Abaqus code for a quasi-perfect member geometry, residual stress free. The
initial geometry assumed is that corresponding to the lowest LEA out-of-plane overall elas-
tic instability mode with the amplitude scaled from unity to such a very small percentage
of unity that ensures the numerical convergence. The material model in NBA is assumed to
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be a bilinear elastic-plastic, with a very small isotropic hardening ratio of 𝐸/10000 in the
inelastic region in order to avoid an early termination of GMNA+ type of numerical simula-
tions. The results obtainedwith use of NBA for the quasi-ideal member geometry and a very
small out-of-straightness amplitude ensuring the numerical convergence would indicate the
failure mode associated with the inelastic out-of-plane buckling of beam-columns under
different proportion between the in-plane stress resultants in bending and compression.
LBA numerical and analytical models are based on the eigenproblem formulation that

allows for the bifurcation points detection on the primary equilibrium path, therefore they
are based on separating the prebuckling and postbuckling states. In the problem investi-
gated herein, beam-columns are subjected to a second order bending in the plane of section
greater moment of inertia up to the first bifurcation point on the primary equilibrium path
(the critical state). The postbuckling neutral equilibrium is associated with the second order
minor axis bending and non-uniform torsion. LBAmodels use the stress resultants obtained
from the Linear Analysis (LA) or Geometrically Nonlinear Analysis (GNA) identifying the
prebuckling equilibrium path. The assumption of small postbuckling displacements holds,
with no interaction between prebuckling and postbuckling deformation states. The prebuck-
ling in-plane stability effects on the out-of-plane buckling state may only be investigated
using enhanced Geometrically Nonlinear Analysis GNA+ (elastic for quasi-perfect geome-
try of beam-columns) or GMNA+ (inelastic for quasi-perfect geometry of beam-columns).
The latter analysis is more suitable since it may indicate the mode of failure and a nature of
the inelastic resistance of very slender structural members. Such an analysis was carried out
in Giżejowski et al. [10], proving that the inelastic LTU beam-columns under major axis
bending fail due to large twist rotations when associated with zero or very small value of
the compressive force. The inelastic buckling resistance of quasi-perfect beams is therefore
a decreasing function for the increasing member length. The beam buckling resistance
approaches the section major axis bending resistance for stocky elements while the section
minor axis bending resistance for very slender beams.When the compressive force increases
over the major axis bending moment, the mode of failure becomes less associated with
large twist rotations and it is related more to large values of the out-of-plane translations.
When the compressive force is associated with a very small major axis maximum moment,
the failure mode of a stocky column of the quasi-perfect geometry is due to yielding of all
sections along the member length while for a slender column it is due to large quasi-elastic
out-of-plane translations under the compressive force approaching the critical value.
The results obtained in Barszcz et al. [2] deal with the lateral-torsional buckling of

beams under bending about the section stronger principal axis. The results based on the
analytical formulation presented in [2] for beams are also shown hereafter just to indicate
that the NEA Option 1 solution for beam-columns and for 𝑁 = 0 coincides with that for
beams.
In order to assess the failure mode and the resistance of a quasi-perfect geometry beam-

column, numerical simulations are carried out for a very slender member being under
the asymmetric load shown in Fig. 2a, the lateral-torsional slenderness 𝜆𝐿𝑇 of which,
corresponding to the lowest buckling mode is equal to approximately 2.0. The comparison
of analytical results based on the following models: LEA, Trahair’s approximation through
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Eq. (2.2) and NEA Option 1a formulation of present study, and numerical results available
from computer simulations using Abaqus and LTBeamN codes is shown in Fig. 6. Slender
beam-columns, unrestrained laterally and torsionally, are sensitive to the out-of-plane
modes of buckling much more then to the in-plane buckling modes. Because there is
aweek interaction between in-plane and out-of-plane bucklingmodes, a substantial inelastic
postbuckling reserve may exist in the buckling resistance evaluation of slender beam-
columns. Such a reserve is expected to be negligible for low values of themaximumbending
moment and for the compressive force approaching its critical value, associated with the
lateral buckling mode. Contrarily, when the bending moment rises and the compressive
force decreases, the lateral-torsional buckling mode starts to play an important role and the
inelastic postbuckling reserve is expected to be more and more visible. In order to prove
the above mentioned phenomenon, it is rational to carry out NBA in the form of GMNA+.

Fig. 6. Analytical and numerical 𝑀𝑦,max − 𝑁 flexural-torsional buckling limit curves
for the half-length uniformly distributed load case

General observations from the comparison of analytical and numerical results of the
considered LTU beam-columns are as follows:
1. The results from the analytical LBA LEA model of Table 2 are close to those from
LBA numerical simulations of both LTBeamN and Abaqus. This confirms conclusions
from the authors’ earlier investigations that analytical flexural-torsional stability solu-
tions based on the stress resultants from LA, and neglecting the effect of prebuckling
displacements, describe accurately the numerical LBA results of elastic out-of-plane
buckling, regardless the type of finite elements used.

2. Results based on a generalization of the formula proposed by Trahair et al. [16] agree
quite well with those of LEA in Table 2.
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3. Results from the LBA analytical model based on NEA Option 1a are placed higher than
those discussed in 1. and 2. above. The differences are decreasing with the increase
of the axial compressive force. All the discussed models give the same value equal to
the out-of-plane critical force 𝑁𝑐𝑟 ,op = min (𝑁𝑧 , 𝑁𝑇 ) = 𝑁𝑧 for the major axis bending
moment being equal to zero.

4. Figure 6 indicates that for very slender members without discrete LT restraints, the LBA
numerical results obtained from both computer codes considered, represented in Fig. 6
by a set of discrete points are practically of the same lower bound curve. NBA GMNA+
finite element results, corresponding to the ultimate load of a quasi-straight geometry
of the inelastic member, constitute the upper bound. The buckling resistance curve
created by discrete points from the simulation results of GMNA+ exceeds the analytical
elastic buckling curves, especially for lower values of the axial compressive force. For
the compressive force equal to zero, the GMNA+ buckling resistance is well above
the analytical elastic lateral-torsional buckling moment, that is the LEA elastic critical
moment 𝑀𝑐𝑟 = 106 kN and NEA Option 1a ultimate moment 𝑀𝑐𝑟/

√
𝑘1 = 129 kN,

and even slightly overestimates the section plastic resistance in minor axis bending
𝑀𝑧, 𝑝𝑙 = 203 kN·m.

5. The inelastic failure mode associated with the quasi-perfect geometry is associated with
a very large twist rotation of about 90𝑜 attained at the ultimate state of the beam inelastic
response. Such an effect was observed by Giżejowski et al. in [10] when studying the
behaviour of quasi-straight beam-columns under moment gradient. A very large twist
rotation is associated with a very large normal strain produced at the ultimate state by
the minor axis bending and torsion, the strain that is well advanced in the hardening
region. This in turn might give the ultimate state bending moment value exciding the
plastic hinge capacity of 𝑀𝑧, 𝑝𝑙 = 203 kN·m, calculated as for the 𝜎 − 𝜀 model of an
elastic-ideally-plastic constitutive law.

6. It has to be underlined that one cannot directly compare elastic LBA results and inelastic
GMNA+ results, the latter obtained for the member of practically perfect geometry. The
only conclusion one may invoke is that the NEA Option 1a elastic buckling results are
much closer to the ultimate inelastic response for low values of 𝑁 than those from LEA
based formulations.

7. NEA results of the Options 1a, as the compressive force progresses from its zero value
to the critical value of 𝑁𝑧 , coincide with those from numerical simulations of GMNA+.
For very low values of the maximum bending moment, the numerical results exceed
slightly the elastic critical force in compression. This results from the fact that the
material model is bilinear with a very small hardening effect in the inelastic region, so
that the ultimate limit state is reached in association of the large plastic strain of section
fibres.

8. Results from the LBA analytical model based on NEA Option 1a are closer to those
from GMNA+ than those from all the other LBA analytical models. The differences
decrease when the axial compressive force increases. Analytical LBA model based on
NEA Option 1a appeared to be the most robust solution, therefore is recommended for
practical applications.
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3. Verification of recommended analytical solution
for LTR beam-columns

3.1. Analytical solution for beam-columns
with intermediate LT restraints

The analytical solutions presented in the companion paper of this study [7] may not
be directly applicable in the Salvadori’s method [13, 15, 16] for estimating the elastic
stability limit curve of prismatic LTR beam-columns. The reason is that the symmetric
and antisymmetric load components deal with the whole length 𝐿𝑚 =

∑︁
𝑖

𝐿𝑖 (where

𝑖 = 1, 2, . . ., 𝑟 is the number of member segments of length 𝐿𝑖 created by restraints, in this
investigation spaced equally along the member length, so that

∑︁
𝑖

𝐿𝑖 = 𝑟𝐿 and 𝐿𝑖 = 𝐿) and

not with themember segment. Hence, the second ordermoment components𝑀 𝐼 𝐼
𝑦,𝑠 and𝑀 𝐼 𝐼

𝑦,𝑎

for the whole member may give a complex combination of symmetric and antisymmetric
moment components for member segments. In order to facilitate the solution of stability
problems for discretely restrained (LTR) beam-columns, the complex moment diagram for
the segment “𝑖” must be decomposed into two components, i.e.:

– 𝑀𝑦,𝑠,𝑖 resulting from the symmetric load on the beam-column and associated with
the in-plane lowest flexural mode of buckling that in turn may be divided into 𝑗-
components of elementary symmetric components 𝑀𝑦,𝑠𝑠,𝑖, 𝑗 and 𝑘-components of
elementary antisymmetric components 𝑀𝑦,𝑠𝑎,𝑖,𝑘 ,

– 𝑀𝑦,𝑎,𝑖 resulting from the antisymmetric load on the beam-column and associated
with the in-plane second lowest flexural mode of buckling that in turn may be
divided into 𝑚-components of elementary antisymmetric components 𝑀𝑦𝑎𝑎,𝑖,𝑚 and
𝑛-components of elementary symmetric components 𝑀𝑦,𝑎𝑠,𝑖,𝑛.

As a result, the second order in-plane moment for the segment “𝑖” becomes:

𝑀 𝐼 𝐼
𝑦,𝑖 =

∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

1 − 𝑁

𝑁𝑦

+

∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑛

𝑀𝑦,𝑎𝑠,𝑖,𝑛

1 − 𝑁

𝑁𝑦𝑎

and the out-of-plane moment for the segment “𝑖” stands for:

𝑀 𝐼 𝐼
𝑧,𝑖 =

(∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗 +
∑︁
𝑛

𝑀𝑦,𝑎𝑠,𝑖,𝑛

)
𝜙𝑥

1 − 𝑁

𝑁𝑧,𝑖

+

(∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

)
𝜙𝑥

1 − 𝑁

𝑁𝑧𝑎,𝑖
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Hence, the moment term in Eq. (2.18a) presented in the companion paper [7], and used
for the NEA Option 1a of the segment “𝑖” of the LTR beam-column, yields

1
2
𝑘1𝐿𝑖

𝐸𝐼𝑧

1∫
0

𝛿


©«
∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

1 − 𝑁

𝑁𝑦

+

∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑛

𝑀𝑦,𝑎𝑠,𝑖,𝑛

1 − 𝑁

𝑁𝑦𝑎

ª®®®®¬
𝜙𝑥
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)
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1 − 𝑁

𝑁𝑧,𝑖

+

(∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘
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=
𝑘1𝐿𝑖

𝐸𝐼𝑧
𝛿𝑎3

1∫
0
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𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗

(∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗 +
∑︁
𝑛

𝑀𝑦,𝑎𝑠,𝑖,𝑛

)
sin2 (𝜋𝜉)(

1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧,𝑖

)

+

∑︁
𝑛

𝑀𝑦,𝑎𝑠,𝑖,𝑛

(∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗 +
∑︁
𝑚

𝑀𝑦,𝑎𝑠,𝑖,𝑚

)
sin2 (𝜋𝜉)(

1 − 𝑁

𝑁𝑦𝑎

) (
1 − 𝑁

𝑁𝑧,𝑖

)

+

∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

(∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

)
sin2 (𝜋𝜉)(

1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧𝑎,𝑖

)

+

∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚

(∑︁
𝑚

𝑀𝑦,𝑎𝑎,𝑖,𝑚 +
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘
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sin2 (𝜋𝜉)(

1 − 𝑁

𝑁𝑦𝑎

) (
1 − 𝑁

𝑁𝑧𝑎,𝑖

)


d𝜉

The basic critical state relationship 𝑀𝑦,max – 𝑁 given in [7], and adopted herein for the
critical segment “𝑖” as an approximation of the critical state of the prismatic beam-column
with equally spaced LT restraints may be written down as:

(3.1)
(

𝑀𝑦,𝑖,max

𝐶𝑏𝑐,𝑖𝑀𝑐𝑟 ,0,𝑖

)2
=

(
1 − 𝑁

𝑁𝑦

) (
1 − 𝑁

𝑁𝑧,𝑖

) (
1 − 𝑁

𝑁𝑇 ,𝑖

)
where: 𝑀𝑦,𝑖,max – maximum moment of the segment “𝑖”, 𝑁𝑦 – lowest in-plane flexural
buckling force of the system, 𝑁𝑧,𝑖 – lowest out-of-plane flexural buckling force of the
critical segment, 𝑁𝑇 ,𝑖 – lowest torsional buckling force of the critical segment, 𝑀𝑐𝑟 ,0,𝑖 =
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𝑖0
√︁
𝑁𝑧,𝑖𝑁𝑇 ,𝑖 – lateral-torsional critical moment of the critical segment under uniform

bending.
The equivalent uniform moment conversion factor, evaluated in the presence of axial

compression, takes of the following form:

(3.2)
1

𝐶𝑏𝑐,𝑖
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+
𝑀𝑦,𝑠,𝑖,max𝑀𝑦,𝑎,𝑖,max

𝑀2
𝑦,𝑖,max

©«1+
1 − 𝑁

𝑁𝑦

1 − 𝑁

𝑁𝑦𝑎

ª®®®¬
©«

1
𝐶2
𝑏𝑠𝑠,𝑎𝑠,rem,𝑖

+
1 − 𝑁

𝑁𝑧

1 − 𝑁

𝑁𝑧𝑎,𝑖

1
𝐶2
𝑏𝑠𝑎,𝑎𝑎,rem,𝑖

ª®®®¬
+
1 − 𝑁

𝑁𝑦

1 − 𝑁

𝑁𝑦𝑎

(
𝑀𝑦,𝑎,𝑖,max

𝑀𝑦,𝑖,max

)2 ©«
1

𝐶2
𝑏𝑎𝑠,rem,𝑖

+
1 − 𝑁

𝑁𝑧,𝑖

1 − 𝑁

𝑁𝑧𝑎,𝑖

1
𝐶2
𝑏𝑎𝑎,rem,𝑖

ª®®®¬

0.5

where:

1
𝐶2
𝑏𝑠𝑠,rem,𝑖

= 2
1∫
0

©«
∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗

𝑀𝑦,𝑠,𝑖,max

ª®®®®¬
2

sin2 (𝜋𝜉) d𝜉

1
𝐶2
𝑏𝑠𝑎,rem,𝑖

= 2
1∫
0

©«
∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

𝑀𝑦,𝑠,𝑖,max

ª®®®¬
2

sin2 (𝜋𝜉)d𝜉

1
𝐶2
𝑏𝑠𝑠,𝑎𝑠,rem,𝑖

= 2
1∫
0

∑︁
𝑗

𝑀𝑦,𝑠𝑠,𝑖, 𝑗

𝑀𝑦,𝑠,𝑖,max

∑︁
𝑚

𝑀𝑦,𝑎𝑠,𝑖,𝑚

𝑀𝑦,𝑎,𝑖,max
sin2 (𝜋𝜉) d𝜉

1
𝐶2
𝑏𝑠𝑎,𝑎𝑎,rem,𝑖

= 2
1∫
0

∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘

𝑀𝑦,𝑠,𝑖,max

∑︁
𝑛

𝑀𝑦,𝑎𝑎,𝑖,𝑛

𝑀𝑦,𝑎,𝑖,max
sin2 (𝜋𝜉)d𝜉

1
𝐶2
𝑏𝑎𝑠,rem,𝑖

= 2
1∫
0

©«
∑︁
𝑚

𝑀𝑦,𝑎𝑠,𝑖,𝑚

𝑀𝑦,𝑎,𝑖,max

ª®®®¬
2

sin2 (𝜋𝜉) d𝜉

1
𝐶2
𝑏𝑎𝑎,rem,𝑖

= 2
1∫
0

©«
∑︁
𝑛

𝑀𝑦,𝑎𝑎,𝑖,𝑛

𝑀𝑦,𝑎,𝑖,max

ª®®®¬
2

sin2 (𝜋𝜉) d𝜉



280 M. GIŻEJOWSKI, A. BARSZCZ, P. WIEDRO

and for 𝑁 = 0 the following lower bound relationship is held:

1
𝐶𝑏𝑐,𝑖
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𝑘1
𝜁
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(
1

𝐶2
𝑏𝑠𝑠,𝑎𝑠,rem,𝑖

)
+

(
𝑀𝑦,𝑎,𝑖,max

𝑀𝑦,𝑖,max

)2 (
1

𝐶2
𝑏𝑎𝑠,rem,𝑖

)
+

(
𝑀𝑦,𝑠,𝑖,max

𝑀𝑦,𝑖,max

)2 (
1

𝐶2
𝑏𝑠𝑎,rem,𝑖

)
+2

𝑀𝑦,𝑠,𝑖,max

𝑀𝑦,𝑖,max

𝑀𝑦,𝑎,𝑖,max

𝑀𝑦,𝑖,max

(
1

𝐶2
𝑏𝑠𝑎,𝑎𝑎,rem,𝑖

)
+

(
𝑀𝑦,𝑎,𝑖,max

𝑀𝑦,𝑖,max

)2 (
1

𝐶2
𝑏𝑎𝑎,rem,𝑖

)]0.5
For an unrestrained beam of the length 𝐿 (where 𝐼 = 1 and 𝑀𝑦,𝑖,max = 𝑀𝑦,max,

𝑀𝑦,𝑠,𝑖,max = 𝑀𝑦,𝑠,max, 𝑀𝑦,𝑎,𝑖,max = 𝑀𝑦,𝑎,max), being under one loading type (end mo-
ments, half-length uniformly distributed loads or one concentrated force in the half-length),
no bending moments

∑︁
𝑘

𝑀𝑦,𝑠𝑎,𝑖,𝑘 and
∑︁
𝑚

𝑀𝑦,𝑎𝑠,𝑖,𝑚 occur. Then, it is possible to convert

the above relationship to that obtained for beams in [2]. For LT restrained beam-columns,
Eq. (3.2) is concerned with the critical segment “𝑖”, therefore creates a general lower bound
solution. One must bear in mind that the critical segment “𝑖” moment distribution, being
a superposition of globally amplified symmetric and antisymmetric distributions, need to
be decomposed into several elementary symmetric and antisymmetric components.

3.2. Case study of mid-length restrained beam-column
under left end moment

Figure 7a shows the beam-column laterally and torsionally restrained in mid-length,
together with the globally decomposed bending moments. The section and load case
are those used for the unrestrained beam-column (Fig. 1a). Because of the LT restraint,
the out-of-plane slenderness ratio 𝜆𝑧 of the restrained beam-column is reduced by 50%
in comparison with that corresponding to its unrestrained counterpart, so that also the
slenderness 𝜆𝐿𝑇 is reduced. The failure mode of quasi-perfect geometry beam-columns is
therefore controlled more by moderate lateral translations than by large twist rotations.
The identified critical segment is that between the left support and the mid-length LT

restraint. Figure 7b shows the bending moment components of the critical segment needed
for the evaluation equivalent uniform moment factor components. Table 4 summarizes
the number of bending moment components for the critical segment and field moment
equations. The equivalent uniform moment component factors corresponding to the field
moment from Table 4 are listed in Table 5.
The analytical solution NEA Option 1a based on the Vlasov beam theory, presented

in a companion paper and the previous subsection of this paper, is used hereafter with
the factors given in Table 5 to obtain the approximate relationship between the axial
compressive force and the maximum major axis bending moment at the critical state
estimate of the considered LTR beam-column. The results are illustrated in Fig. 8 together
with the verification of analytical results using computer finite element simulations. LBA
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(a)

(b)

Fig. 7. Restrained beam-column with left end moment: a) static scheme and global symmetric and
antisymmetricmoment components for the in-plane amplification, b) bendingmoment decomposition

for the critical segment

Table 4. Critical segment field moment equations

Load decomposition Associated moment ratio Field moment equations

Symmetry 𝑗 = {1}, 𝑘 = {0} 𝑀𝑦𝑠,1,max = 0.5𝑀𝑦,max
𝑀𝑦𝑠𝑠,1,1 0.5𝑀𝑦,max

𝑀𝑦𝑠𝑎,1,0 0

Antisymmetry𝑛 = {1}, 𝑚 = {1} 𝑀𝑦𝑎,1,max = 0.5𝑀𝑦,𝑖,max
𝑀𝑦𝑎𝑠,1,1 0.25𝑀𝑦,max

𝑀𝑦𝑎𝑎,1,1 0.25𝑀𝑦,max

(
1 − 2𝑥

𝐿

)
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numerical models were built, of a shell type in Abaqus and a line (beam) type in LTBeamN.
Such models are concerned with LEA. The third numerical model GMNA+ is the shell
model with an initial crookedness corresponding to the lowest flexural-torsional mode and
the amplitude as small as possible in order to ensure the convergence of incremental-
iterative numerical solution of NBA in the numerical prediction of the full nonlinear path
associated with the stable equilibrium.

Fig. 8. Comparison of analytical and numerical 𝑀𝑦,max − 𝑁 flexural-torsional buckling limit curves
for the load case of left support moment

Table 5. Equivalent uniform moment factor components

Symmetry Antisymmetry Others
1

𝐶2
𝑏𝑠𝑠,rem,𝑖

1
𝐶2
𝑏𝑠𝑎,rem,𝑖

1
𝑐2
𝑏𝑎𝑎,rem,𝑖

1
𝑐2
𝑏𝑎𝑠,rem,𝑖

1
𝑐2
𝑏𝑠𝑠,𝑎𝑠,rem,𝑖

1
𝑐2
𝑏𝑠𝑎,𝑎𝑎,rem,𝑖

1 0 0.0327 0.25 0.5 0

3.3. Case study of mid-length restrained beam-column
under half-length uniformly distributed load

The second example of case study is concerned with the beam-column of the geometry
and LT restraint being shown in Fig. 7 but with a different loading condition. The loading
condition and the bending moment diagram are shown in Fig. 9a.
The identified critical segment is that between the left support and the mid-length LT

restraint. Figure 9b shows the bending moment components needed for the evaluation of
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equivalent uniformmoment factor components. Table 6 summarizes the number of bending
moment components for the critical segment and field moment equations. The equivalent
uniform moment component factors corresponding to the field moment from Table 6 are
listed in Table 7.

(a)

(b)

Fig. 9. Restrained beam-column with half-length uniformly distributed load: a) static scheme and
global symmetric and antisymmetric moment components for the in-plane amplification, b) bending
moment components for the critical segment (between the left support and the mod-length LT

restraint)



284 M. GIŻEJOWSKI, A. BARSZCZ, P. WIEDRO

Table 6. Critical segment field moment equations

Load decomposition Associated moment ratio Field moment equations

Symmetry 𝑗 = {1, 2}, 𝑘 = {1} 𝑀𝑦,𝑠,1,max =
8
9
𝑀𝑦,max

𝑀𝑦𝑠𝑠,1,1
8
9
𝑀𝑦,max

𝑥

𝐿

(
1 − 𝑥

𝐿

)
𝑀𝑦𝑠𝑠,1,2

4
9
𝑀𝑦,max

𝑀𝑦𝑠𝑎,1,1
4
9
𝑀𝑦,max

(
1 − 2 𝑥

𝐿

)
Antisymmetry𝑛 = {1}, 𝑚 = {0} 𝑀𝑦,𝑎,1,max =

2
9
𝑀𝑦,max

𝑀𝑦𝑎𝑠,1,1
8
9
𝑀𝑦,max

𝑥

𝐿

(
1 − 𝑥

𝐿

)
𝑀𝑦𝑎𝑎,1,0 0

Table 7. Equivalent uniform moment factor components

Symmetry Antisymmetry Others
1

𝐶2
𝑏𝑠𝑠,rem,𝑖

1
𝐶2
𝑏𝑠𝑎,rem,𝑖

1
𝑐2
𝑏𝑎𝑎,rem,𝑖

1
𝑐2
𝑏𝑎𝑠,rem,𝑖

1
𝑐2
𝑏𝑠𝑠,𝑎𝑠,rem,𝑖

1
𝑐2
𝑏𝑠𝑎,𝑎𝑎,rem,𝑖

0.516 0.0327 0 0.780 0.630 0

The analytical solution NEAOption 1a is used again with the factors given in Table 7 to
obtain the approximate relationship between the axial compressive force and the maximum
major axis bending moment at the critical state of the considered LTR beam-column.
The results are illustrated in Fig. 10 together with the verification of analytical results

Fig. 10. Comparison of analytical and numerical 𝑀𝑦,max – 𝑁 flexural-torsional buckling limit curves
for the half-length uniformly distributed load case
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using computer finite element models. LBA numerical models was built, shell in Abaqus
and line in LTBeamN. Such models are concerned with LEA. The third numerical model
GMNA+ is the shell model with an initial crookedness corresponding to the lowest flexural-
torsional mode and the amplitude as small as possible in order to ensure the convergence of
incremental-iterative numerical solution for the nonlinear equilibrium path associated with
the stable equilibrium. Comparison of results for the beam-column considered is shown
in Fig. 10.

3.4. Summary of results from case study of FTB
of restrained beam-columns

General observations from the comparison of analytical and numerical results of LTR
beam-columns are as follows:
1. From the comparison of LBA LTBeamN and Abaqus numerical results it is obvious
that Abaqus software can trace all the lowest buckling modes while LTBeamN only
the out-of-plane buckling modes. The LTBeamN code predicts the results even for
𝑁 > 𝑁𝑦 , i.e. beyond the lowest buckling mode in pure compression, up to the
bifurcation lowest out-of-plane force 𝑁𝑧 < 𝑁𝑇 which is the second lowest buckling
mode obtained from Abaqus simulations.

2. Numerical NBA results of GMNA+ for a quasi-straight geometry member are placed
well below those corresponding to LBA, except for the range of small in-plane bend-
ing moment. It is very important noticing that LBA type of analysis carried out by
Abaqus is not able to detect coupling between the in-plane and out-of-plane buckling
modes. For the region of balanced values of compression and bending stress resul-
tants, the LBA results overestimate the buckling resistance predicted by GMNA+.
On the other hand, the bucking resistance estimated with use of GMNA+ is for 𝑁 =

0 greater than the minor axis section bending resistance, much greater than that de-
tected for the LTU beam-column (cf. Fig. 8). Since the lateral-torsional slenderness
is in this case much lesser than that for the LTU beam-column, the buckling inelastic
resistance of LTR beam-column is attained in this case for minor axis bending and
compression of a laterally continuous static scheme. Only a moderate twist rotation
of several degrees is achieved in the failure state, in contrast to that of 90◦ for the LTU
beam-column ultimate limit state. The lateral displacements are however greater at
failure than those for LTU beam-columns, due to the observed advancement of the
plastic zones in section flanges.

3. The mid-section LT restraint acts as an internal support for the out-of-plane bending
and torsion in simulations based on GMNA+, therefore, for the low compressive
forces, it results in a moderate plastic zone spread, increasing the beam-column
buckling resistance less importantly beyond that corresponding to the minor axis
section resistance.

4. Results of the analytical solution of NEAOption 1a, based on the Salvadori’s method
for the critical segment, allows for a safe prediction by taking the coupling effect of
in-plane and out-of-plane buckling modes into consideration.
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5. NEA Option 1a solution developed in these investigations is recommended for prac-
tical application in the Eurocode’s General Method (GM) of modern design pro-
cedures for both LTU and LTR elements of steelwork. Such a procedure has been
presented in the earlier studies at theWarsawUniversity of Technology and presented
in Gizejowski et al. [8, 9].

4. Summary and conclusions

The refined energy equation developed in Part I of this study [7] was summarized, then
illustrated and verified for selected loading conditions by the results made available through
numerical simulations for laterally and torsionally unrestrained (LTU) beam-columns.
Theorectical investigations have been extended in Part II for beam-columns laterally and
torsionally restrained (LTR). It has been proven that out-of-plane discrete rigid restraints
have a great impact on the buckling state of beam-columns. One must bear in mind that
the computer LBA simulations are based on the LEA formulation for the assessment of the
elastic buckling stability of beam-columns, therefore are not able to account for coupling
between in-plane and out-of-plane bucklingmodes (Abaqus software) or even cannot detect
the in-plane modes (LTBeamN software). The approximate analytical solutions based on
NEA have in this case an advantage over such numerical simulations.
The most suitable version of NEA analytical solution is that named herein as the Option

1a, therefore it has been recommended for practical application. This option of NEA has
been shown to be especially vital for the analytical stability assessment of the flexural-
torsional buckling of LTR beam-columns. The approximate analytical solution based on
the NEA Option 1a and Salvadori’s concept of the critical segment of LTR beam-columns
was verified with use of numerical results from finite element simulations and proven to be
a suitable lower bound estimation of the system buckling state. Detailed conclusions were
presented in section 3 and 4 of Part II of this paper.
The analytical solutions developed in the paper include not only the effect of prebuck-

ling stress resultants (axial force and major axis bending moment) on the elastic buckling
state but also the effect of prebuckling deflections. The latter effect cannot be incorporated
in the linear eigenproblem analysis (LEA) as implemented in computer codes dealt with.
LEA results show that in-plane and out-of-plane bucklingmodes are treated as independent.
In reality, all buckling modes suppose to be coupled. In order to prove that all the buckling
modes are coupled, one may carry out GMNA+ (large displacement inelastic analysis),
where “+” indicates a small disturbance of the perfect geometry taken into consideration
in GMNA. This enables to predict the limit point on the static response equilibrium path
and prove, or reject, the statement that global in-plane and out-of-plane buckling modes are
coupled. The GMNA+ simulations carried out by authors proved that the buckling modes
are strongly coupled for LTR beam-columns. One should not expect that the numerical
results of GMNA+ would be comparable with those of the analytical solution for elastic
members of perfect geometry. Numerical GMNA+ results of the maximum moment vs.
the compressive force at the ultimate state constitute a “concave curve type” while those
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corresponding to analytical results of the elastic bifurcation instability constitute a “convex
curve type”. The only observation one may make is that both, numerical GMNA+ results
and analytical results of the Option 1a solution prove that there is an unavoidable interaction
between the in-plane and out-of-plane buckling modes.
The outcomes of presented paper are important for a further development of the Eu-

rocode 3 General Method (GM) that is a modern design method for the overall buckling
resistance check, developed for multiple stress resultant stability problems, dedicated to
compression and major axis bending of open section members.
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Udoskonalona metoda energetyczna sprężystego wyboczenia
giętno-skrętnego stalowych elementów ściskanych i zginanych

o przekroju dwuteowym

Słowa kluczowe: stalowy element ściskany i zginany, dwuteownik bisymetryczny, zachowanie sprę-
żyste, wyboczenie giętno-skrętne, symulacje numeryczne, weryfikacja rozwiązań
analitycznych

Streszczenie:

W I części niniejszej pracy zastosowano różne rodzaje aproksymacji w analizie wyboczenia
giętno-skrętnego elementów ściskanych i zginanych w płaszczyźnie większej bezwładności prze-
kroju. Punktem wyjścia było sformułowanie zależności na pole przemieszczeń w konfiguracji od-
kształconej. Pokazano, że macierz rotacji, otrzymana przy zachowaniu funkcji trygonometrycznych
średniego kąta skręcenia, jest wystarczająco dokładna do analizy stateczności giętno-skrętnej. Szcze-
gólną uwagę zwrócono w Części I na sformułowanie ogólnego równania energetycznego dla FTB,
wyrażonegow funkcji siłprzekrojowych na podstawowej ścieżce równowagi, przed utratą płaskiej po-
staci zginania II rzędu, a także wpływu efektu ugięć w płaszczyźnie większej bezwładności przekroju,
wyrażonego za pomocą współczynnika 𝑘1. Otrzymane równanie energetyczne zostało przedstawione
w kilku wariantach zależnych od założeń upraszczających, jakie można przyjąć do rozwiązywania
problemów wyboczenia giętno-skrętnego, tj. w postaci klasycznej analizy liniowego problemu wła-
snego (LEA), w postaci kwadratowego problemu własnego (QEA) oraz w postaci udoskonalonej
(nieklasycznej) analizy nieliniowego problemuwłasnego (NEA).W części II, w pierwszej kolejności,
została zbadana i dyskutowana dokładność otrzymanych rozwiązań analitycznych w odniesieniu do
propozycji przedstawionych we wcześniejszych opracowaniach. Przeprowadzone są też porównania
dla rozwiązań w postaci zamkniętej uzyskanych w Części I, z oceną rozrzutu wyników, po przyjęciu
𝑘1 = 1 w rozwiązaniach odpowiadających LEA i QEA, a także wszystkich opcji w rozwiązaniach
odpowiadających NEA. Do dalszych badań rekomendowano najbardziej wiarygodne rozwiązanie
analityczne. Szczegółowej weryfikacji poddano rozwiązania uzyskane dla wybranych asymetrycz-
nych przypadków obciążenia: momentem na lewej podporze i równomiernie rozłożonym obciąże-
niem w połowie długości nieusztywnionego, smukłego elementu ściskanego i zginanego. Ponadto
w Części II zbadano, w jaki sposób kryterium wyboczeniowe, uzyskane dla elementu ściskanego
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i zginanego bez usztywnień poprzecznych i przeciwskrętnych między przekrojami końcowymi, może
być zastosowane dla elementu z dyskretnymi stężeniami poprzecznymi. Zalecane rozwiązania anali-
tyczne zweryfikowano z wykorzystaniem wyników numerycznych metody elementów skończonych
dla elementów stężonych w przekroju środkowym. Wariant analitycznej postaci rozwiązania zaleca-
nego w zaprezentowanych badaniach może być wykorzystany w praktyce w eurokodowej Metodzie
Ogólnej (GM).
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