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Robust and reliability-based design optimization
of steel beams
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Abstract: In line with the principles of modern design a building structure should not only be safe
but also optimized. In deterministic optimization, the uncertainties of the structures are not explicitly
taken into account. Traditionally, uncertainties of the structural system (i.e. material parameters, loads,
dimensions of the cross-sections) are considered by means of partial safety factors specified in design
codes. Worth noticing, that optimal structures are sensitive to randomness design parameters and
deterministic optimal solutions may lead to reduced reliability levels. It therefore seems natural to
extend the formulation of deterministic optimization with the random scatter of parameter values. Such a
formulation is offered by robust optimization and reliability-based design optimization. The applicability
of RBDO is strongly dependent on the availability of the joint probability density function. A formulation
of non-deterministic optimization that better adapts to the design realities is robust optimization.
Unlike RBDO optimization, this formulation does not require estimation of failure probabilities. In the
paper using the examples of steel beams, the authors compare the strengths and weaknesses of both
formulations.
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1. Introduction

In deterministic optimization, the random nature of design parameters is taken into
account using partial safety coefficients. These factors are determined by the relevant
design codes. In accordance with the standard provisions, the coefficients are calibrated so
that their application covers the widest possible scope of design tasks. This approach leads
to overly conservative solutions. In paper [1], the problem of optimal design of a galvanized
girder in accordance with Eurocode 3 was considered. If ensuring a sufficiently high level
of safety is one of the most important requirements for the designed structure, a reliability-
based design optimization (RBDO) [2–6] is worth considering. In the RBDO framework,
design constraints are formulated using failure probabilities. The failure probabilities are
understood as the probability of exceeding certain allowable ultimate or serviceability states
defined by appropriate limit state functions. The possibility of using reliability optimization
in practice is strongly conditioned by the availability of the joint probability distribution
of random parameters. The reliability of the estimated failure probabilities depends on the
precise stochastic model. The formulation of nondeterministic optimization that better fits
the design reality is robust optimization [7–10]. Contrary to reliability based optimization,
this formulation does not require joint probability distribution of random parameters and
precise probability distribution of variables. The random nature of the structure response
is taken into account by the objective function and constraint definitions, which include
mean values and variances. In the paper, we will show a comparative analysis of the results
obtained from reliability based and robust optimization approaches using the examples of
a steel beams. This analysis will allow us to present the strengths and weaknesses of both
methods for optimal structural design with parameter randomness taken into account.

2. First order reliability method – FORM

The FORM method is one of most effective approximate methods of the calculation
of reliability measures. In a general case, when the probability distribution of vector X
of base variables is not the Gaussian distribution, transformation is used to transform this
vector to the Gaussian vector whose coordinates are independent standard normal vari-
ables Z. The existence of this type of transformation and the manner of its construction
was shown for the first time by Rosenblatt [10] for the case when coordinates of vector X
have uniform distributions. Hohenbichler and Rackwitz [12] adapted this transformation
to reliability calculations. The transformation of basic random variables to the Gaussian
standard space must assure the equivalence of the formulation of the reliability problem.
The probability of failure, defined in space X, must be equal to the probability defined
in space Z. After transformation of the variables from the original space to the standard
normal space is performed Z = 𝑇 (X). we obtain new limit state function 𝐺 (𝑍1, . . . , 𝑍𝑛).
Estimating the failure probability with the FORM method [13, 14] requires the determi-
nation of a point that is closest to the origin of the Z coordinate system. We refer to this
point as design point. The design point lies on 𝐺 (𝑍1, . . . , 𝑍𝑛) = 0 and has coordinates
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(
𝑍∗
1 , . . . , 𝑍

∗
𝑛

)
. It is the most probable point of failure from among all points in this area. The

Hasofer-Lind reliability index 𝛽 [15] represents the distance of the design point from origin
of standard normal space. Finding a design point is a task for non-linear programming
with constraints. The calculations can be performed using the iterative method. If we can
define distributions of the random variables we improve algorithm of calculating 𝛽 using
Rackwitz-Fiessler procedure [16]. Probability distributions other than normal are replaced
with standard normal distributions. The cumulative distribution function and the proba-
bility density function have the same value for the true and equivalent distributions at the
design point. The FORM method transforms the integration problem into an optimization
problem that can be solved by any optimization algorithm with inequality constraints. The
accuracy of results obtained with the use of the Hasofer-Lind index is sufficient for practical
needs. The index gained a considerable popularity as a reliability measure, particularly in
conjunctionwith transformationmethods which use full information about random variable
distributions [17–22].

3. Reliability-based design optimization – RBDO

The basic formulation of the reliability-based design optimization consists in mini-
mizing the objective function under probabilistic constraints. The typical reliability-based
design optimization formulation is written as:

find: d, 𝝁𝑥(3.1)
minimize: 𝑓 (d, 𝝁𝑋 , 𝝁𝑃)(3.2)

with constraints:

𝑝 [𝑔𝑖 (d,X,P) ≤ 0] −𝛷(−𝛽𝑡𝑖 ) ≤ 0 𝑖 = 1, . . . , 𝑘𝑔(3.3)

𝑑𝑙𝑗 ≤ 𝑑 𝑗 ≤ 𝑑𝑢𝑗 𝑗 = 1, . . . , 𝑛𝑑(3.4)

𝜇𝑙𝑥𝑟 ≤ 𝜇𝑥𝑟 ≤ 𝜇𝑢𝑥𝑟 𝑟 = 1, . . . , 𝑛𝑥(3.5)

where: X and P are vectors of random variables with expected values respectively 𝝁𝑋

and 𝝁𝑃 , 𝑝𝑖𝑓 = 𝑝 [𝑔𝑖 (d,X,P) ≤ 0] is the failure probability corresponding to the 𝑖-th
limit function 𝑔𝑖 (·), 𝛷(·) is the cumulative distribution function of the standard normal
distribution, and 𝛽𝑡

𝑖
, 𝑖 = 1, . . . , 𝑘𝑔, are the minimum reliability indices established by the

designer. The expressions 𝛷(−𝛽𝑡
𝑖
) are therefore the maximum permissible values of the

failure probability.
Variables X can be defined as design random variables because their expected values

change in the optimization process, leading (in the case of constant values of other pa-
rameters describing the distribution) to shift of the probability density function. Unlike X
variables, the probability distribution of the vector P does not change during optimization
and therefore, in the context of the reliability optimization problem, these variables are
called random parameters.
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The probabilistic constraint is the key constraint in reliability-based design optimiza-
tion. The main formulations are classified into three categories: the two-level approach,
the mono-level approach, the decoupled approach. The first category considers the proba-
bilistic constraints inside the optimization loop. This approach leads to nested optimization
problem. The inner loop deals with reliability assessment and the outer loop deals with cost
optimization [23]. Second category aims at solving the problem in a single loop procedure.
The probabilistic constraints are replaced by the optimality conditions [24–26]. The third
category consists in separating the reliability analysis from the optimization procedure.
The RBDO problem is transformed to a sequence of deterministic optimization. The deter-
ministic constraints are linked to the reliability analysis and performed after or before the
deterministic design [27, 28].
In this paper the calculations of reliability-based design optimization are made using

Costrel module of Strurel software [29]. The failure probabilities are computed by means
of FORM. In Costrel use is made of the fact, that the so-called Kuhn–Tucker conditions
must be meet for each reliability optimization. It is mono-level RBDO approaches.

4. Robust optimization
Robust design optimization belongs to non-deterministic optimization formulations.

This approach includes the effect of structural parameter randomness on the response scat-
ter, therefore, it usually increases structural reliability. The constraints may be deterministic
or may be expressed by the first two statistical moments. More attention is paid to the ad-
equate performance of structures subjected to small parameter variations. Unlike other
types of optimization (e.g., reliability-based design optimization), imprecise specification
of the types of probability distributions is not significant. The values of the first statistical
moments of the response depend primarily on the first moments of the random variables.
In the absence of adequate data, a uniform or normal distribution of the variables is often
assumed. The typical robust optimization formulation is written as:

find: d, 𝝁𝑥(4.1)
minimize: {𝐸 [ 𝑓 (d,X,P)], 𝜎[ 𝑓 (d,X,P)]}(4.2)

with constraints:

𝐸 [𝑔𝑖 (d,X,P)] − 𝛽𝑖𝜎 [𝑔𝑖 (d,X,P)] ≥ 0, 𝑖 = 1, . . . , 𝑘𝑔(4.3)
𝜎 [𝑐𝑘 (d,X,P)] ≤ 𝜎𝑢

𝑘 , 𝑘 = 1, . . . , 𝑘𝑐(4.4)

𝑑𝑙𝑗 ≤ 𝑑 𝑗 ≤ 𝑑𝑢𝑗 , 𝑗 = 1, . . . , 𝑛𝑑(4.5)

𝜇𝑙𝑥𝑟 ≤ 𝜇𝑥𝑟 ≤ 𝜇𝑢𝑥𝑟 , 𝑟 = 1, . . . , 𝑛𝑥(4.6)

where: d – deterministic design variables,X, P – vectors of random variables with expected
values of 𝜇𝑥 , 𝜇𝑝 , 𝑓 – objective function, 𝑔𝑖 – functions of constraints, 𝑐𝑘 – functions, the
standard deviations of which must not exceed the allowable values 𝜎𝑢

𝑘
, 𝛽𝑖 > 0 – coefficients
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corresponding to the constraints 𝑔𝑖 ≥ 0which represent the safety margin with which these
constraints must be met.
A very popular method of determining the points of the Pareto set is the multi-criteria

optimization task scalarization method, in which a linear combination of criteria is used as
the objective function. By changing the coefficients (weights) for individual components,
Pareto set points are obtained. The values of the weights can be changed in a systematic
way, so as to determine the set of non-dominated solutions as precisely as possible. Their
values are also affected by the designer’s preferences for minimizing the mean value and
variance. So the task can be modified to the following scalar optimization task:

find values of variables: d, 𝝁x(4.7)

that minimize: �̃� =
1 − 𝛾

𝜇∗
𝐸 [ 𝑓 (d,X,P)] + 𝛾

𝜎∗𝜎[ 𝑓 (d,X,P)](4.8)

with the constraints (4.3)–(4.6)

The robust optimization algorithm has seven steps:
1. Specify the feasible region according to congruent with (4.7) and (4.8) and select
the weighting factor 𝛾.

2. Generate 𝑁 realizations of the vector of design variables uniformly spaced over the
current feasible region, in accordance with the optimal Latin-hypercube design.

3. Determine statistical moments of the objective and constraint functions for each of
the 𝑁 realizations of vector {d, 𝝁x}.

4. Construct the response surface using methods such as kriging directly for individual
statistical moments: �̂� 𝑓 , �̂� 𝑓 , �̂�𝑔𝑖 , �̂�𝑔𝑖 , �̂�𝑐𝑘 .

5. Solve the deterministic optimization problem

find values of variables: d, 𝝁x(4.9)

Minimizing: �̃� DRS =
1 − 𝛾

𝜇∗
�̂� 𝑓 (d, 𝝁𝑥) +

𝛾

𝜎∗ �̂� 𝑓 (d, 𝝁𝑥)(4.10)

Subject to constraints:

�̂�𝑔𝑖 (d, 𝝁𝑥) − 𝛽𝑖�̂�𝑔𝑖 (d, 𝝁𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑘𝑔(4.11)
�̂�𝑐𝑘 (d, 𝝁𝑥) ≤ 𝜎𝑢

𝑘 , 𝑘 = 1, . . . , 𝑘𝑐(4.12)

𝑑𝑙𝑗 ≤ 𝑑 𝑗 ≤ 𝑑𝑢𝑗 , 𝑗 = 1, . . . , 𝑛𝑑(4.13)

�̂�𝑙𝑥𝑟 ≤ 𝜇𝑥𝑟 ≤ �̂�𝑢𝑥𝑟 , 𝑟 = 1, . . . , 𝑛𝑥(4.14)

6. Check the condition for convergence; if it is satisfied, terminate the algorithm.
7. Shift the feasible region over the optimal point determined at step 5. Reduce the
feasible region and return.

The weighting factor 𝛾 ∈ [0, 1] in formula (4.10) defines the importance of each
criterion. Assuming that 𝛾 = 0, an optimization problem transforms into the mean value
minimization problem, whereas for 𝛾 = 1 it becomes a problem of minimizing the variance
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of the objective function. Values 𝜇∗ and 𝜎∗ are normalizing constants. Normalization
coefficients are determined based on the extreme values of appropriate moments obtained
in step 3. Quantities: 𝑑𝑙

𝑗
, 𝑑𝑢

𝑗
, �̂�𝑙𝑥𝑟 , �̂�

𝑢
𝑥𝑟
are the current boundaries of the feasible region.

The key element of the algorithm for the realization of a robust optimization problem
is an effective method of estimating mean values and standard deviations of the objective
and constraint functions. In the paper techniques of approximating implicit functions of
design variables using metamodels, i.e., response surface designs, were used. In Numpress
Explore [30] was used the kriging algorithm [31] with optimal Latin hypercubes [32].

5. Numerical results and discussion

5.1. Example 1. Statically determinate structure

We consider a bent steel cantilever 𝐿 = 150 cm long, rectangular cross-section with
dimensions 𝐷 = 8.0 cm and 𝑑 = 6.0 cm, Young’s modulus 𝐸 = 21, 000 kN/cm2, Poisson’s
ratio 𝑣 = 0.3. The cantilever was loaded with a force𝑄 = 0.05 kN/cm as shown in Figure 1.
The initial mass of the cantilever is 𝑓𝑀1 = 32.97 kg.

Fig. 1. Cantilever geometry and load

For such a modelled structure, the displacement of the cantilever end was determined

according to the relationship: 𝑤 =
𝑄𝐿4

8𝐸𝐼
= 0.521 cm, where 𝐼 =

𝐷4 − 𝑑4

12
, bending

moment 𝑀𝑦 =
𝑄𝐿2

2
= 562.5 kN·cm. The calculations shown below were performed with

NumpressExplore [30] and Costrel [29].

5.1.1. Reliability analysis

In the first stage, reliability analysis was carried out using the FORM method. The
value of the reliability index and the probability of structure failure were checked for two
cases marked as SLS and ULS.
For the SLS case, the form of the limit function was formulated as a condition of not

exceeding the permissible vertical displacement of the node 𝑤𝑑 = 1 cm:

(5.1) 𝑓SLS (x) = 𝑤𝑑 − 𝑄 · 𝐿4
8 · 𝐸 · 𝐼 = 1 − 12 · 𝑄 · 1504

8 · 𝐸 · (𝐷4 − 𝑑4)
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For the ULS case, the form of the limit function was formulated as a condition of

not exceeding the permissible bending moment 𝑀𝑑 = 𝑓𝑦 · 𝑊𝑦 = 𝑓𝑦 · 𝐷
4 − 𝑑4

6 · 𝐷 , where
𝑓𝑦 = 23.5 kN/cm2:

(5.2) 𝑓ULS (x) = 𝑀𝑑 − 𝑄 · 𝐿2
2

= 23.5 · 𝐷
4 − 𝑑4

6 · 𝐷 − 𝑄 · 1502

2

Conducting the reliability analysis, random variables 𝐷, 𝑑, 𝑄 and 𝐸 shown in Table 1
were defined. Random variables are described by normal probability distribution and are
not correlated.

Table 1. Description of random variables

Random variable Mean value Standard deviation Coefficient of variation

𝐷 8 [cm] 0.16 [cm] 2 [%]

𝑑 6 [cm] 0.12 [cm] 2 [%]

𝐸 21 000 [kN/cm2] 630 [kN/cm2] 3 [%]

𝑄 0.05 [kN/cm] 0.001 [kN/cm] 2 [%]

The value of the reliability index was respectively for SLS and ULS: 𝛽SLS = 3.038 and
𝛽ULS = 5.879, while the probability of failure 𝑝SLS

𝑓
= 1.190𝑒−3 and 𝑝ULS

𝑓
= 2.068𝑒−9. In

the PN-EN-1990 standard, for the serviceability limit state, the value of the reliability index
for the RC2 structure class is 𝛽SLS = 1.5 while for the ultimate limit state, it is 𝛽ULS = 3.8.
Therefore, the designed structure meets the standard conditions.

5.1.2. Deterministic optimization

Design variables were defined as the dimensions of the cross-section 𝐷 and 𝑑, while
the objective function will be the mass of the structure:

(5.3) 𝑓𝐶 = min
((
𝐷2 − 𝑑2

)
· 𝐿 · 𝜌

)
where: 𝜌 = 0.00785

[
kg
cm3

]
– assumed steel density, 𝐿 [cm] – cantilever length.

In this case, simple constraints are described in Table 2. They constitute the upper and
lower limits of the searched values of 𝐷 and 𝑑.

Table 2. Description of simple constraints

Random variable Lower limit Upper limit

𝐷 7.5 [cm] 8.5 [cm]

𝑑 5.5 [cm] 6.5 [cm]
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Both the serviceability limit state and the ultimate limit state were verified, in which
the unequal constraints, were formulated as the conditions (5.1), (5.2).
The obtained dimensions of the cross-section are: for SLS, 𝐷 = 7.742 cm and 𝑑 =

6.5 cm, for ULS, 𝐷 = 7.5 cm and 𝑑 = 6.5 cm. The value of the objective function for these
cases was, respectively, for SLS and ULS: 20.828 kg, 16.485 kg. The probability of failure
and the reliability index were also verified, which in this case were respectively for SLS
and ULS: 𝛽SLS

𝐷
= 3.198𝑒−6 and 𝛽ULS

𝐷
= 1.125, while the probability of failure 𝑝SLS

𝑓 𝐷
= 0.5

and 𝑝ULS
𝑓 𝐷

= 0.130.

5.1.3. Robust optimization
To perform robust optimization in NumpressExplore [33–35], you have to define ran-

dom variables, design variables, objective functions, and constraint functions. For this type
of optimization, it is necessary to use an appropriate type of design variables named in the
program “random design variable”. The design variable is linked to the random variable
in such a way that the value of the design variable is also the mean value of the random
variable. Additionally, it is possible to set a constant value of the coefficient of variation
for the standard deviation, which means that the standard deviation of a random variable
changes and is always equal to the product of themean value and the coefficient of variation.
In this case, the value of the coefficient of variation was set at 2%.
For this case, the tasks of robust optimization take the form:
– For the serviceability limit state:

Find the values of the variables: 𝜇𝐷 , 𝜇𝑑(5.4)

Minimizing: 𝑓𝐶 =
1 − 𝛾

𝜂∗
𝐸

[((
𝐷2 − 𝑑2

)
· 𝐿 · 𝜌

)]
+ 𝛾

𝜎∗𝜎
[((

𝐷2 − 𝑑2
)
· 𝐿 · 𝜌

)]
(5.5)

– With constraints:

𝐸

[
1 − 12 · 𝑄 · 1504

8 · 𝐸 · (𝐷4 − 𝑑4)

]
− 𝛽𝑖 · 𝜎

[
1 − 12 · 𝑄 · 1504

8 · 𝐸 ·
(
𝐷4 − 𝑑4

) ] > 0(5.6)

7.5 ≤ 𝜇𝐷 ≤ 8.5(5.7)
5.5 ≤ 𝜇𝑑 ≤ 6.5(5.8)

– For the ultimate limit state:

Find the values of the variables: 𝜇𝐷 , 𝜇𝑑(5.9)

Minimizing: 𝑓𝐶 =
1 − 𝛾

𝜂∗
𝐸

[((
𝐷2 − 𝑑2

)
· 𝐿 · 𝜌

)]
+ 𝛾

𝜎∗𝜎
[((

𝐷2 − 𝑑2
)
· 𝐿 · 𝜌

)]
(5.10)

– With constraints:

𝐸

[
23.5 · 𝐷

4 − 𝑑4

6 · 𝐷
𝑄 · 1502

2

]
− 𝛽𝑖 · 𝜎

[
23.5 · 𝐷

4 − 𝑑4

6 · 𝐷 − 𝑄 · 1502

2

]
> 0(5.11)

7.5 ≤ 𝜇𝐷 ≤ 8.5(5.12)
5.5 ≤ 𝜇𝑑 ≤ 6.5(5.13)
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where: 𝛾 ∈ [0, 1] – determines the importance of each of the criteria, 𝜌 = 0.00785
[
kg
cm3

]
– assumed steel density, 𝐿 [cm] – the length of cantilever, 𝜂∗, 𝜎∗ – normalizing constants.
Solving the problem begins with determining the initial allowable area based on the

previously defined constraints. The parameter was adopted for the calculations 𝛾 = 0.5, the
parameters 𝛽SLS

𝑖
= 2.0 and 𝛽ULS

𝑖
= 3.8. The response surfaces in this case are built using

the kriging method, while the experiments are generated according to the plan of optimal
Latin cubes. The solution to the presented optimization problem, i.e. the minimization
of the 𝑓𝑐 function, was performed using the Nelder Mead simplex algorithm. After the
carried out robust optimization, the finally obtained values of the width and height of
the cross-section were, respectively, for the serviceability limit state 𝐷 = 8.056 cm and
𝑑 = 6.500 cm and for the ultimate limit state 𝐷 = 7.5 cm and 𝑑 = 5.83 cm. The weight of
the structure was: for SLS 𝑓𝑐 = 26.669 kg and for ULS 𝑓𝑐 = 26.224 kg. A slight increase in
the cross-section height and an increase in the weight of the structure result in a significant
change in the value of the reliability index and the probability of failure, which in this case
are, respectively, for SLS and ULS: 𝛽SLS

𝑅
= 1.721 and 𝛽ULS

𝑅
= 4.079, while the probability

of failure 𝑝SLS
𝑓 𝑅

= 4.264𝑒−02 and 𝑝ULS
𝑓 𝑅

= 2.259𝑒−05.

5.1.4. Reliability based design optimization

The conditions (5.1), (5.2) were taken into account in the reliability optimization task.
The objective function is the mass of the structure:

(5.14) 𝑓𝐶 = min
(
(𝐷2 − 𝑑2) · 𝐿 · 𝜌

)
where: 𝜌 = 0.00785

[
kg
cm3

]
– assumed steel density, 𝐿 [cm] – the length of cantilever.

In the case of reliability optimization [33], it is necessary to assume a limit reliability
index (failure probability). In the case of SLS, the limitation was set at the level of 𝛽 = 1.5,
while for ULS 𝛽 = 3.8. After the performed reliability optimizations, the obtained values
of the width and height of the cross-section were, respectively, for the serviceability limit
state 𝐷 = 8.038 cm and 𝑑 = 6.5 cm (𝛽 = 1.628) and for the ultimate limit state 𝐷 = 7.5 cm
and 𝑑 = 5.891 cm (𝛽 = 3.808). The weight of the structure was: for SLS 𝑓𝑐 = 26.328 kg
and for ULS 𝑓𝑐 = 25.371 kg.
Observing the results obtained in the robust and reliability-based optimization, we can

see their convergence for case C and A (Table 3). Both solutions give the level of failure
probability at a level acceptable in the standards.
Additionally the authors decided to check the failure probability level for the solution

𝐷 = 8.0 cm, 𝑑 = 6.5 cm for both the ultimate limit state and the serviceability limit state.
The probability of failure and the reliability index were verified, which in this case were
respectively for SLS and ULS: 𝛽SLS

𝑁
= 1.423 and 𝛽ULS

𝑁
= 3.697, while the probability of

failure 𝑝SLS
𝑓𝑁

= 0.077 and 𝑝ULS
𝑓𝑁

= 1𝑒−04. From an engineering point of view, this solution
is optimal.
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Table 3. Reliability indexes for robust and RBDO analysis for both limit functions (5.1), (5.2)

Robust RBDO

A B C D

𝐷 8.056 [cm] 7.5 [cm] 8.038 [cm] 7.5 [cm]

𝑑 6.5 [cm] 5.83 [cm] 6.5 [cm] 6.5 [cm]

SLS function (5.1) 𝛽 = 1.723 𝛽 = 0.736 𝛽 = 1.626 𝛽 = 0.551

ULS function (5.2) 𝛽 = 3.971 𝛽 = 4.080 𝛽 = 3.882 𝛽 = 3.810

5.2. Example 2. Statically indeterminate structure

We consider a bent steel beam 𝐿 = 300 cm long, rectangular cross-section with dimen-
sions 𝐷 = 8.0 cm and 𝑑 = 6.0 cm, Young’s modulus 𝐸 = 21, 000 kN/cm2, Poisson’s ratio
𝑣 = 0.3. The beam was loaded with a force 𝑄 = 0.05 kN/cm as shown in Figure 2. The
initial mass of the beam is 𝑓𝑀1 = 65.94 kg.

Fig. 2. Statically indeterminate structure geometry and load

For such a modelled structure, the maximum displacement was determined accord-

ing to the relationship: 𝑤 =
𝑄𝐿4

185𝐸𝐼
= 0.447 cm, where 𝐼 =

𝐷4 − 𝑑4

12
, bending moment

𝑀𝑦 =
𝑄𝐿2

8
= 562.5 kN·cm. The calculations shown below were performed with Num-

pressExplore [30] and Costrel [29].

5.2.1. Reliability analysis

In the first stage, reliability analysis was carried out using the FORM method. The
value of the reliability index and the probability of structure failure were checked for two
cases marked as SLS and ULS. The random variables are normally distributed and are not
correlated (Table 1).
For the SLS case, the form of the limit function was formulated as a condition of not

exceeding the permissible vertical displacement of the node 𝑤𝑑 = 1 cm:

(5.15) 𝑓SLS (x) = 𝑤𝑑 − 𝑄 · 𝐿4
185 · 𝐸 · 𝐼 = 1 − 12 · 𝑄 · 3004

185 · 𝐸 · (𝐷4 − 𝑑4)
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For the ULS case, the form of the limit function was formulated as a condition of

not exceeding the permissible bending moment 𝑀𝑑 = 𝑓𝑦 · 𝑊𝑦 = 𝑓𝑦 · 𝐷
4 − 𝑑4

6 · 𝐷 , where
𝑓𝑦 = 23.5 kN/cm2:

(5.16) 𝑓ULS (x) = 𝑀𝑑 − 𝑄 · 𝐿2
8

= 23.5 · 𝐷
4 − 𝑑4

6 · 𝐷 − 𝑄 · 3002
8

The value of the reliability index was respectively for SLS and ULS: 𝛽SLS = 5.006 and
𝛽ULS = 5.879, while the probability of failure 𝑝SLS

𝑓
= 2.777𝑒−3 and 𝑝ULS

𝑓
= 2.068𝑒−9.

5.2.2. Deterministic optimization
Design variables were defined as the dimensions of the cross-section 𝐷 and 𝑑, while

the objective function will be the mass of the structure (5.3)
In this case, simple constraints are described in Table 4. They constitute the upper and

lower limits of the searched values of 𝐷 and 𝑑.

Table 4. Description of simple constraints

Random Variable Lower limit Upper limit

𝐷 7 [cm] 9 [cm]

𝑑 5 [cm] 7 [cm]

Both the serviceability limit state and the ultimate limit state were verified, in which
the unequal constraints, were formulated as the conditions (5.15), (5.16).
The obtained dimensions of the cross-section are: for SLS, 𝐷 = 7.705 cm and 𝑑 =

6.905 cm, for ULS, 𝐷 = 7.28 cm and 𝑑 = 6.48 cm. The value of the objective function
for these cases was, respectively, for SLS and ULS: 27.53 kg, 25.92 kg. The probability of
failure is very high, 𝑝SLS

𝑓 𝐷
= 0.5 and 𝑝ULS

𝑓 𝐷
= 0.5. These values are unacceptable.

5.2.3. Robust optimization
For this case, the tasks of robust optimization take the form:
– For the serviceability limit state:

Find the values of the variables: 𝜇𝐷 , 𝜇𝑑(5.17)

Minimizing: 𝑓𝐶 =
1 − 𝛾

𝜂∗
𝐸

[((
𝐷2 − 𝑑2

)
· 𝐿 · 𝜌

)]
+ 𝛾

𝜎∗𝜎
[((

𝐷2 − 𝑑2
)
· 𝐿 · 𝜌

)]
(5.18)

– With constraints:

𝐸

[
1 − 12 · 𝑄 · 3004

185 · 𝐸 ·
(
𝐷4 − 𝑑4

) ] − 𝛽𝑖 · 𝜎
[
1 − 12 · 𝑄 · 3004

185 · 𝐸 ·
(
𝐷4 − 𝑑4

) ] > 0(5.19)

7 ≤ 𝜇𝐷 ≤ 9(5.20)
5 ≤ 𝜇𝑑 ≤ 7(5.21)
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– For the ultimate limit state:

Find the values of the variables: 𝜇𝐷 , 𝜇𝑑(5.22)

Minimizing: 𝑓𝐶 =
1 − 𝛾

𝜂∗
𝐸

[((
𝐷2 − 𝑑2

)
· 𝐿 · 𝜌

)]
+ 𝛾

𝜎∗𝜎
[((

𝐷2 − 𝑑2
)
· 𝐿 · 𝜌

)]
(5.23)

– With constraints:

𝐸

[
23.5 · 𝐷

4 − 𝑑4

6 · 𝐷
𝑄 · 3002
8

]
− 𝛽𝑖 · 𝜎

[
23.5 · 𝐷

4 − 𝑑4

6 · 𝐷
𝑄 · 3002
8

]
> 0(5.24)

7 ≤ 𝜇𝐷 ≤ 9(5.25)
5 ≤ 𝜇𝑑 ≤ 7(5.26)

where: 𝛾 ∈ [0, 1] – determines the importance of each of the criteria, 𝜌 = 0.00785
[
kg
cm3

]
– assumed steel density, 𝐿 [cm] – the length of beam, 𝜂∗, 𝜎∗ – normalizing constants.
The analysis parameters are the same as in example 5.1. The finally obtained values

of the width and height of the cross-section were, respectively, for the serviceability limit
state 𝐷 = 7.487 cm and 𝑑 = 6.120 cm and for the ultimate limit state 𝐷 = 7 cm and
𝑑 = 5.09 cm. The weight of the structure was: for SLS 𝑓𝑐 = 43.805 kg and for ULS
𝑓𝑐 = 54.381 kg. A slight increase in the cross-section height and an increase in the weight
of the structure result in a significant change in the value of the reliability index and the
probability of failure, which in this case are, respectively, for SLS and ULS: 𝛽SLS

𝑅
= 1.811

and 𝛽ULS
𝑅

= 4.504, while the probability of failure 𝑝SLS
𝑓 𝑅

= 3.5𝑒−02 and 𝑝ULS
𝑓 𝑅

= 3.34𝑒−06.

5.2.4. Reliability based design optimization

The conditions (5.15), (5.16) were taken into account in the reliability optimization
task. The objective function is the mass of the structure (5.3). In the case of SLS, the
limitation was set at the level of 𝛽 = 1.5, while for ULS 𝛽 = 3.8. After the performed
reliability optimizations, the obtained values of the width and height of the cross-section
were, respectively, for the serviceability limit state𝐷 = 8.074 cm and 𝑑 = 7 cm (𝛽 = 1.555)
and for the ultimate limit state 𝐷 = 7.129 cm and 𝑑 = 5.424 cm (𝛽 = 3.808). The weight
of the structure was: for SLS 𝑓𝑐 = 35.404 kg and for ULS 𝑓𝑐 = 50.404 kg.
Observing the results obtained in the robust and reliability-based optimization, we can

see their convergence for case B and 𝐷 (Table 5). Both solutions give the level of failure
probability at a level acceptable in the standards.
Additionally the authors decided to check the failure probability level for the solution

𝐷 = 7.1 cm, 𝑑 = 5.4 cm for both the ultimate limit state and the serviceability limit state.
The probability of failure and the reliability index were verified, which in this case were
respectively for SLS and ULS: 𝛽SLS

𝑁
= 2.1 and 𝛽ULS

𝑁
= 3.75, while the probability of failure

𝑝SLS
𝑓 𝑁

= 0.018 and 𝑝ULS
𝑓 𝑁

= 8.98𝑒−05. From an engineering point of view, this solution is
optimal.
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Table 5. Reliability indexes for robust and RBDO analysis for both limit functions (5.15), (5.16)

Robust RBDO

A B C D

𝐷 7.487 [cm] 7.5 [cm] 8.074 [cm] 7.129 [cm]

𝑑 6.12 [cm] 5.83 [cm] 7.0 [cm] 5.424 [cm]

SLS function (5.15) 𝛽 = 1.811 𝛽 = 2.480 𝛽 = 1.555 𝛽 = 2.196

ULS function (5.16) 𝛽 = 2.725 𝛽 = 4.504 𝛽 = 1.911 𝛽 = 3.808

6. Conclusions

The analysis of the influence of the random nature of the parameters describing the
modelled phenomenon is extremely important in the process of optimal design. Solutions
that fullfill their function for nominal parameter values may be unacceptable after taking
into account random imperfections. These imperfections may relate to the scattering of
material parameters, dimensions, and external influences. In the analysed work, the vari-
ability of material parameters is described by Young’s modulus 𝐸 with a coefficient of
variation equal to 3%. The distribution of cross-sectional dimensions is described by vari-
ables 𝐷, 𝑑 with a coefficient of variation of 2%. The external action defines a uniformly
distributed load Q with a coefficient of variation of 2%. The results of deterministic op-
timization, while maintaining the previously defined coefficients of variation, turned out
to be completely useless. Failure probabilities calculated for the ultimate limit state and
the serviceability limit state are very high. In order to find a solution that is insensitive
to imperfections of model parameters or external influences that are difficult to control,
we have two options. The first one is robust optimization. The second one is optimization
based on the reliability of the so-called RBDO. If guaranteeing a high level of safety is the
most important requirement for the designed structure, it is worth choosing RBDO. Within
RBDO, design constraints are formulated using failure probabilities. The applicability of
RBDO is strongly dependent on the availability of the joint probability density function.
The reliability of the estimated failure probability values depends on the precise stochastic
model. A formulation of non-deterministic optimization that better adapts to the design re-
alities is robust optimization. Unlike RBDO optimization, this formulation does not require
estimation of failure probabilities. The random nature of the structure’s response is taken
into account by defining the objective function and constraints, including mean values and
variances. The computational complexity of this approach is related to the use of effective
methods of estimating statistical moments.
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Optymalizacja odpornościowa i niezawodnościowa stalowych belek

Słowa kluczowe: Analiza niezawodnościowa pierwszego rzędu, wskaźnik niezawodności, optyma-
lizacja niezawodnościowa, optymalizacja odpornościowa

Streszczenie:

Analiza wpływu, jaki na modelowane zjawisko ma losowy charakter opisujących je parame-
trów jest niezwykle istotna w procesie optymalnego projektowania. Rozwiązania, które spełniają
swoją funkcję dla nominalnych wartości parametrów mogą okazać się nie do zaakceptowania po
uwzględnieniu losowych imperfekcji. Imperfekcje te mogą dotyczyć nieuniknionego rozrzutu para-
metrów materiałowych, wymiarów, oddziaływań zewnętrznych. W analizowanej pracy zmienność
parametrów materiałowych opisuje moduł Younga 𝐸 ze współczynnikiem zmienności równym 3%.
Rozrzut wymiarów geometrycznych przekroju poprzecznego opisują zmienne 𝐷, 𝑑 ze współczyn-
nikiem zmienności 2%. Oddziaływanie zewnętrzne definiuje obciążenie równomiernie rozłożone 𝑄
o współczynniku zmienności równym 2%. Rezultaty optymalizacji deterministycznej, przy zachowa-
niu zdefiniowanych wcześniej współczynników zmienności, okazały się całkowicie nieprzydatnymi.
Prawdopodobieństwa awarii obliczone dla stanu granicznego nośności i stanu granicznego użytkowa-
nia są bardzo wysokie. Dążąc do znalezienia rozwiązania niewrażliwego na trudne do kontrolowania
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imperfekcje parametrów modelu lub oddziaływań zewnętrznych mamy do dyspozycji dwie opcje.
Pierwsza z nich to optymalizacja typu robust. Druga to optymalizacja oparta na niezawodności tzw.
RBDO. Jeżeli zagwarantowanie wysokiego poziomu bezpieczeństwa jest najważniejszym wymaga-
niem stawianym projektowanej konstrukcji warto wybrać RBDO. W ramach RBDO, ograniczenia
projektowe formułowane są za pomocą prawdopodobieństw awarii. Możliwość zastosowania RBDO
jest silnie uwarunkowana dostępnością łącznej funkcji gęstości prawdopodobieństwa. Od precy-
zyjnego modelu stochastycznego zależy wiarygodność szacowanych wartości prawdopodobieństwa
awarii. Sformułowaniem optymalizacji niedeterministycznej, które lepiej dopasowuje się do realiów
projektowych jest optymalizacja typu robust. Celem optymalizacji odpornościowej powinna być
jednoczesna minimalizacja wartości średniej oraz odchylenia standardowego funkcji celu. W od-
różnieniu od optymalizacji RBDO, sformułowanie to nie wymaga szacowania prawdopodobieństw
awarii. Losowy charakter odpowiedzi konstrukcji uwzględniany jest poprzez definicje funkcji celu
i ograniczeń, zawierających wartości średnie oraz wariancje. Złożoność obliczeniowa tego podejścia
wiąże się z użyciem efektywnych metod szacowania momentów statystycznych. W pracy do obliczeń
RBDO wykorzystano moduł Costrel środowiska obliczeniowego Strurel. W module Costrel oblicze-
nia realizowane są zgodnie z ideą metod jednopoziomowych. Celem tych metod jest wyeliminowanie
wewnętrznej pętli związanej z analizą niezawodności poprzez rozszerzenie zbioru zmiennych de-
cyzyjnych oraz zastąpienie ograniczeń niezawodnościowych poprzez kryteria optymalności zadań
poszukiwania punktów projektowych. Obliczenia związane z „robust” optymalizacją wykonano za
pomocą oprogramowania Numpress Explore. Odpowiednia aproksymacja funkcji celu i ograniczeń
ma kluczowe znaczenie dla efektywności oraz zbieżności przeprowadzanych analiz. W pracy wy-
korzystano metodę krigingu w wersji aproksymacyjnej wraz z planem eksperymentu opartym na
koncepcji optymalnej łacińskiej hiperkostki. Obserwując wyniki uzyskane w „robust” optymalizacji
i RBDO, możemy zobaczyć ich zbieżność dla przykładu 1 w przypadku C i A (Tabela 3) oraz
dla przykładu 2 w przypadku B i 𝐷 (tabela 5). Oba rozwiązania dają poziom prawdopodobień-
stwa awarii na poziomie akceptowalnym w normach. Dodatkowo autorzy zdecydowali się sprawdzić
poziom prawdopodobieństwa awarii dla rozwiązania 𝐷 = 8,0 cm, 𝑑 = 6,5 cm (przypadek 1) oraz
𝐷 = 7,1 cm, 𝑑 = 5,4 cm (przypadek 2), zarówno dla stanu granicznego nośności jak i stanu gra-
nicznego użytkowania. Zweryfikowano również wskaźnik niezawodności oraz prawdopodobieństwo
awarii dla nowo założonych wymiarów. Dla przypadku 1 wyniosły one odpowiednio dla SGU i SGN:
𝛽SGU
𝑁

= 1,423 i 𝛽SGN
𝑁

= 3,697, 𝑝SGU
𝑓 𝑁

= 0,077 i 𝑝SGN
𝑓 𝑁

= 1𝑒−04, natomiast dla przypadku 2 dla
SGU i SGN: 𝛽SGU

𝑁
= 2,1 i 𝛽SGN

𝑁
= 3,75, 𝑝SGU

𝑓 𝑁
= 0,018 i 𝑝SGN

𝑓 𝑁
= 8,98𝑒−05. Z punktu widzenia

inżynierskiego te rozwiązania są optymalne.
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