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In this paper, an adaptive distributed formation controller for wheeled nonholo-
nomic mobile robots is developed. The dynamical model of the robots is first derived
by employing the Euler-Lagrange equation while taking into consideration the pres-
ence of disturbances and uncertainties in practical applications. Then, by incorporating
fractional calculus in conjunction with fast terminal sliding mode control and con-
sensus protocol, a robust distributed formation controller is designed to assure a fast
and finite-time convergence of the robots towards the required formation pattern. Ad-
ditionally, an adaptive mechanism is integrated to effectively counteract the effects
of disturbances and uncertain dynamics. Moreover, the suggested control scheme’s
stability is theoretically proven through the Lyapunov theorem. Finally, simulation
outcomes are given in order to show the enhanced performance and efficiency of the
suggested control technique.

1. Introduction

Formation control of wheeled nonholonomic mobile robots has advanced sig-
nificantly in the past few decades, and currently is regarded as a crucial research
subject in the domains of multi-agent systems and robotics. This resulted from
its potential in a variety of real-world applications, for example search and rescue
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operations, exploration and object transportation. As well as the theoretical issues
that arise during its control and modeling, such as the system nonlinearities, uncer-
tainties and motion constraints must be considered. Numerous control approaches
have been used to address the coordination of wheeled mobile robots in a forma-
tion. To name a few, behavior-based [1–3], potential-field [4, 5], consensus-based
[6, 7], leader-follower [8–10] and virtual-structure [11–13] strategies.

Recently, consensus theory has been widely employed to design distributed
formation control algorithms for multi-robot systems. Where the primary objective
of using consensus protocol is to synchronize the motion of robots to reach a com-
mon position or velocity in order to establish a certain geometric shape. Different
control strategies have been used alongside with consensus protocol to address the
formation control problem, these include Model predictive control [14], Backstep-
ping techniques [15, 16], Sliding mode control [17–19] and other control schemes
[20, 21].

Sliding mode control outperforms the previously mentioned control schemes
when it comes to dealing with system parameters variation, uncertainties and
external disturbances. This superior performance has led to its widespread adoption
in the control of multi-robot systems. The authors in [22] combine sliding mode
control with fuzzy logic techniques to design an adaptive decentralized formation
controller for a team of mobile robots under directed topologies with uncertain
dynamics. In [23], consensus-based approach has been utilized in conjunction with
sliding mode control to design a distributed controller for the formation of a team of
unicycles. Authors in [24] investigate the formation control of multi nonholonomic
wheeled robots. They develop a finite-time observer utilizing integral sliding mode
method to estimate the robots velocities, then a dynamic output feedback controller
has been used to drive all robots towards the predefined formation geometric
configuration.

In the domain of control systems, fractional calculus theory has been utilized
recently to control some dynamic systems [25, 26]. By incorporating the principles
of fractional calculus (fractional order FO integral and derivatives), in combination
with traditional control schemes such as PID [27] and sliding mode control SMC
[28], the controller design process becomes more flexible and adjustable. Such
combination can introduce an additional layer of adaptability to the control system,
resulting in enhanced performance and increased efficiency in control operations.

Motivated by the above discussion, an adaptive distributed fractional fast termi-
nal sliding mode controller ADFOFTSMC for multi-robots formation is suggested
in this study. This control scheme can provide the following characteristics: graph
theory and consensus-based techniques are used in this paper for representing the
communication topology among the robots. Therefore, the control scheme design
does not necessitate prior knowledge of the required bearing angle and separa-
tion distance for each robot in relation to its leader. Instead, the follower robot
can get information only from its neighboring robots. The implementation of the
fast terminal sliding mode control FTSMC method allows the robots to achieve
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both rapid and finite-time convergence towards the desired pattern despite the exis-
tence of uncertain dynamics and disturbances. The inclusion of the FO derivatives
into the FTSMC controller offers more freedom for control parameter selection,
fine-tuning of the fractional orders leads to a desirable control performances. Ad-
ditionally, an adaptive learning rule is used to estimate the bounded uncertainties
and disturbances in the system. The performances of the suggested control method
is evaluated through simulation results. The comparison findings indicate that the
ADFOFTSMC is superior in terms of robustness, rapidity and accuracy.

The next sections of this paper are arranged as follows: In section 2 some
concepts related to fractional calculus, graph theory, as well as the nonholonomic
mobile robots dynamics and kinematics are explained. Then, the distributed for-
mation controller synthesis is addressed in section 3. While section 4 presents the
simulation results and discussions. Lastly, a conclusion is provided to summarize
this study in section 5.

2. Preliminaries

2.1. Concepts on fractional calculus

Fractional calculus theory can be viewed as an extension of classical calculus.
It generalizes the traditional concepts of integrals and derivatives to include non-
integer or fractional orders; in fractional calculus, the derivative operator is denoted
by 𝐷𝛼 = d𝛼/d𝑡 where 𝛼 is a real number.

Definition 1. Using Riemann-Liouville (RL) definition, the 𝛼-order fractional
derivative of function 𝑓 (𝑡) over time can be expressed as follows [29]:

𝐷𝛼 𝑓 (𝑡) = d𝛼 𝑓 (𝑡)
d𝑡𝛼

=
1

Γ(𝑛 − 𝛼)

(
d𝑛

d𝑡𝑛

) 𝑡∫
0

𝑓 (𝜏)
(𝑡 − 𝜏)𝛼+1−𝑛 d𝜏 , (1)

where (𝑛 − 1 < 𝛼 < 𝑛) and Γ(.) represent the Gamma function defined as:

Γ(𝛼) =
∞∫

0

𝑒−𝑡 𝑡𝛼−1 d𝑡 . (2)

Propriety 1. The 𝑛-th order derivative (d𝑛/d𝑡𝑛) of 𝑓 (𝑡) can be written by using
the fractional derivative operator 𝐷𝛼 as follows:

𝐷𝛼+𝑛 𝑓 (𝑡) = d𝑛

d𝑡𝑛
(𝐷𝛼 𝑓 (𝑡)) = 𝐷𝛼

(
d𝑛 𝑓 (𝑡)

d𝑡𝑛

)
. (3)
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2.2. Algebraic graph theory

A useful tool for modeling multi-robot systems is the algebraic graph theory.
It can be employed to represent the interaction between the robots, where the
nodes of the graph are used to represent the robots and the edges represent the
communication links.

Consider a multi-robot system consisting of 𝑛 robot, and let G = (V, E) be a
graph with a directed topology where V = {𝜈1, 𝜈2, . . . , 𝜈𝑛} is the set of vertices
(robots), and E ⊆ V ×V is the set of the links. The notation, (𝜈𝑖 , 𝜈 𝑗) ∈ E means
that the 𝑖-th robot can get information from the 𝑗-th robot, but not vice versa. For
a digraph G the adjacency matrix is given as follows:

A =


𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛


,

where the elements of A are given as follows:

𝑎𝑖 𝑗 = 1,
(
𝜈 𝑗 , 𝜈𝑖

)
∈ E ,

𝑎𝑖 𝑗 = 0,
(
𝜈 𝑗 , 𝜈𝑖

)
∉ E ,

𝑎𝑖𝑖 = 0 .

Then, the digraph G Laplacian matrix is defined as follows:

L = D −A ,

where L ∈ R𝑛×𝑛 and D is the in-degree diagonal matrix of G given by:

D = diag ©«
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗
ª®¬ .

In this paper, a multi mobile robot system consists of 𝑛 robots with only one leader
that is addressed; the followers are denoted by indices (1, 2, ..., 𝑛 − 1), while the
leader robot is labeled with index 𝑛, and the exchange of information between the
followers and the leader robot is considered to be unidirectional. In other words,
the followers cannot send information to the leader robot.

Let Ḡ = (V̄, Ē) be a sub-graph of digraph 𝐺, then the adjacency matrix of Ḡ
can be written as:

Ā =


�̄�11 �̄�12 . . . �̄�1(𝑛−1)
�̄�21 �̄�22 . . . �̄�2(𝑛−1)
...

...
. . .

...

�̄� (𝑛−1)1 �̄� (𝑛−1)2 . . . �̄� (𝑛−1) (𝑛−1)


.
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The sub-graph Ḡ Laplacian matrix is written as follows:
L̄ = D̄ − Ā ,

with in-degree matrix D̄ = diag ©«
𝑛−1∑︁
𝑗=1

�̄�𝑖 𝑗
ª®¬ . The connection between the leader and

the followers is represented by a diagonal matrix B̄, where B̄=diag
{
�̄�1,�̄�2,. . . ,�̄�𝑛−1

}
and �̄�𝑖 = �̄�𝑖𝑛, 𝑖 = 1, 2, . . . , 𝑛 − 1.
Lemma 1. Let G = (V, E) be a digraph, then the corresponding right eigenvector
of the Laplacian matrix L associated with the eigenvalue 0 is the vector 1𝑛, only if
the digraph G has a spanning tree, this mean that L1𝑛 = 0.
Lemma 2. L̄1𝑛−1 = 0, if the sub-graph Ḡ has a spanning tree [30], (L̄ + B̄) is
non-singular matrix and Rank(L̄ + B̄) = 𝑛 − 1.

2.3. Modeling of nonholonomic mobile robot

Consider the nonholonomic wheeled robot illustrated in Fig. 1; the generalized
coordinates of the robot are denoted by 𝑞𝑖 = [𝑥𝑖 𝑦𝑖 𝜃𝑖]𝑇 where 𝜃𝑖 is the heading
angle, 𝑦𝑖 and 𝑥𝑖 are the robot head Cartesian coordinates. This type of robots is
subjected to nonholonmic constraints given by equation:

¤𝑦𝑖 cos 𝜃𝑖 − ¤𝑥𝑖 sin 𝜃𝑖 − 𝑑 ¤𝜃𝑖 = 0 . (4)

Fig. 1. Nonholonomic mobile robot

The distance between the head of the robot and its center of mass is denoted
by 𝑑, using equation (4), the robot kinematic equation can be expressed as follows:

¤𝑞𝑖 =

¤𝑥𝑖
¤𝑦𝑖
¤𝜃𝑖

 =

cos 𝜃𝑖 −𝑑 sin 𝜃𝑖
sin 𝜃𝑖 𝑑 cos 𝜃𝑖

0 1


[
𝜈𝑖

𝜔𝑖

]
= J (𝑞𝑖)U𝑖 , (5)

where 𝜈𝑖 denotes the robot linear velocity and 𝜔𝑖 is the angular velocity.
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In this paper, the Euler-Lagrange equation is utilized to formulate the dynamic
model of the 𝑖-th robot in the multi-robot system as follows:

𝑀 (𝑞𝑖) ¥𝑞𝑖 +𝑉𝑚(𝑞𝑖 , ¤𝑞𝑖) ¤𝑞𝑖 + Δ𝑖 = 𝐵(𝑞𝑖)𝜏𝑖 . (6)

The matrices and vectors described in equation (6) are given as follows:

𝐵(𝑞𝑖) =
1
𝑟


cos 𝜃𝑖 cos 𝜃𝑖
sin 𝜃𝑖 sin 𝜃𝑖
𝑅 −𝑅

 ,
𝜏𝑖 =

[
𝜏𝑙𝑖

𝜏𝑟𝑖

]
, Δ𝑖 =

[
Δ𝑥𝑖 Δ𝑦𝑖 Δ𝜃𝑖

]𝑇
,

𝑉𝑚(𝑞𝑖 , ¤𝑞𝑖) =

0 0 𝑚𝑑 ¤𝜃𝑖 cos 𝜃𝑖
0 0 𝑚𝑑 ¤𝜃𝑖 sin 𝜃𝑖
0 0 0

 ,
𝑀 (𝑞𝑖) =


𝑚 0 𝑚𝑑 sin 𝜃𝑖
0 𝑚 −𝑚𝑑 cos 𝜃𝑖

𝑚𝑑 sin 𝜃𝑖 −𝑚𝑑 cos 𝜃𝑖 𝐼

 ,
where Δ𝑖 is a vector that consists of disturbances and uncertain dynamics, 𝜏𝑖 is
the vector of control inputs, 𝐼 denotes the total moment of inertia, 𝑟 represent the
wheel radius, 𝑚 denotes the robot mass and 2𝑅 is the robot width.

By substituting the kinematic equation (5) into equation (6), the following
robot dynamics are obtained:

�̄� (𝑞𝑖) ¤U𝑖 + �̄�𝑚(𝑞𝑖 , ¤𝑞𝑖)U𝑖 + J𝑇 (𝑞𝑖)Δ𝑖 = �̄�(𝑞𝑖)𝜏𝑖 , (7)

with:
�̄�𝑚(𝑞𝑖 , ¤𝑞𝑖) = 0, �̄�(𝑞𝑖) = J𝑇 (𝑞𝑖)𝐵(𝑞𝑖)

�̄� (𝑞𝑖) = J𝑇 (𝑞𝑖)𝑀 (𝑞𝑖)J (𝑞𝑖) ,

under the assumption that 𝑀 (𝑞𝑖) is invertible subject to 𝐼−𝑚𝑑2 ≠ 0. Then equation
(7) can be reformulated as follows:

¤U𝑖 = �̄�−1(𝑞𝑖)�̄�(𝑞𝑖)𝜏𝑖 − �̄�−1(𝑞𝑖)J𝑇 (𝑞𝑖)Δ𝑖 . (8)

The kinematic equation (5) can be re-written as:[
¤𝑥𝑖
¤𝑦𝑖

]
=

[
cos 𝜃𝑖 −𝑑 sin 𝜃𝑖
sin 𝜃𝑖 𝑑 cos 𝜃𝑖

] [
𝜈𝑖

𝜔𝑖

]
= H(𝜃𝑖)

[
𝜈𝑖

𝜔𝑖

]
. (9)
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Taking time derivative of (9), yields the following:[
¥𝑥ℎ𝑖
¥𝑦ℎ𝑖

]
= H𝑖 (𝜃𝑖)

[
�̄�−1(𝑞𝑖)�̄�(𝑞𝑖)𝜏𝑖 − �̄�−1(𝑞𝑖)J𝑇 (𝑞𝑖)Δ𝑖

]
+
[
𝜎1𝑖
𝜎2𝑖

]
, (10)

where: [
𝜎1𝑖
𝜎2𝑖

]
=

[
−𝜈𝑖𝜔𝑖 sin(𝜃𝑖) − 𝑑𝜔2

𝑖 cos(𝜃𝑖)
𝜈𝑖𝜔𝑖 cos(𝜃𝑖) − 𝑑𝜔2

𝑖 sin(𝜃𝑖)

]
(11)

by defining 𝜏𝑖 as follows:[
𝜏𝑙𝑖

𝜏𝑟𝑖

]
= (H𝑖 (𝜃𝑖)�̄�−1(𝑞𝑖)�̄�(𝑞𝑖))−1

[
𝑢𝑥𝑖 − 𝜎1𝑖
𝑢𝑦𝑖 − 𝜎2𝑖

]
. (12)

Then, the 𝑖-th robot simplified equivalent model can be given by substituting
equation (12) in (10): [

¤𝑥𝑖
¤𝑦𝑖

]
=

[
𝑣𝑥𝑖

𝑣𝑦𝑖

]
,[

¤𝑣𝑥𝑖
¤𝑣𝑦𝑖

]
=

[
𝑢𝑥𝑖

𝑢𝑦𝑖

]
+
[
𝛿𝑥𝑖

𝛿𝑦𝑖

]
,

(13)

where (𝑣𝑦𝑖 , 𝑣𝑥𝑖) are the 𝑦-axis and 𝑥-axis robot velocities, respectively. (𝑢𝑥𝑖 , 𝑢𝑦𝑖)
are the system control inputs and (𝛿𝑥𝑖, 𝛿𝑦𝑖) denotes the bounded uncertainties
described by: [

𝛿𝑥𝑖

𝛿𝑦𝑖

]
= −H𝑖 (𝜃𝑖)�̄�−1(𝑞𝑖)J𝑇 (𝑞𝑖)Δ𝑖 . (14)

Assumption 1. The parametric uncertainties described in (14) are assumed to be
bounded, which mean there exist a positive constants such that |𝛿𝑥𝑖 | < Δ𝑥 and
|𝛿𝑦𝑖 | < Δ𝑦 .

3. Formation controller synthesis

In this section, the adaptive distributed formation control schemes are devel-
oped. The main objective is to force the robots to maintain a predefined pattern
while achieving velocity consensus by exchanging information with local neigh-
boring robots.

3.1. Formation error dynamics

Let 𝑧𝑖 = [𝑥𝑖 𝑦𝑖]𝑇 , 𝑣𝑖 = [𝑣𝑥𝑖 𝑣𝑦𝑖 ]𝑇 , 𝑢𝑖 = [𝑢𝑥𝑖 𝑢𝑦𝑖 ]𝑇 and 𝛿𝑖 = [𝛿𝑥𝑖 𝛿𝑦𝑖 ]𝑇 . Then,
the follower robots augmented state vector can be described as:

¤𝑧 = 𝑣 ,

¤𝑣 = 𝑢 + 𝛿 ,
(15)
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with 𝑧 =
[
𝑧𝑇1 𝑧𝑇2 . . . 𝑧𝑇𝑛−1

]𝑇 , 𝑣 =
[
𝑣𝑇1 𝑣𝑇2 . . . 𝑣𝑇𝑛−1

]𝑇 , 𝑢 =

[
𝑢𝑇1 𝑢𝑇2 . . . 𝑢𝑇(𝑛−1)

]𝑇
and 𝛿 =

[
𝛿𝑇1 𝛿𝑇2 . . . 𝛿𝑇𝑛−1

]𝑇 .
By defining the formation desired pattern positions as 𝑓𝑖 = [ 𝑓 𝑥𝑖 𝑗 𝑓

𝑦

𝑖 𝑗
]𝑇 , then, the

tracking error vector of the formation is defined as:

𝑒 = ((L̄ + B̄) ⊗ 𝐼2) (𝑧 − 𝑓 ) − (B̄1𝑛−1 ⊗ 𝐼2)𝑧𝑛 , (16)

where 𝐼2 ∈ 𝑅2×2 is the identity matrix, ⊗ is the Knocker product,
𝑓 =

[
𝑓 𝑇1 𝑓 𝑇2 . . . 𝑓 𝑇𝑛−1

]𝑇 , 𝑒𝑖 = [𝑒𝑥𝑖 𝑒𝑦𝑖 ]𝑇 and 𝑒 =
[
𝑒𝑇1 𝑒𝑇2 . . . 𝑒𝑇𝑛−1

]𝑇 .
For each robot in the formation, the local tracking error for both x-axis and

y-axis subsystems are presented as follows:

𝑒𝑥𝑖 =

𝑛−1∑︁
𝑗=1

�̄�𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗 − 𝑓 𝑥𝑖 𝑗) + �̄�𝑖 (𝑥𝑖 − 𝑥𝑛) ,

𝑒𝑦𝑖 =

𝑛−1∑︁
𝑗=1

�̄�𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗 − 𝑓
𝑦

𝑖 𝑗
) + �̄�𝑖 (𝑦𝑖 − 𝑦𝑛) .

Taking the derivative of (16) yields the following tracking error dynamics:

¤𝑒 = ((L̄ + B̄) ⊗ 𝐼2)𝑣 − (B̄1𝑛−1 ⊗ 𝐼2)𝑣𝑛 . (17)

Hence, the second derivative of equation (16) becomes:

¥𝑒 =
( (
L̄ + B̄

)
⊗ 𝐼2

)
𝑢 +

( (
L̄ + B̄

)
⊗ 𝐼2

)
𝛿

−
(
B̄1𝑛−1 ⊗ 𝐼2

)
𝑢𝑛 . (18)

3.2. FO fast terminal sliding mode controller design

Sliding mode control composed of two control actions, the switching control
𝑢𝑠𝑤 (𝑡) and the equivalent control 𝑢𝑒𝑞 (𝑡). Consequently, the total control scheme
can be expressed as follows:

𝑢(𝑡) = 𝑢𝑒𝑞 (𝑡) + 𝑢𝑠𝑤 (𝑡) , (19)

with 𝑢𝑒𝑞 =

[
𝑢𝑇1,𝑒𝑞 𝑢𝑇2,𝑒𝑞 . . . 𝑢𝑇(𝑛−1) ,𝑒𝑞

]𝑇
and 𝑢𝑠𝑤 =

[
𝑢𝑇1,𝑠𝑤 𝑢𝑇2,𝑠𝑤 . . . 𝑢𝑇(𝑛−1) ,𝑠𝑤

]𝑇
where 𝑢𝑖,𝑒𝑞 = [𝑢𝑥𝑖,𝑒𝑞 𝑢𝑦𝑖,𝑒𝑞]𝑇 and 𝑢𝑖,𝑠𝑤 = [𝑢𝑥𝑖,𝑠𝑤 𝑢𝑦𝑖,𝑠𝑤]𝑇

First, the sliding manifold is defined as follows:

𝑆 = ¤𝑒 + 𝛼1𝑒 + 𝛼2𝑒
𝛽1/𝛽2 , (20)

where 𝛼1 > 0, 𝛼2 > 0, 𝛽1, 𝛽2 are positive odd integers, with 𝛽1 < 𝛽2 < 2𝛽1, and
𝑆 =

[
𝑆𝑇1 𝑆𝑇2 . . . 𝑆𝑇(𝑛−1)

]𝑇
is the vector of sliding surfaces with 𝑆𝑖 = [𝑆𝑥𝑖 𝑆𝑦𝑖 ]𝑇 .
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Lemma 3. The time interval required for any initial state 𝑒 ≠ 0 to reach the equi-
librium state 𝑒 = 0 along the sliding surface defined in (20), can be calculated as:

𝑡 𝑓 =
𝛽2

𝛼1(𝛽2 − 𝛽1)
ln

𝛼1(𝑒0) (1−
𝛽1
𝛽2

) + 𝛼2
𝛼2

. (21)

By using FO definition and Propriety 1, equation (20) can be re-written as:

𝑆 = 𝐷𝛼𝑒 + 𝛼1𝑒 + 𝛼2𝑒
𝛽1/𝛽2 . (22)

The sliding surface 𝑆 first derivative can be given as:

¤𝑆 = 𝐷𝛼+1𝑒 + 𝛼1 ¤𝑒 + 𝛼2(𝛽1/𝛽2) ¤𝑒𝑒 (𝛽1/𝛽2 )−1 ,

¤𝑆 = ((L̄ + B̄) ⊗ 𝐼2)𝑢 + ((L̄ + B̄) ⊗ 𝐼2)𝛿 − (B̄1𝑛−1 ⊗ 𝐼2)𝑢𝑛
+ 𝛼1 ¤𝑒 + 𝛼2(𝛽1/𝛽2) ¤𝑒𝑒 (𝛽1/𝛽2 )−1 .

(23)

In the absence of system uncertainties, the derivative of 𝑆 becomes:

¤𝑆 = ((L̄ + B̄) ⊗ 𝐼2)𝑢 − (B̄1𝑛−1 ⊗ 𝐼2)𝑢𝑛
+ 𝛼1 ¤𝑒 + 𝛼2(𝛽1/𝛽2) ¤𝑒𝑒 (𝛽1/𝛽2 )−1 . (24)

Hence, the equivalent control law can be derived by solving ¤𝑆 = 0:

𝑢𝑒𝑞 = −((L̄ + B̄)−1
[
−(B̄1𝑛−1 ⊗ 𝐼2)𝑢𝑛 + 𝛼1 ¤𝑒 + 𝛼2(𝛽1/𝛽2) ¤𝑒𝑒 (𝛽1/𝛽2 )−1

]
, (25)

and the switching control action is defined as follows:

𝑢𝑠𝑤 = −(L̄ + B̄)−1 [K sign (𝑆)] , (26)

where sign(.) is the Signum function and K is a positive gain.

3.3. Design of adaptive fractional order fast terminal sliding mode controller

In practical scenarios, the measurement of accurate values of uncertainties and
disturbances can be challenging. Therefore, an adaptive mechanism is designed to
estimate the upper bounds of this factors.

First, let Δ̂ =

[
Δ̂𝑇

1 Δ̂𝑇
2 . . . Δ̂𝑇

(𝑛−1)

]𝑇
be the vector of estimated uncertainties

bounds with Δ̂𝑖 = [Δ̂𝑥𝑖 Δ̂𝑦𝑖 ]𝑇 . Then, the error of estimation is given as:

Δ̃ = Δ − Δ̂ , (27)

where Δ̃ =

[
Δ̃𝑇

1 Δ̃𝑇
2 . . . Δ̃𝑇

(𝑛−1)

]𝑇
,Δ =

[
Δ𝑇

1 Δ𝑇
2 . . . Δ𝑇

(𝑛−1)

]𝑇
with Δ̃𝑖 = [Δ̃𝑥𝑖 Δ̃𝑦𝑖 ]𝑇

and Δ𝑖 = [Δ𝑥𝑖 Δ𝑦𝑖 ]𝑇 . Consider the following adaptive rule:

¤̂
Δ = 2𝛾((L̄ + B̄) ⊗ 𝐼2) |𝑆 | , (28)
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where 𝛾 = [𝛾1 𝛾2 . . . 𝛾𝑛−1] and 𝛾𝑖 > 0.
Therefore, the final formation controller can be expressed as follows:

𝑢 = 𝑢𝑒𝑞 − Δ̂ sign(𝑆) . (29)

Theorem 1. Assuming that the digraph G associated with the multi-robots system
described in (15) have a spanning tree. The formation objective can be accom-
plished and the tracking errors described in (16) will asymptotically reach the
origin in finite-time, by utilizing the proposed controller (29) with the adaptive
algorithm (28).

Proof. Let 𝑉 be a candidate Lyapunov function:

𝑉 =
1
2
𝑆𝑇𝑆 + 1

2𝛾
Δ̃𝑇 Δ̃ . (30)

Then, 𝑉 first derivative is written as follows:

¤𝑉 =
1
2
𝑆𝑇 ¤𝑆 + 1

2𝛾
Δ̃𝑇 ¤̃Δ ,

=
1
2
𝑆𝑇 ¤𝑆 − 1

2𝛾
Δ̃𝑇 ¤̂Δ .

(31)

Substituting equation (23) into (31) leads to:

¤𝑉 = 𝑆𝑇
[
((L̄ + B̄) ⊗ 𝐼2)𝑢 + ((L̄ + B̄) ⊗ 𝐼2)𝛿 − (B̄1𝑛−1 ⊗ 𝐼2)𝑢𝑛

+ 𝛼1 ¤𝑒 + 𝛼2(𝛽1/𝛽2) ¤𝑒𝑒 (𝛽1/𝛽2 )−1
]
− 1

2𝛾
Δ̃𝑇 ¤̂Δ . (32)

Substituting the control law (29) into equality (32) yields the following:

¤𝑉 = 𝑆𝑇
[
((L̄ + B̄) ⊗ 𝐼2)𝛿 − ((L̄ + B̄) ⊗ 𝐼2)Δ̂ sign(𝑆)

]
− 1

2𝛾
Δ̃𝑇 ¤̂Δ . (33)

Using Assumption 1 and the adaptive rule in equation (28), gives the following:

¤𝑉 = 𝑆𝑇
[
((L̄ + B̄) ⊗ 𝐼2) (𝛿 − Δ̂ sign(𝑆))

]
− Δ̃𝑇 ((L̄ + B̄) ⊗ 𝐼2) |𝑆 |

⩽ ((L̄ + B̄) ⊗ 𝐼2) ( |𝑆 | ⊗ 𝐼2) (Δ − Δ̂ − Δ̃) = 0 . (34)

Based on equation (34), it can be concluded that the tracking errors of the formation
will asymptotically reach 0 in a finite-time, and Theorem 1 proof is completed. □

According to Theorem 1 the formation of multi-robots system (15) can be estab-
lished by using the control scheme (29). Therefore, equation (16) can be described
as follows:

((L̄ + B̄) ⊗ 𝐼2) (𝑧 − 𝑓 ) = (B̄1𝑛−1 ⊗ 𝐼2)𝑧𝑛 . (35)
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Assuming G has a directed spanning tree and by using Lemma 2, we obtain the
following: (

(L̄ + B̄) ⊗ 𝐼2
)
(𝑧 − 𝑓 ) = (B̄1𝑛−1 ⊗ 𝐼2)𝑧𝑛 ,(

(L̄ + B̄) ⊗ 𝐼2
)
(𝑧 − 𝑓 ) = ((L̄ + B̄) ⊗ 𝐼2) (1𝑛−1 ⊗ 𝐼2)𝑧𝑛 ,
(𝑧 − 𝑓 ) = (1𝑛−1 ⊗ 𝐼2)𝑧𝑛 .

(36)

From equation (36), one can conclude that positions consensus can be established
when the tracking errors of the formation converges to zero.

4. Simulation results

Numerical simulation based on MATLAB environment is presented in this
section. A multi-robot system consisted of six nonholonomic wheeled mobile
robots is considered in this simulation example. The parameters of each robot
are selected as: 𝑑 = 0.04 m, 𝑅 = 0.0265 m, 𝑟 = 0.02 m, 𝑚 = 0.032 kg and
𝐼 = 1.7−4 kg.m2.

A communication graph 𝐺 with a directed topology is employed for modeling
the information exchange among robots. The representation of 𝐺 is depicted in
Fig. 2, where the node labeled with number 6 represents the leader robot and the
reset of vertices (1–5) are the followers.

Fig. 2. Formation communication graph

The matrices L,A and B associated with 𝐺 are given as follows:

L =



1 0 0 0 0 −1
−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 2 −1 0
0 0 −1 0 1 0
0 0 0 0 0 0


,
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A =



0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0


,

B =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

To examine the efficacy of the suggested ADFOFTSMC method, a comparative
study is carried out, where ADFOFTSMC is compared to the second order con-
sensus algorithm SOCA proposed in [31], and the distributed sliding mode control
DSMC in [32].

The suggested controller design parameters are chosen as follows: 𝛼1 =
1
2

,
𝛼2 = 1, 𝛽1 = 7, 𝛽2 = 9, 𝛼 = 0.78 and 𝛾 = 10. The uncertainties terms Δ𝑖 in
equation (6) are supposed be uniformly randomly distributed between −0.025 and
0.025.

In order to establish a Hexagon-like formation the robots desired postures
are defined as: 𝑓𝑥𝑖 = [−0.125 − 0.375 − 0.5 − 0.375 − 0.125] and 𝑓𝑦𝑖 =

[0.2165 0.2165 0 − 0.2165 − 0.2165]. Fig. 3 shows the desired formation shape.

Fig. 3. Desired formation pattern
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The leader robot is assumed to move in a sinusoidal motion with 𝑣𝑥𝑖 = 0.25 m/s,
𝑣𝑦𝑖 = 0.05 cos(.25𝜋𝑡) m/s and the robots initial positions are selected as follows:
𝑥𝑖 = [0.10 − 0.25 − 0.50 − 0.4 − 0.1 0.25] and 𝑦𝑖 = [0.4 0.5 0.45 − 0.3 −
0.5 0]. Furthermore, the formation tracking performances are analyzed using the

following error indexes ISE =

∫ 𝑇

0
𝐸 (𝑡)2 d𝑡, ITSE =

∫ 𝑇

0
𝑡𝐸 (𝑡)2 d𝑡, RMSE =√︄

1
𝑇

∫ 𝑇

0
𝐸 (𝑡)2 d𝑡, ITAE =

∫ 𝑇

0
𝑡 |𝐸 (𝑡) |d𝑡, IAE =

∫ 𝑇

0
|𝐸 (𝑡) |d𝑡, where 𝑇 is the

simulation time and 𝐸 (𝑡) is defined in (37). Table 1 shows the tracking performance
results.

𝐸 (𝑡) =
5∑︁
𝑖=1

|𝑒𝑥𝑖 (𝑡) | +
5∑︁
𝑖=1

|𝑒𝑦𝑖 (𝑡) | . (37)

Table 1. Formation tracking performances

𝐸 (𝑡) SOCA [31] DSMC [32] ADFOFTSMC

RMSE 384.50 × 10−3 372.40 × 10−3 280.30 × 10−3

ISE 2.2175 × 103 2.0801 × 103 1.1783 × 103

ITSE 1.6769 × 103 1.6120 × 103 0.3996 × 103

ITAE 6.3164 × 103 5.8919 × 103 1.2690 × 103

IAE 2.7677 × 103 2.6831 × 103 1.2682 × 103

The simulation results for the second order consensus algorithm are illustrated
in Figs. 4–6, where Fig. 4 presents the formation desired pattern at several moments,
Fig. 5 depict the formation tracking errors (𝑒𝑥𝑖 , 𝑒𝑦𝑖 ) and the robots control inputs
(𝜏𝑙𝑖 , 𝜏𝑟𝑖 ) are presented in Fig. 6, while the obtained results of the DSMC are
presented in Figs. 7–9, respectively. Finally, the proposed ADFOFTSMC results
are depicted in Figs. 10–12.

The simulation results presented in Fig. 4, Fig. 7 and Fig. 10 demonstrate the
successful achievement of the formation using all control strategies. Nevertheless,
it is evident that the utilization of the proposed ADFOFTMSC leads to a faster
convergence rate of the robots towards the desired formation pattern. Meanwhile,
the evaluation of the tracking errors of the robots, depicted in Fig. 5, Fig. 8 and
Fig. 11, clearly demonstrates that the SOCA and DSMC methods exhibit inferior
performance in terms of disturbances and uncertainties rejection when compared
to the proposed control method. Additionally, the ADFOFTMSC control technique
has the lowest minimal error tracking values when compared to SOCA and DSMC
methods, as shown by the comparison between the tracking error indices shown in
Table 1.
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Fig. 4. Desired formation pattern at several moment with the leader trajectory (black line),
based on SOCA [31]

Fig. 5. Followers tracking errors, based on SOCA [31]
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Fig. 6. Followers control inputs, based on SOCA [31]

Fig. 7. Desired formation pattern at several moment with the leader trajectory (black line),
based on DSMC [32]
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Fig. 8. Followers tracking errors, based on DSMC [32]

Fig. 9. Followers control inputs, based on DSMC [32]



Formation control of wheeled mobile robots using ADFOFTSMC 583

Fig. 10. Desired formation pattern at several moment with the leader trajectory (black line),
based on ADFOFTMSC

Fig. 11. Followers tracking errors, based on ADFOFTMSC
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Fig. 12. Followers control inputs, based on ADFOFTMSC

The aforementioned comparison results illustrate that the ADFOFTMSC
method surpasses the other used control techniques in terms of control perfor-
mances. The proposed controller can ensure superior robustness against system
uncertainties and disturbances and achieves a higher tracking accuracy with a
faster convergence rate, which lead to an accurate and efficient formation control
of robots.

5. Conclusion

An adaptive distributed formation controller for wheeled nonholonomic mobile
robots is developed in this paper. The dynamic model of the robots is formulated
using the Euler-Lagrange equation, with accounting the presence of bounded distur-
bances and unmodeled dynamics in practical scenarios. Through the integration of
fractional calculus with fast terminal sliding mode control and consensus algorithm,
a robust distributed formation controller has been designed to drive the followers
robots to establish the predefined formation geometric shape while tracking their
leader. Furthermore, an adaptive mechanism is devised to effectively mitigate the
impact of uncertainties and disturbances. The suggested control scheme stability
has been analyzed utilizing the Lyapunov theorem. The efficiency of the suggested
control technique has been investigated through conducting a comparative study.
The outcomes highlight the superior performance of the suggested controller in
terms of formation accuracy, robustness and convergence.
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