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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Verification of MLP network-based current sensor
fault classifier for vector-controlled AC motor drives

Krystian TELER , Maciej SKOWRON and Teresa Orlowska-Kowalska ∗

Wroclaw University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wrocław, Poland

Abstract. In modern drive systems, the aim is to ensure their operational safety. Damage can occur not only to the components of the motor
itself but also to the power electronic devices included in the frequency converter and sensors in the measurement circuit. Critical damage to the
electric drive that makes its further exploitation impossible can be prevented by using fault-tolerant control (FTC) algorithms. These algorithms
are very often combined with diagnostic methods that assess the degree and type of damage. In this paper, a fault classification algorithm using
an artificial neural network (ANN) is analyzed for stator phase current sensors in AC motor drives. The authors confirm that the investigated
classification algorithm works equally well on two different AC motors without the need for significant modifications, such as retraining the neural
network when transferring the algorithm to another object. The method uses a stator current estimator to replace faulty sensor measurements
in a vector control structure. The measured and estimated currents are then subjected to a classification process using a multilayer perceptron
(MLP), which has the advantage of small structure size as compared to deep learning structures. The uniqueness of the method lies in the use
of data in the training set that are not dependent on the parameters of a specific motor. Four types of current sensor faults were studied, namely
total signal loss, gain error, offset and signal saturation. Simulations were performed in a MATLAB/SIMULINK environment for drive systems
with an induction motor (IM) and a permanent magnet synchronous motor (PMSM). The results show that the algorithm correctly evaluates the
type of damage in more than 99.6% of cases regardless of the type of motor. Therefore, the results presented here may help to develop universal
diagnostic methods that will work on a wide variety of motors.
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NOMENCLATURE
State variables:
u𝑠 spatial vector of stator voltage,
i𝑠 , i𝑟 spatial vectors of stator and rotor currents,
Ψ𝑠 , Ψ𝑟 spatial vectors of stator and rotor fluxes,
Ψ 𝑓 permanent magnet flux,
𝑡𝑒𝑚, 𝑡𝐿 electromagnetic and load torques,
𝜔𝑚 angular rotor speed,
𝜔𝑠𝜓 angular synchronous speed of the rotor flux spatial vec-

tor,
𝛾𝜓 angle between rotor flux vector and axis 𝐴 of the stator

winding,
𝛾𝑖𝑠 angle between stator current vector and axis 𝐴 of the

stator winding,
𝐼𝑚 instantaneous current amplitude,
𝑟𝑠 , 𝑟𝑟 stator and rotor winding resistances,
𝑙𝜎𝑠 , 𝑙𝜎𝑟 , 𝑙𝑚 stator and rotor leakage inductances and main induc-

tance of IM,
𝑇𝑀 mechanical time constant,
𝑓𝑠𝑁 nominal frequency,
𝑒𝑑 , 𝑒𝑞 decoupling signals.
Indexes:
ref reference value,
mea measured value,
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est estimated value,
𝑁 nominal value,
𝐴, 𝐵, 𝐶 indexes of components in phase 𝐴, 𝐵, 𝐶 coordinate

system,
𝛼, 𝛽 indexes of components in stationary 𝛼, 𝛽 coordinate

system,
𝑑, 𝑞 indexes of components in synchronous 𝑑, 𝑞 coordinate

system.
Abbreviations for current sensor faults:
NF, OC, G no fault, open circuit, gain,
OFF, SAT offset, saturation,
𝑔, offset, sat value of gain, offset, and saturation.

1. INTRODUCTION

The development of industrial drive systems that provide op-
timum motion performance of machines with a high dynamic
of changing operating conditions requires the application of ad-
vanced control structures. In recent years, closed control struc-
tures for electric motors have ceased to perform only regulatory
functions, but now they also monitor the behavior of the ob-
ject. This is due to the desire to maintain high reliability of the
drive system and to respond quickly to the defects that occur.
This issue is related directly to the idea of fault-tolerant control
systems (FTC) [1,2], which can include both electromechanical
systems (electric motors) and elements responsible for the flow
of information to the control structure (sensors) [3]. Defects
that occur in the induction motor (IM) and permanent mag-
net synchronous motor (PMSM) drives most commonly used
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in industrial applications do not ensure the elimination or nul-
lification of the impact of damage during drive operation. On
the other hand, the effects of sensor defects due to interference
with the values of variables within the control structure can
be reduced by changes in the control algorithm [3]. For this
purpose, it is necessary to detect the defect sufficiently quickly
(detection), determine its type (classification), and then perform
control changes that ensure compensation for the identified de-
fect (compensation) [4, 5].

The fault detection methods for sensors operating in closed-
loop control structures presented in the literature involve analyt-
ical techniques. This approach is applied to speed [6,7] and cur-
rent sensors (CS) and is limited mainly to drives with induction
motors [4, 6–9] and less frequently synchronous motors [10].
Analytical methods provide almost instantaneous fault detec-
tion and evaluation of the type of fault, but in the cases where
the exact nature of the fault is known at the design stage [11]. If
the effect of the defect on the control system or measured signals
cannot be determined by means of strict rules and relationships,
then the use of analytical techniques is severely limited. This
fact is of particular importance when the type of machine or
its rated parameters change, but also when the analyzed sensor
changes (different sensor characteristics). Any interference with
the parameters of the control system or its components can re-
sult in reduced precision or total inability to assess the technical
condition of the sensors.

Despite the differences in IM and PMSM designs, field-
oriented control algorithms are not significantly different. In
both cases, information on the current values of the phase cur-
rents is required. The use of analytical methods based on current
samples and the determination of the relationship between them
does not ensure the universality of the diagnostic system. This
means that a system developed for one machine cannot be used
successfully when operating on another object. Therefore, it
becomes important to look for universal fault symptoms that
ensure correct defect evaluation regardless of the control object
used (electric motor).

The development of fully automated fault diagnosis systems
for current sensors is currently linked to the use of artificial intel-
ligence methods and, in particular, neural networks (NN) [10].
Nevertheless, it should be clearly emphasized that the NN used
should fulfil the assumed functions but also not become a bur-
den on the computing system. Therefore, deep neural struc-
tures (DNN) [12, 13] or machine learning techniques [14, 15]
described in the literature result in increased demands on the
computational capacity of the host system. Nevertheless, their
particular advantage is the ability to directly analyze signals
without pre-processing [16]. This results in a significant reduc-
tion in the reaction time to an emerging fault. However, DNNs
require extensive training data sets and a long training process,
and they also cause a significant complication in the implemen-
tation process of the detection system.

An alternative to computationally expensive DNNs are clas-
sical shallow neural structures (SNNs) [4]. They are currently
used in FTC systems in fault detection and classification tasks.
A special feature of SNNs is the ability to approximate new un-
known input samples obtained from a small set of learning data.

This makes the implementation process of such networks as a
multilayer perceptron (MLP) particularly easy. However, in this
case, it is important to properly select the elements of the input
vector of the network. It should provide good-quality informa-
tion on the technical condition of the analysed object (sensors
in our case). Additionally, due to the high dynamics of drive
systems involving speed changes and variable load torque, the
input information should be properly processed. High precision
in sensor faults detection will be achieved if the input vector of
the neural network is independent of the operating conditions
of the motor and its parameters. This issue is strongly related
to the universality of the diagnostic system, understood as the
preservation of the precision of operation for different objects
under varying operating conditions. Currently, this topic is being
increasingly associated with the idea of transfer learning [16].
However, it should be clearly emphasised that transfer learn-
ing implies an additional process of training the network to use
known patterns. In this article, the universality of the developed
classification system includes the appropriate development of
the input vector in such a manner that a single NN structure can
be used for different test objects (IM and PMSM) without an
additional training process. This fact is an undoubted advantage
of the proposed approach over advanced systems based on deep
neural structures. The main contribution of the authors can be
characterised as follows:
• The main achievement was the development of a universal

fault classification algorithm for stator current sensors in AC
motor drives.

• The classification quality results obtained are comparable
for the IM drive and the PMSM drive.

• A multilayer perceptron network (MLP) structure with a
small size as compared to deep network structures was used
as a classifier.

• The neural network does not require retraining when the
algorithm is transferred to another object.

• Training data, which are independent of the electric drive
parameters and which can be easily synthesised based on
mathematical damage models, were used.

• A simulation verification of the performance of the proposed
algorithm was carried out.

The article is divided into five sections. Section 2 gives a math-
ematical description of IM and PMSM motors, and of the math-
ematical models of current sensor faults used. The investigated
vector control structure is also presented and a study of the ef-
fect of sensor faults on drive performance is carried out. The
next section describes the fault detection, compensation and
classification algorithm. Section 4 provides information on the
NN structure used for classification and on the training method.
Section 5 contains the test results, and the article ends with
conclusions in Section 6.

2. PROBLEM DESCRIPTION

2.1. CS faults description

Current sensors (CS) used in vector-controlled electric drives
must exhibit high accuracy and be reliable. Shunt resistors and
transducers that take advantage of the Hall phenomenon are the
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most commonly used. Both provide a good quality-to-price ratio
and, thanks to the use of feedback in Hall transducers, allow for
the influence of temperature and external magnetic interference
on measurement results to be reduced.

Table 1
Mathematical model of CS faults

Type of fault Mathematical model

No fault (NF) 𝑓 (𝑥) = 𝐼𝑚 sin(𝑥)

Open circuit (OC) 𝑓 (𝑥) = 0

Gain (G) 𝑓 (𝑥) = 𝑔𝐼𝑚 sin(𝑥)

Offset (OFF) 𝑓 (𝑥) = 𝐼𝑚 sin(𝑥) +offset

Saturation (SAT) 𝑓 (𝑥) = min (sat, |𝐼𝑚 sin(𝑥) |) sign (Im sin(x))

𝑥 – an arbitrary function of time and/or frequency

However, despite the accuracy and reliability of these instru-
ments, the possibility of misalignment (gain error, offset error)
and failure (total signal loss described as open circuit in this
paper) must be taken into account. In addition, in the case of
Hall transducers, there is a risk that the permitted measure-
ment ranges are exceeded, so the operating point shifts into the
nonlinear region and a magnetic core saturation phenomenon
occurs [17]. Table 1 provides a summary of CS faults, together
with mathematical models.

2.2. Mathematical models of IM and PMSM

The research carried out focusses on comparing the performance
of the proposed fault classifier for stator current sensors in a
drive system with IM and PMSM. Since the characteristics of
AC machines under field-oriented control were used to develop
the classification method, it is therefore necessary to analyze
the mathematical models of both types of motors, which were
also used in the simulation studies carried out. To write the de-
scription of these machines, well-known simplifying assump-
tions are made regarding the replacement of windings with dis-
tributed parameters by windings with concentrated parameters,
along with the assumption of constant parameters and sinu-
soidal distribution of induction in the air gap, and the omission
of nonlinear phenomena (magnetic hysteresis, saturation, eddy
currents) [18].

The application of the above assumptions allows us to write
the mathematical model of electromagnetic circuits of an AC
motor in the state equation form (in per unit [p.u.] system), in a
synchronously rotating reference frame (𝑑-𝑞):

𝑇𝑁
d
d𝑡

x = A (𝜔𝑚) x+Bu, (1)

with: x – state vector, u – input vector, A – state matrix, B –
input matrix, 𝜔𝑚 – angular velocity of the rotor.

For the alternative current motors (ACM) considered, namely
the induction motor (IM) and permanent magnet synchronous
motor (PMSM), these state and input vectors, and suitable ma-
trices are expressed in Table 2.

Table 2
Detailed mathematical description of IM and PMSM

Induction motor

x = col (i𝑠 , 𝚿𝑟 ) , (2)
u = u𝑠 , (3)

A(𝜔𝑚) =
[
𝑎1I 𝑎2I+ 𝑎3 (𝜔𝑠 −𝜔𝑚)J
𝑎4I 𝑎5I− (𝜔𝑠 −𝜔𝑚)J

]
, (4)

with:

𝑎1 = − 𝑟𝑠

𝜎𝑙𝑠
− (1−𝜎)𝑟𝑟

𝜎𝑙𝑟
, 𝑎2 =

𝑙𝑚𝑟𝑟

𝜎𝑙𝑠𝑙
2
𝑟

,

𝑎3 =
𝑙𝑚

𝜎𝑙𝑠𝑙𝑟
, 𝑎4 =

𝑙𝑚𝑟𝑟

𝑙𝑟
, 𝑎5 = −𝑟𝑟

𝑙𝑟
,

(5)

B =
1
𝑙𝑠

[I−𝜔𝑚J] , (6)

i𝑠 = 𝑖𝑠𝑑 + 𝑗𝑖𝑠𝑞 , u𝑠 = 𝑢𝑠𝑑 + 𝑗𝑢𝑠𝑞 , 𝜎 = (𝑙𝑠𝑙𝑟 − 𝑙2𝑚)/(𝑙𝑠𝑙𝑟 ),
𝑇𝑁 = 1/(2𝜋 𝑓𝑠𝑁 ),

PMSM

x = i𝑠 , (7)
u = col

(
u𝑠 ,𝚿 𝑓

)
, (8)

A(𝜔𝑚) = [𝑎6I−𝜔𝑚J] , (9)

with:
𝑎6 = −𝑟𝑠

𝑙𝑠
, (10)

where:

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
,

B =
1
𝜎𝑙𝑠

[
I
0

]
, (11)

i𝑠 = 𝑖𝑠𝑑 + 𝑗𝑖𝑠𝑞 , u𝑠 = 𝑢𝑠𝑑 + 𝑗𝑢𝑠𝑞 , 𝚿 𝑓 = col
(
Ψ 𝑓 , 0

)
,
��𝚿 𝑓

�� = Ψ 𝑓

(equal to PM flux)

Dynamics of the angular speed, 𝜔𝑚, can be described using
the equation of motion:

𝑇𝑀
d
d𝑡

𝜔𝑚 = 𝑡𝑒𝑚− 𝑡𝐿 , (12)

and the electromagnetic torque for IM is described as follows:

𝑡𝑒𝑚 =
𝑙𝑚

𝑙𝑟
Im (𝚿𝑟 × i𝑠) =

𝑙𝑚

𝑙𝑟

(
Ψ𝑟𝑑𝑖𝑠𝑞 −Ψ𝑟𝑞𝑖𝑠𝑑

)
, (13)
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and for PMSM, respectively as:

𝑡𝑒𝑚 = Im (𝚿𝑠 × i𝑠) =
(
Ψ 𝑓 𝑖𝑠𝑞 +

(
𝑙𝑠𝑑 − 𝑙𝑠𝑞

)
𝑖𝑠𝑑𝑖𝑠𝑞

)
. (14)

2.3. Field-oriented vector control structure of IM
and PMSM

All tests were carried out in a field-oriented control (FOC) struc-
ture, which involves controlling the flux and torque by using the
components of the stator current vector in the synchronous 𝑑-
𝑞 coordinate system rotating concurrently with the associated
rotor flux vector Ψ𝑟 . A schematic diagram of the FOC struc-
ture is shown in Fig. 1, highlighting the reference current signal
𝑖ref
𝑠𝑑

and the angle signal 𝛾Ψ required for the coordinate system
transformation.

Fig. 1. Schematic diagram of the FOC structure for an IM and PMSM
motor including the detection (FD), compensation (FC) and classifica-

tion (FCL) module

The way in which these signals are determined differs be-
tween the structure designed for IM and PMSM. In the case
of PMSM, the angle is equivalent to the rotor (and permanent
magnets) position angle, while in the case of IM, an estimator
of the amplitude and position angle of the flux vector associated
with the rotor winding must be used. Improved control quality
in the FOC structure using linear PI controllers is achieved by
including decoupling signals 𝑒𝑑 and 𝑒𝑞 , which make the 𝑖𝑠𝑑
and 𝑖𝑠𝑞 current control paths independent of each other. These
signals are determined from analysis of the stator winding equa-
tion in the mathematical model of the motor. Also included in
Fig. 1 is the block responsible for implementing the current sen-
sor fault detection, compensation, and classification algorithm
(FD+FC+FCL), which will be discussed later in the article.

2.4. Impact of CS faults on drive system performance

The simulations were carried out in a converter system with
SVM vector modulation. The FOC control structure used mea-
surements from only two CSs in the calculations, which is com-
mon practice in industrial applications. The frequency of the
current and speed measurements, the frequency of the PWM
carrier signal, and the calculations associated with the control
structure were 8 kHz, while the motor dynamics equations were
calculated at 800 kHz. The parameters of the motors tested are
included in Table 4, in the appendix. The simulations assumed
𝑔 = 1.25, offset = 0.15𝐼𝑚, and sat = 0.75𝐼𝑚. The values of these
parameters were chosen to show the impact of faults on the per-
formance of the drive. Figures 2–5 show the waveforms of 𝑖𝑠𝐴,
𝑖𝑠𝐵 and 𝑖𝑠𝐶 phase currents, 𝑑-𝑞 current components, the electro-
magnetic torque, and angular velocity when the CS faults being
considered occur.

Fig. 2. Waveforms of selected state variables in IM when CS faults
(OFF, SAT) occur in phase 𝐴 (𝑡𝐿 = 𝑡𝐿𝑁 , 𝜔𝑚 = 𝜔𝑚𝑁 )

Fig. 3. Waveforms of selected state variables in IM when CS faults (G,
OC) occur in phase 𝐴 (𝑡𝐿 = 𝑡𝐿𝑁 , 𝜔𝑚 = 𝜔𝑚𝑁 )
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Fig. 4. Waveforms of selected state variables in PMSM when CS faults
(OFF, SAT) occur in phase 𝐴 (𝑡𝐿 = 𝑡𝐿𝑁 , 𝜔𝑚 = 𝜔𝑚𝑁 )

Fig. 5. Waveforms of selected state variables in PMSM when CS faults
(G, OC) occur in phase 𝐴 (𝑡𝐿 = 𝑡𝐿𝑁 , 𝜔𝑚 = 𝜔𝑚𝑁 )

In the case of G and OFF faults, oscillations appear in the cur-
rent waveforms. These are also noticeable in the electromagnetic
torque waveforms, which are proportional to the 𝑖𝑠𝑞 current. Al-
though the speed is stabilized at a given value, in the real system
torque oscillations can lead to accelerated wear of the mechani-
cal parts (rolling bearings) and consequently to serious damage.
Furthermore, it should be noted that in the case of G, OFF and
SAT faults, ripples appear in the PMSM motor speed (larger
than for IM), which increase with the degree of damage. The
𝑖𝑠𝑑 current, on the other hand, is proportional to the associated
rotor flux in the case of IM while in PMSM it is responsible for
weakening the flux coming from the permanent magnets. The
oscillations of this signal are also significant, resulting in the
flux not acquiring a steady-state value, and thus the operating
state of the motor can only be described as a quasi-steady state.
The most dangerous is the OC-type fault, as measurements from

only one CS are then available and, without compensation for
this fault, speed control is lost.

Therefore, it is necessary to classify CS damage to decide
whether the damage that has occurred is the result of miscali-
bration or physical damage to the sensor. This can prevent future
mechanical faults, which can in turn prove difficult to repair
and/or cause considerably more serious production line-related
damage, for example.

3. METHODOLOGY OF CS FAULT DETECTION
AND CLASSIFICATION

In order to implement the classification, appropriate measure-
ments must first be taken to detect and compensate for CS faults.
This action is essential because, as demonstrated in the previous
chapter, a sensor fault can cause damage to the drive system.
Sufficiently fast detection and compensation will keep the drive
system running, which is crucial in fault-tolerant control (FTC)
systems.

3.1. Stator current estimators

The classification method developed assumes that an estimator
of stator currents is available in the control system. The esti-
mated current values are used for detection and compensation
purposes and for fault classification. Therefore, it is important
to use an estimator that demonstrates high operating accuracy.

The reconstruction of stator phase currents can be realized us-
ing Luenberger observers. This type of solution is very accurate,
however, measurements from at least one undamaged sensor are
required for operation. When the required measurements are
missing, good current reconstruction results are obtained using
open-loop observers [8, 19], which were used in this paper. For
both motors, these estimators are mathematical models that de-
scribe the dynamics of the electromagnetic state variables, in the
form of equation (1) and the corresponding equations (2)–(6)
for IM or (7)–(11) for PMSM.

3.2. Fault detection and compensation

Early damage detection is performed by comparing the mea-
sured and estimated current values (green part in Fig. 1). In the
method described in this paper, localization is the task of the
neural classifier, so a simple residuum expressed by the follow-
ing equation is assumed:

𝜀 =
(
𝑖mea
𝑠𝐴 − 𝑖est

𝑠𝐴

)2 +
(
𝑖mea
𝑠𝐵 − 𝑖est

𝑠𝐵

)2
. (15)

For undamaged sensors, the residuum calculated using the above
formula should be zero. However, due to measurement noise and
potential discrepancies in the parameters of the current estima-
tor, the value of 𝜀 will be non-zero, so it should be compared
with the detection threshold, 𝜗. It should also be noted that the
residuum can have different values at different points of drive
operation, so a fixed detection threshold value might not be suf-
ficient in some applications and should then be replaced by an
adaptive value [4]. When significant measurement discrepancies
occur and the value of 𝜀 exceeds the detection threshold, 𝜗, the
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measuring sensors must be disconnected, and the unavailable
measurements replaced by estimated currents (fault compensa-
tion). This way, the continuity of control is maintained, and the
drive can remain in safe operation.

3.3. Classification

The evaluation of the type of fault is carried out using a neural
classifier that compares the values of measured and estimated
currents. The assumption of the effectiveness of the classifier is
the presence of reproducible fault symptoms in each recorded
period of sinusoidal stator current. However, classification of
sinusoidal signals is difficult due to the variable frequency and
variable amplitude of the signals. Both problems were solved
using an available current estimator. Difficulties due to vari-
able amplitude were eliminated by normalizing the signals with
respect to the instantaneous amplitude of the estimated current:

𝑖
mea/est
𝑠𝑛𝐴/𝐵 =

𝑖
mea/est
𝑠𝐴/𝐵

𝐼est
𝑚

=
𝑖
mea/est
𝑠𝐴/𝐵√︂(

𝑖est
𝑠𝛼

)2 +
(
𝑖est
𝑠𝛽

)2
. (16)

In the above equation, 𝑖𝑠𝑛𝐴/𝐵 denotes the currents normalized
in phases 𝐴 and 𝐵, respectively. The variable frequency of the
current signal is in turn the result of sampling the measurements
at a constant frequency. Therefore, it is proposed to synchronize
measurement acquisition with the position angle of the stator
current vector. An estimator is also used for this purpose along
with the current angle of the stator current vector 𝛾𝑖𝑠 , determined
in the stationary 𝛼-𝛽 system as follows:

𝛾𝑖𝑠 = tan−1

(
𝑖est
𝑠𝛽

𝑖est
𝑠𝛼

)
. (17)

If the current samples are always recorded at the same values
𝛾𝑖𝑠 = 𝛾acc then a current waveform independent of the sampling
frequency will be obtained. The values of 𝛾acc can be determined
from the formula below:

𝛾acc = 𝛾𝑖𝑠0 + 𝑘
2𝜋

𝑀 −1
, 𝑘 = 0,1 . . . , 𝑀 −1. (18)

In the above formula, 𝛾𝑖𝑠0 depends on the stator phase in which
the measurement acquisition is made and it defines the con-
ventional start of the current period, while 𝑀 is the assumed
number of samples that form one period of the signal.

4. MLP-BASED CLASSIFIER

4.1. Structure of NN-based classifier

In the study, a multilayer perceptron neural network with two
hidden layers was used. The mathematical description of such
a network is very simple, which allows for easy implementa-
tion. Networks of this type are also characterized by relatively
high performance with a small learning data set. The input layer
contained 2𝑀 = 34 inputs, of which the first 𝑀 = 17 inputs cor-
respond to the measured current signal and the next 17 inputs

– to the estimated current signal (Fig. 6). Both signals were
subjected to the acquisition process described in Section 3.3.
Due to the data normalization performed, the input layer did
not contain any additional signal conditioning functions. The
hidden layers consisted of 𝐻1 = 11 and 𝐻2 = 3 neurons, respec-
tively, whose activation functions were a hyperbolic tangent.
The output layer was a classifier layer described by a softmax
function and contained 5 outputs corresponding to the following
classes: NF, OC, G, OFF, SAT. The chosen network structure
was characterized by the highest accuracy on the learning data
prepared as described in the next subsection and, at the same
time, contained the lowest number of weight connections.

Fig. 6. Schematic diagram of the neural network used

4.2. Training dataset

The process of conditioning the current signals has made it
possible to eliminate frequency and amplitude information that
is unnecessary from a classification point of view. As a result,
and assuming that the mathematical damage models are known,
training data can be generated without having to simulate the
drive operation.

The process of preparing the training data is based on gen-
erating one period of a sinus function waveform consisting of
𝑀 samples. The basic waveform is then modified on the basis
of mathematical models of sensor faults to produce waveforms
representing the current signal for different classes and different
damage values. To differentiate between the training data, wave-
forms shadowed by a random variable with normal distribution
are also included.

Increasing the generalization capability of the network and
making it immune to indicating false predictions was achieved
by adding waveforms recorded on the laboratory bench with the
IM motor. Additional data represented 20% of the total set. The
method of mixing packets derived from the model and measure-
ments of the object used in the study refers to instance-based
transfer learning. This technique involves inserting random sam-
ples from the target set (the test object) into the training data
set of the neural network. Mixing samples from the source set
with random samples from the target set helps ensure high per-
formance for unknown input sample networks. The purpose of
this paper is to investigate the performance quality of the MLP
network developed for IM in a drive system with PMSM, so NN
retraining was not performed for a different motor.
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5. RESULTS COMPARISON FOR IM AND PMSM

5.1. Simulation conditions

A comparison of the performance of the classifier was carried
out by means of simulation in the MATLAB/SIMULINK en-
vironment. Four different types of faults (OC, G, OFF, SAT)
with values 𝑔 = 1.25, offset = 0.15𝐼𝑚 and sat = 0.75𝐼𝑚 were
tested for four different speeds (𝜔𝑚 =𝜔𝑚𝑁 , 0.75𝜔𝑚𝑁 , 0.5𝜔𝑚𝑁 ,
0.25𝜔𝑚𝑁 ) and four load torque values (𝑡𝐿 = 𝑡𝐿𝑁 , 0.75𝑡𝐿𝑁 ,
0.5𝑡𝐿𝑁 , 0.25𝑡𝐿𝑁 ). The drive system assumed the existence of
only two current sensors (in phases 𝐴 and 𝐵), so two simulations
were run for each operating point, in which only the selected
sensor was damaged. The drive system used the estimated cur-
rents to determine control from the start of its operation, so
the measured currents had no effect on the performance of the
structure. This operation was intended to compare the quality of
the classification.

5.2. Signals analysis

The velocity and load torque profiles used in each simulation
are shown in Fig. 7a, while examples of measured and estimated
currents and classification results for the IM and PMSM motor
systems are shown in Fig. 7b and Fig. 7c. In Fig. 7c, signifi-
cant classification inaccuracies can be observed at times when
the PMSM motor was unloaded with any torque (from 0.67 to
0.80 s). The green arrow marks the first current period detected
by the classifier, immediately at start-up. It is classified erro-
neously, which, however, can be negated by software. In Fig. 7c,
significant classification inaccuracies can be seen in the instants
when the PMSM motor was unloaded (from 0.67 to 0.80 s).
These are due to the small value of the current, which is signif-
icantly distorted from the assumed sinusoidal waveform under
this operating condition. Classification in an unloaded PMSM
motor is therefore significantly difficult, but such a motor op-
erating condition is rare and not economically justified. In the
case of the IM motor, no-load classification errors do not occur.
Nevertheless, during the start-up itself, when the speed rises
quite rapidly to the set speed (from 0.33 to 0.67 s), the classi-
fication is correct, confirming the robustness of the developed
classification method to variations in frequency of the current.

Figure 8 shows an example of classification instants after a
SAT fault. Due to the method of measurement acquisition, the
correct network response is obtained at the end of the current
period. The green rectangle is the result of classification of the
period marked by the green arrow, while subsequent current pe-
riods are separated by vertical lines in the diagrams. Therefore,
the classification time is variable and depends on the fundamen-
tal frequency of the current signal in each phase.

5.3. Statistical analysis

Evaluation metrics used to describe the performance of clas-
sifiers (Table 3) and the confusion matrix (Fig. 9) were deter-
mined from the tests. The calculations included a 2 s simulation
for each point of steady-state drive operation (1 s to 3 s), where
for the first second of the selected time interval, the CSs were
undamaged, and then a sudden failure occurred. The effective-
ness (accuracy) of the classifier in the steady state of the drive

(a)

(b)

(c)

Fig. 7. Waveforms of the set speed and torque and the moment of fault
occurrence (a), waveforms of the currents and the classification results
in a drive system with an IM motor (b) and a PMSM motor (c) at a

speed of 0.75𝜔𝑚𝑁 and a load of 0.25𝑡𝐿𝑁

Fig. 8. Classification results for phase A, at nominal speed and nominal
torque

calculated for IM is 99.6%, while for PMSM it is 99.8%. Such
high values are due to the simulation conditions, where the exact
parameters of both motors are known, and thus the estimators
show high performance accuracy.

Despite the simulation conditions, the results obtained con-
firm the effectiveness of the method and its versatility. When
analyzing the confusion matrix (Fig. 9), it can be seen that when
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Table 3
Evaluation metrics describing the classifier under study

Class
IM [%] PMSM [%]

Preci-
sion Recall F1

score
Preci-
sion Recall F1

score

No Fault (NF) 99.6 100 99.8 99.8 100 99.9

Open circuit (OC) 100 99.0 99.5 100 99.6 99.8

Gain (G) 99.7 97.8 98.7 99.9 98.9 99.4

Offset (OFF) 100 98.3 99.1 99.5 99.0 99.2

Saturation (SAT) 99.8 99.0 99.4 99.9 99.6 99.7

Macro average 99.8 98.8 99.3 99.8 99.4 99.6

Weighted average 99.6 99.6 99.6 99.8 99.8 99.8

Accuracy 99.6 99.8

(a)

(b)

Fig. 9. Confusion matrices for IM (a) and PMSM (b)

damage occurred, it was correctly classified in the majority of
cases, which is confirmed by the recall index values of around
99% in Table 3. The double number of data in the confusion
matrices for PMSM is due to the fact that the rated frequency of
this motor (100 Hz) is twice that of IM (50 Hz).

6. CONCLUSIONS

The presented tests confirm the applicability of the fault clas-
sifier developed for stator current sensors to AC motors of two
different designs, and therefore confirm the versatility of the
method. The following observations can be drawn from the
simulation studies carried out:
• The accuracy of the classifier for the IM drive and the PMSM

drive is comparable (99.6% for IM and 99.8% for PMSM)
(Table 3). These results were obtained for tests carried out
at various operating points of the drive, even at low speeds
and loads (25% of the rated values).

• The neural classifier does not require retraining to operate
correctly on a new object.

• The response time of the classifier depends inversely on the
frequency of the first harmonic of the stator phase current.

• Synthetic data derived from the mathematical fault model
accounted for 80% of the total training set. The remaining
20% was recorded in a drive system with undamaged cur-
rent sensors. This compilation allowed the classifier to be
independent of the operating point and motor parameters.

• An advantage of the classifier is its ability to operate in a
dynamic state, as shown in Fig. 7.

• The universal classification method developed using MLP
is also easy to implement, and due to the small structure of
the neural network, it does not require significant comput-
ing power. This property can be important in the case of
implementation on a physical controller.

Future research will focus on implementing the system on a lab-
oratory bench with a PMSM, as well as ensuring the reliability
of the method’s performance in the case of changes in machine
parameters due to thermal effects.

APPENDIX

Table 4
Rated parameters of the AC motors tested

Rated parameters IM PMSM

Voltage [V] 230 325

Current [A] 2.5 6.6

Speed [r/min] 1390 1500

Torque [N·m] 7.56 16

Pole pairs [–] 2 4

Rotor winding resistance [Ω] 4.968 –

Stator winding resistance [Ω] 5.114 1.206

Rotor leakage inductance [mH] 31.6 –

Stator leakage inductance [mH] 31.6 –

Main inductance [mH] 541.7 –

Stator inductance [mH] – 27.58

Mutual inductance [mH] – 7.02
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