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Micropolar fluid flow through an anisotropic porous medium between two hori-
zontally oriented impermeable plates under the effect of slip conditions for velocity
and microrotation vectors at both plates are analysed in this paper. The permeability of
an anisotropic porous medium is along two principal axes of permeability 𝐾1 and 𝐾2.
The principal axis with permeability𝐾2 forms an angle𝜓 with the horizontal direction
called anisotropic (or orientation) angle. It is observed that the velocity and the mi-
crorotation profiles decrease as permeability ratio 𝐾 and orientation angle 𝜓 increase.
Velocity slip (𝛽1 and 𝛽2) parameters show the effect on the velocity profile near upper
and lower plates but have a strong influence on the microrotation profile. The spin slip
(𝜎1 and 𝜎2) parameters showed minor enhancement in the velocity profile but had an
increasing effect on the microrotation vector. The decrease in permeability ratio and
anisotropic angle results in an increase in skin friction. The impact of other parameters
like Darcy number Da, micropolar parameter 𝑁 on velocity and microrotation vectors
are presented graphically and discussed. The presence of the slip effect helps to reduce
the impact of friction due to plates causing fluid flow to enhance.

Nomenclature
𝑢 velocity in the 𝑥- direction
𝜈 microrotation angular velocity
𝑥, 𝑦 Cartesian coordinates along the channel
ℎ dimensionless height
𝜇 dynamic viscosity coefficient of the fluid
𝜅 rotational viscosity coefficients
𝑝 pressure term
𝛼0, 𝛽0, 𝛾0 coefficients of gyro-viscosity of the micropolar fluid
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𝐾𝑝𝑚 second order permeability tensor
𝐾1, 𝐾2 permeability along principal axes
𝜓 anisotropic angle
𝛽1, 𝛽2 velocity slip parameters
𝜎1, 𝜎2 spin slip parameters
𝑉0 average velocity
𝑁 micropolarity parameter
𝑝0 dimensionless pressure term
Γ1, Γ2 dimensionless velocity slip parameters
𝜆1, 𝜆2 dimensionless spin slip parameters
𝑢∞ velocity at large Darcy number
𝜈∞ microrotation at large Darcy number
𝐶 𝑓 , 𝑚 𝑓 skin-friction coefficients of stress and couple stress

1. Introduction

The occurrence of fluid flow through a porous media is widespread in natural
and industrial fields like water label recharge, oil recovery, water filtration plants,
and nuclear power plants [1]. The presence of microstructure makes non-Newtonian
flow patterns different from the classical Newtonian fluid inside a porous medium,
and it has a significant role in industries, including chemical, polymer, and biomed-
ical [2]. A fluid with characteristics different from Newtonian and non-Newtonian
fluids is a nanofluid, with nanoparticles (gold, silver, copper, and platinum) inside
the fluid. Its major applications include renewable energy engineering, transporta-
tion, medical fields, aircraft, heat transport enhancement, and microelectronics
[3, 4]. These applications and the behaviour of fluid motion in porous mediums
attract many researchers to investigate the problem related to porous mediums. The
key factors porosity and permeability characterize the flow in a porous medium,
and they strongly affect the rheological properties of Newtonian, non-Newtonian,
and nanofluid. The isotropic porous structure has constant permeability, but the per-
meability of the homogenous anisotropic structure depends on the porous lining
arrangement.

Most natural and manufactured porous materials, like sand, rocks, tree trunks,
and porous layer arteries, are heterogeneous in structure. The permeability in these
materials is different in all directions. In 1991, Tyvand and Storesletten introduced
the term inclination angle to study the onset of Rayleigh–Bénard convection in a
bounded horizontal porous medium of anisotropic nature [5]. They consider the
arbitrary manner of porous lining to form an angle with the horizontal direction,
which is common in the whole material. This angle is known as the inclination
angle or anisotropic angle [5]. Introducing an angle makes the permeability differ
in 𝑥− and 𝑦− directions and vary with the inclination angle (see Fig. 1). Degan
et al. [6] introduced the inclination angle in a horizontal porous medium to study
the effect of anisotropic parameters on the forced convective flow. Karmakar and
Raja Shekhar [7] have done a detailed analysis of the influence of anisotropic
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parameters on fluid flow between two porous channels. Recently, Israel-Cookey et
al. [8] investigated the forced convective flow of an electrically conducting Casson
fluid through an anisotropic porous channel. They observed that with a decrease in
permeability ratio, fluid activity increases. They found that the anisotropic structure
of porous medium provides greater insight than an isotropic structure.

A micropolar fluid flow mechanism is different from a classical Newtonian
fluid. Eringen [9] introduced the concept of micropolar fluid to describe the be-
haviour of fluids like animal blood, muddy water, lubricants, and polymeric suspen-
sions. A review article on the wide range of micropolar fluid applications proposed
by Ariman et al. [10]. Some selected applications of micropolar fluid in porous
mediums and lubrication theory can be found in Lukaszewicz’s textbook [11].
Ariman and Cakmak [12] investigated micropolar fluid Couette, Poiseuille, and
rotating flows. Analytical solutions for the impact of MHD on the time-dependent
boundary layer flow of a micropolar fluid were given by Nadeem et al. [13]. Pandey
and Chaube [14] examined magnetically influenced micropolar fluid flow inside
a porous media induced by a peristaltic sinusoidal wave. Madasu and Bucha [15]
studied the effect of MHD on a cylinder placed in a porous medium filled with mi-
cropolar fluid. Hydromagnetic effect on free convective flow and mixed convective
fluid flow through different geometries governed by non-Darcy model are investi-
gated by Chamkha [16, 17]. Chamkha [18, 19] studied electromagnetic two-phase
flow through horizontal channels and circular pipes. Chamkha [20] analytically
solved and verified numerically the free convective flow of a micropolar fluid
through the vertical channel and studied the MHD effect on mixed convective flow
in the same geometry with different thermal conditions [21]. The flow behaviour
of immiscible fluid in non-porous and porous channels with and without magnetic
effect was studied by Chamkha [22]. Time-dependent immiscible fluid flow and
heat transfer in horizontal channels [23] and free convective flow of immiscible
fluid in vertical channels [24] are also investigated. Keimanesh et al. [25] studied
the generalized Couette flow of a third-grade non-Newtonian fluid and all its cases.
MHD effect on micropolar fluid flow through an isotropic porous medium studied
by Kocić et al. [26]. Ahmad and Rashad [27] studied the natural convective flow
of micropolar nanofluid inside the rectangular anisotropic porous enclosure.

Navier [28, 29] has introduced more practical slip boundary conditions, where
slippage occurs along the boundary’s surface. The slip condition assumes that the
tangential velocity of the fluid particles at a boundary point is proportional to the
tangential stress acting at that moment of contact. Neto et al. [30] have given a
summary of their research on the experimental investigation of Newtonian fluid
boundary slip conditions. The presence of wall slip can have beneficial effects,
such as reducing the required pressure drop in microfluidic applications [31, 32].
The wall slip effect on fluid flow and heat transfer through a porous medium has
been studied by Ramesh [33]. Chen et al. [34] used the Navier slip condition
to study non-Newtonian fluid flows over channelled surfaces. Slayi and Ashmawy
[35] investigated the time-dependent flow of micropolar fluid flow with velocity and
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spin slip between two parallel plates. Madasu and Sarkar [36] studied the effect of
slip conditions on a sphere implanted in a porous medium of constant permeability
saturated with a couple of stress fluids. Bucha and Madasu [37] worked on the
effect of slip conditions on flow past a permeable spheroid confined inside a
spheroidal cell with isotropic permeability. Only a few studies have employed an
anisotropic porous channel with slip boundary conditions. Jingang [38] investigated
anisotropic velocity slip at the interface of a unidirectional fibrous porous medium
using Navier’s slip condition. Abdelsalam et al. [2] did a comparative study on the
MHD effect on a Maxwell fluid flow and heat transfer through a porous medium with
a slip effect. Karmakar [39] investigated the unsteady Couette flow of Newtonian
fluid through an anisotropic porous media confined by two parallel plates; the
roughness of the lower plate causes a slip.

The excellent understanding of the velocity profile for different Newtonian and
non-Newtonian fluids inside an anisotropic porous medium and the effect of slip
boundary condition case motivates us to do the present study. Slips occur because
of the nature of the plate’s surface and fluid; microparticles of micropolar fluid
also affect the flow [40]. We believe that using slip boundary conditions for both
velocity and microrotation are more physical. Nowadays, various types of artificial
porous metallic lattice structures like the diamond orientation of a stainless steel
textile sandwich panel [41], octahedral lattice material of a casting aluminium alloy
[42], and solid and hollow microtruss lattice structures [43] are available. But these
materials have some limitation due to the size of pores. Nanoporous metal foams
are also manmade porous materials finer than porous lattice structures used in
particular electrodes, sensors, and filters [44]. Furthermore, these metal foams can
be viewed as suitable for use in high-speed conduction and catalyst materials that
have very large specific surface areas [45]. The adjustment of their permeability
in different directions based on needs are the major advantage of these artificial
foams or porous materials. These materials have many potential applications in
engineering and industrial fields, like in filtration, making of biomaterials, etc. The
present study is helpful in exploring the behaviour of fluid flow in these artificial
porous structure.

The current problem involved analyzing the flow of micropolar fluid through
an anisotropic porous medium. Slip boundary conditions are considered for ve-
locity and microrotation vectors at upper and lower impermeable plates. The most
important findings about the effect of velocity slip, spin slip, anisotropic permeabil-
ity, Darcy number and micropolarity parameter on the velocity and microrotation
profiles have been mentioned.

2. Problem formulation

The equations governing the laminar and steady flow of an incompressible
micropolar fluid with constant fluid properties through a porous medium, in the
absence of body force and body couple are given as follows [14, 15]
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∇ · q = 0, (1)

∇𝑝 + (𝜇 + 𝜅)K−1
𝑝𝑚q + (𝜇 + 𝜅)∇ × ∇ × q − 𝜅∇ × ν = 0, (2)

𝜅∇ × q − 2𝜅ν − 𝛾0∇ × ∇ × ν + (𝛼0 + 𝛽0 + 𝛾0)∇(∇ · ν) = 0, (3)

where q, ν, 𝜇, 𝜅, 𝑝, K𝑝𝑚 are the velocity vector, microrotation vector, coefficient
of viscosity for the viscous fluid, rotational viscosity coefficients, pressure, and
permeability tensor, respectively. 𝛼0, 𝛽0, 𝛾0 are the coefficients of gyro-viscosity
of the micropolar fluid.

The stress and couple stress tensors are described by

t𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜇(q𝑖, 𝑗 + q 𝑗 ,𝑖) + 𝜅(q 𝑗 ,𝑖 − 𝜖𝑖 𝑗𝑚ν𝑚), (4)

m𝑖 𝑗 = 𝛼0ν𝑚,𝑚𝛿𝑖 𝑗 + 𝛽0ν𝑖, 𝑗 + 𝛾0ν 𝑗 ,𝑖 , (5)

where 𝜖𝑖 𝑗𝑚 and 𝛿𝑖 𝑗 are the alternating tensor, and Kronecker delta, respectively and
the comma denotes the covariant differentiation.

Consider the fully developed flow of micropolar fluid (i.e., transverse velocity
is zero, 𝑢 = 𝑢(𝑦) and 𝜈 = 𝜈(𝑦) [14, 15]) through an anisotropic porous medium
between two horizontal parallel impermeable plates (see Fig. 1). Width of the plates
along the 𝑧−direction to be infinitely large as compared to its height (2ℎ). So that,

flow variables along the 𝑧−direction, i.e., 𝑤 = 0,
𝜕𝑤

𝜕𝑧
= 0.

Fig. 1. Schematic presentation

The permeability of the porous medium is along the principal axis of perme-
ability 𝐾1 and 𝐾2, and the principal axis of permeability 𝐾2 makes an angle with

𝜓 with the horizontal axis. The permeability ratio
(
𝐾 =

𝐾1
𝐾2

)
and orientation angle

𝜓 described the anisotropy of the porous region. Then, the permeability K𝑝𝑚 of an
anisotropic porous medium is the second-order tensor and given by [5–8, 27, 39]

K𝑝𝑚 =

[
𝐾1sin2 𝜓 + 𝐾2cos2 𝜓 (𝐾2 − 𝐾1)sin𝜓cos𝜓
(𝐾2 − 𝐾1)sin𝜓cos𝜓 𝐾2sin2 𝜓 + 𝐾1cos2 𝜓

]
. (6)

When 𝐾 = 1 i.e., 𝐾1 = 𝐾2, it is the case of isotropic porous medium.
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With the above consideration the governing equations Eq. (1)-(3) reduce to

𝜕𝑢

𝜕𝑥
= 0, (7)

𝜕𝑝

𝜕𝑥
+ (𝜇 + 𝜅)

𝐾1
𝑎𝑢 − (𝜇 + 𝜅) 𝜕

2𝑢

𝜕𝑦2 − 𝜅 𝜕𝜈
𝜕𝑦

= 0, (8)

𝜕𝑝

𝜕𝑦
+ (𝜇 + 𝜅)

𝐾1
𝑏𝑢 = 0, (9)

−𝜅 𝜕𝑢
𝜕𝑦

− 2𝜅𝜈 + 𝛾0
𝜕2𝑢

𝜕𝑦2 = 0, (10)

where 𝑎 = sin2 𝜓 + 𝐾 cos2 𝜓, 𝑏 = (𝐾 − 1) sin𝜓 cos𝜓, (11)

with the slip boundary conditions for velocity and microrotation vectors [35, 40]

𝛽1𝑢 = (𝜇 + 𝜅) 𝜕𝑢
𝜕𝑦

+ 𝜅𝜈, 𝜎1𝜈 = 𝛾0
𝜕𝜈

𝜕𝑦
at 𝑦 = −ℎ, (12)

𝛽2𝑢 = −(𝜇 + 𝜅) 𝜕𝑢
𝜕𝑦

− 𝜅𝜈, 𝜎2𝜈 = −𝛾0
𝜕𝜈

𝜕𝑦
at 𝑦 = ℎ, (13)

where 0 ⩽ 𝛽1, 𝛽2 < ∞ are the velocity slip parameters, and 0 ⩽ 𝜎1, 𝜎2 < ∞ spin
slip parameters.

Now, partially differentiate Eq. (8) and (9) with respect to 𝑥 and using Eq. (7),
we obtain

𝜕

𝜕𝑥

(
𝜕𝑝

𝜕𝑥

)
= 0 and

𝜕

𝜕𝑦

(
𝜕𝑝

𝜕𝑥

)
= 0. (14)

According to Karmakar [7], and from Eq. (14), it follows that,

𝜕𝑝

𝜕𝑥
= 𝑄. (15)

From Eq. (8) and (9), we can say that the anisotropic parameters affects the change
in pressure gradient in both 𝑥 and 𝑦 directions.

The average velocity𝑉0 through the channel, can be evaluated using volumetric
flow (𝑉total) per unit width of the channel [7], i.e.,

𝑉0 =
𝑉total
2ℎ

=
1
2ℎ

( ∫ ℎ

−ℎ
𝑢 d𝑦

)
. (16)

The expressions of tangential stress and tangential couple stress are given by

𝜏𝑦𝑥 = (𝜇 + 𝜅) 𝜕𝑢
𝜕𝑦

+ 𝜅𝜈, 𝑚𝑦𝑧 = 𝛾0
𝜕𝜈

𝜕𝑦
. (17)



Non-Newtonian fluid flow between parallel plates filled with an anisotropic porous medium 279

3. Analytical solution

Using the following dimensionless parameters,

𝑢∗ =
𝑢

𝑉0
, 𝜈∗ =

𝜈ℎ

𝑉0
, 𝑥∗ =

𝑥

ℎ
, 𝑦∗ =

𝑦

ℎ
, 𝑝∗ =

𝑝

𝑝0
, 𝑝0 =

(𝜇 + 𝜅)𝑉0
ℎ

, (18)

and after dropping the (∗), the resulting dimensionless equations are

𝜕2𝑢

𝜕𝑦2 + 𝑙 𝜕𝜈
𝜕𝑦

− 𝑎

Da
𝑢 −𝑄 = 0, (19)

𝜕𝑝

𝜕𝑦
+ 𝑏

Da
𝑢 = 0, (20)

𝜕2𝜈

𝜕𝑦2 − 𝑓
𝜕𝑢

𝜕𝑦
− 2 𝑓 𝜈 = 0, (21)

where 𝑁 =
𝜅

𝜇
, 𝑙 =

𝑁

1 + 𝑁 , 𝑓 =
𝜅ℎ2

𝛾0
, Da =

𝐾1

ℎ2 .

And corresponding slip boundary conditions are

Γ1𝑢 = (1 + 𝑁) 𝜕𝑢
𝜕𝑦

+ 𝑁𝜈, 𝜆1𝜈 =
𝜕𝜈

𝜕𝑦
at 𝑦 = −1, (22)

Γ2𝑢 = −(1 + 𝑁) 𝜕𝑢
𝜕𝑦

− 𝑁𝜈, 𝜆2𝜈 = −𝜕𝜈
𝜕𝑦

at 𝑦 = 1, (23)

where Γ1 =
𝛽1ℎ

𝜇
, 𝜆1 =

𝜎1ℎ

𝛾0
, Γ2 =

𝛽2ℎ

𝜇
, 𝜆2 =

𝜎2ℎ

𝛾0
.

The velocity and microrotation vectors after solving the Eq. (19) and Eq. (21)
are

𝑢 = 𝑐1𝑒
−𝜂𝑦 + 𝑐2𝑒

𝜂𝑦 + 𝑐3𝑒
−𝜉 𝑦 + 𝑐4𝑒

𝜉 𝑦 − 𝑄

𝛼2 , (24)

𝜈 =
𝛼2 − 𝜂2

𝑙𝜂
(−𝑐1𝑒

−𝜂𝑦 + 𝑐2𝑒
𝜂𝑦) + 𝛼

2 − 𝜉2

𝑙𝜉
(−𝑐3𝑒

−𝜉 𝑦 + 𝑐4𝑒
𝜉 𝑦), (25)

where 𝜂 =

√︃
(𝛼2 + (2 − 𝑙) 𝑓 ) +

√︁
(𝛼2 + (2 − 𝑙) 𝑓 )2 − 8𝛼2 𝑓
√

2
,

𝜉 =

√︃
(𝛼2 + (2 − 𝑙) 𝑓 ) −

√︁
(𝛼2 + (2 − 𝑙) 𝑓 )2 − 8𝛼2 𝑓
√

2
, and 𝛼 =

√︂
𝑎

Da
.

In which 𝑐1, 𝑐2, 𝑐3, 𝑐4 can be evaluated using above boundary conditions.
The nondimensional form of balanced volume flow is given below

1 =
1
2

( ∫ 1

−1
𝑢 d𝑦

)
. (26)



280 Amit KUMAR, Krishna Prasad MADASU

Note that the pressure gradient𝑄 can be obtained using Eq. (26). The Eq. (26) also
represents the conservation of volume flux.

The dimensionless skin-friction coefficients are given by [40]

𝐶 𝑓 = ±

d𝑢
d𝑦

+ 𝑙𝜈

𝑄
|𝑦=∓1, (27)

𝑚 𝑓 = ±

𝑙

𝑓

d𝜈
d𝑦
𝑄

|𝑦=∓1, (28)

where the plus and minus signs correspond to the upper and lower plates, respec-
tively.

4. Results and discussion

The effect of different parameters like permeability ratio 𝐾 , anisotropic angle
𝜓, velocity slip parameters (Γ1and Γ2), microrotation slip parameters (𝜆1and 𝜆2),
micropolar parameter 𝑁 , and Darcy number 𝐷𝑎 on velocity profile and microrota-
tion are presented in this part.

Figs. 2 and 3 show the effect of permeability ratio and orientation angle on fluid
velocity. As Da < 1, (i.e., fixed 𝐾1) and 𝜓 = 0 then with an increase in permeability
ratio𝐾 , permeability along the flow direction decreases, causing velocity decreases,
as shown in Fig. 2. The velocity achieves maximum at the channel’s centerline and
slows down near the plates due to the presence of viscous term but does not
reach zero due to the slip effect of plates. For 𝐾 < 1(i.e., 𝐾1 < 𝐾2), the velocity
decreases as the inclination angle (𝜓) increases because the permeability along the

Fig. 2. Impact of permeability ratio on velocity when
Da = 0.01, 𝑁 = 𝑓 = 1, 𝜓 = 0, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10
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Fig. 3. Impact of anisotropic angle on velocity when
Da = 0.01, 𝑁 = 𝑓 = 1, 𝐾 = 0.25, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10

flow direction decreases, as shown in Fig. 3. At 𝜓 = 0, the principal axis with low
permeability is parallel to the 𝑦−axis, causing velocity to achieve maximum and
minimum at 𝜓 =

𝜋

2
, the same behaviour observed by others [6, 7, 39]. The opposite

behaviour is seen, when 𝐾 > 1, i.e., velocity is maximum at 𝜓 =
𝜋

2
and minimum

at 𝜓 = 0 [6, 7, 39]. For flow, the required pressure gradient is obtained using Eq.
(26), this equation also represents the balanced volume flow throughout the channel
[7]. Most of the available studies showed that flow in an isotropic porous medium
is due to some constant pressure gradient in every case of permeability. First time,
this concept is used by Karmakar and Raja Shekhar [7]. If we use balanced volume
case then, it helps to understand more about pressure and permeability relation.
Table 1 and Table 2 mention the difference in 𝑉total for different permeability ratios
and anisotropic angles for fixed 𝑄 = −3,−5,−7 and the assumption of constant
𝑉total of the present problem.

Table 1. Comparison of 𝑉total of the present problem with fixed 𝑄
for different permeability ratios

Permeability ratio 𝐾 = 0.1 𝐾 = 1 𝐾 = 10
𝑉total (of present study) 1.99999 2.0 2.0
𝑉total for (fixed 𝑄 = −3) 0.48574 0.058006 0.00597
𝑉total for (fixed 𝑄 = −5) 0.80956 0.09667 0.00995
𝑉total for (fixed 𝑄 = −7) 1.13339 0.13534 0.01393

We consider the Γ1 = Γ2 and 𝜆1 = 𝜆2 to study the velocity slip and spin slip
parameter’s influence on velocity profile, respectively. The velocity slip parameters
Γ1 and Γ2 enhanced the flow near plates (see Fig. 4). It is observed that for
Γ1 = Γ2 = 0.01, velocity is maximum at the lower and upper plates, and as
Γ1 → ∞, Γ2 → ∞, i.e., no-slip condition, velocity at plates is least. However, this
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Table 2. Comparison of 𝑉total of the present problem with fixed 𝑄
for different anisotropic angles

Anisotropic angle 𝜓 = 0 𝜓 =
𝜋

4
𝜓 =

𝜋

2
𝑉total (of present study) 1.99999 2.0 1.99999
𝑉total for (fixed 𝑄 = −3) 0.21612 0.09130 0.058003
𝑉total for (fixed 𝑄 = −5) 0.36020 0.15217 0.09667
𝑉total for (fixed 𝑄 = −7) 0.50428 0.21305 0.13534

Fig. 4. Impact of velocity slip on velocity when
Da = 0.01, 𝑁 = 1, 𝑓 = 1, 𝐾 = 0.25, 𝜆1 = 𝜆2 = 10, 𝜓 =

𝜋

4

Fig. 5. Impact of spin slip on velocity when
Da = 0.01, 𝑁 = 1, 𝑓 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 10
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happens near the plates only; in the channel’s centerline, the flow is at its maximum
for the no-slip condition. It is depicted from Fig. 5, that a very small enhancement
in velocity happens due to an increase in spin slip parameters 𝜆1 and 𝜆2.

The velocity decreases as micropolar parameter 𝑁 increases (see Fig. 6).
When 𝑁 =

𝜅

𝜇
= 0, then it represent the Newtonian case. For the present problem,

when 𝑁 = 0.0001, it behaves like the Newtonian case. Fig. 7 discloses the effect
of Darcy number on fluid’s velocity, and Figs. 8 and 9 disclose the influence of
Darcy number on pressure gradient varying in the 𝑦−direction with slip and no-slip
case, respectively. As the Darcy number increases, the permeability along the flow
direction increases. Hence, velocity increases and pressure along the 𝑦−direction

Fig. 6. Impact of micropolar parameter on velocity when
Da = 0.01, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10, 𝑓 = 1

Fig. 7. Impact of Darcy number on velocity when
𝑓 = 1, 𝑁 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10
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Fig. 8. Impact of Darcy number on vertical pressure gradient when
𝑁 = 1, 𝑓 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10

Fig. 9. Impact of Darcy number on vertical pressure gradient when
𝑁 = 1, 𝑓 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 1000

decreases. For Da = 0.1, it is very close to parabolic, it represent clear flow of
micropolar fluid. It is found that, when Da < 0.1, then flow increases with increase
in permeability.

The impact of permeability ratio 𝐾 and orientation angle 𝜓, micropolar param-
eter 𝑁 , Darcy number Da, velocity slip parameters (Γ1and Γ2), and microrotation
slip parameters (𝜆1and 𝜆2) on microrotation are shown in Figs. 10–15, respectively.

The microrotation profile decreases with an increase in the permeability ratio
and the anisotropic angle. This is due to the permeability along the flow decreases
with an increase in the permeability ratio and anisotropic angle. The microrotation
increases as permeability increases with the rise in Darcy number along the flow
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Fig. 10. Impact of permeability ratio on microrotation when
Da = 0.001, 𝜓 = 0, 𝑁 = 𝑓 = 1, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 0.5

Fig. 11. Impact of anisotropic angle on microrotation when
Da = 0.001, 𝐾 = 0.25, 𝑁 = 𝑓 = 1, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 0.5

Fig. 12. Impact of micropolar parameter on microrotation when
Da = 0.001, 𝑓 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 0.5
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Fig. 13. Impact of Darcy number on microrotation when
𝑁 = 𝑓 = 1, 𝐾 = 0.25, 𝜓 =

𝜋

4
, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 0.5

Fig. 14. Impact of velocity slip on microrotation vector when
Da = 0.001, 𝐾 = 0.25, 𝑁 = 𝑓 = 1, 𝜓 =

𝜋

4
, 𝜆1 = 𝜆2 = 0.5

Fig. 15. Impact of spin slip on microrotation vector when
Da = 0.001, 𝐾 = 0.25, 𝜓 =

𝜋

4
, 𝑁 = 𝑓 = 1, Γ1 = Γ2 = 0.5
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direction. The additional viscosity (𝜅) effects the characteristics of micropolar fluid
[26]. The micropolarity parameter (𝑁) increases, which means that (𝜅) increases
because 𝜇 is fixed, causing a microrotation profile decrease. With an increase in
the velocity slip parameter, microrotation increases but decreases with an increase
in the spin slip parameter.

Figs. 16 and 17 show the effect of permeability ratio and anisotropic angle on
skin friction of stress with respect to Darcy’s number, respectively. Skin friction in
case of Newtonian fluid (𝑁 = 0, 𝑓 = 0) is greater than micropolar fluid. As the
permeability ratio increases, it causes velocity decreases (as explain above); hence,
the skin friction decreases. The same behaviour have also observed by Karmakar
[39]. And Figs. 18 and 19 represent the skin friction of couple stress on an upper
plate with respect to Darcy’s number. It also shows that skin friction increases with
an increase in flow.

Fig. 16. Impact of permeability ratio on skin friction of stress for
Newtonian fluid (𝑁 = 0, 𝑓 = 0) and micropolar fluid (𝑁 = 1, 𝑓 = 2)

on upper plate when 𝜓 = 0, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10

Fig. 17. Impact of anisotropic angle on skin friction of stress for
Newtonian fluid (𝑁 = 0, 𝑓 = 0) and micropolar fluid (𝑁 = 1, 𝑓 = 2)

on upper plate when 𝐾 = 0.25, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10
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Fig. 18. Impact of permeability ratio on skin friction of couple stress
on upper plate when 𝜓 = 0, 𝑁 = 1, 𝑓 = 2, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10

Fig. 19. Impact of anisotropic angle on skin friction of couple stress
on upper plate when 𝐾 = 0.25, 𝑁 = 1, 𝑓 = 2, Γ1 = Γ2 = 𝜆1 = 𝜆2 = 10

4.1. Limiting cases

When Γ1, Γ2 → ∞ and 𝜆1, 𝜆2 → ∞, then it is a case of no-slip and no-spin
slip, and when 𝑁 = 0, then the micropolar fluid reduces to a classical Newtonian
fluid. Then, velocity vector Eq. (24) reduces into

𝑢 = 𝑐1𝑒
−𝜂𝑦 + 𝑐2𝑒

𝜂𝑦 − 𝑄

𝛼2 , where 𝜂 =
√︁
𝛼2. (29)

For this case, the effect of permeability ratio and anisotropic angle on fluid velocity
are presented in Figs. 20 and 21. We found that our limiting case of Newtonian fluid
agrees well with the result of Degan et al. [6] and Karmakar and Raja Shekhar’s
work [7].
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Fig. 20. Permeability ratio’s influence on velocity when
Da = 0.004, 𝑁 = 0, 𝜓 = 0

Fig. 21. Anisotropic angle’s influence on velocity when
Da = 0.01, 𝑁 = 0, 𝐾 = 0.25

If Da → ∞, Γ1, Γ2 → ∞, and 𝜆1, 𝜆2 → ∞ then, the current problem will
represent the plane-Poiseuille flow of micropolar fluid with the no-slip boundary
condition. And Eq. (19) and (21) become

𝜕2𝑢∞
𝜕𝑦2 + 𝑙 𝜕𝜈

𝜕𝑦
−𝑄 = 0, (30)

𝜕2𝜈∞
𝜕𝑦2 − 𝑓

𝜕𝑢∞
𝜕𝑦

− 2 𝑓 𝜈∞ = 0, (31)

with the no-slip boundary conditions are

𝑢∞ = 0, 𝜈∞ = 0, at 𝑦 = −1, (32)

and 𝑢∞ = 0, 𝜈∞ = 0, at 𝑦 = 1. (33)
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Solution of the above equations using the boundary conditions Eq. (32) and
Eq. (33) are

𝑢∞ = 𝑐1𝑒
−𝜁 𝑦 + 𝑐2𝑒

𝜁 𝑦 + 𝑐3𝑦 + 𝑐4 +
𝑄𝑦2 𝑓

𝜁2 , (34)

𝜈∞ =
𝜁

𝑙
(𝑐1𝑒

−𝜁 𝑦 − 𝑐2𝑒
𝜁 𝑦) − 𝑐3 −

𝑄𝑦 𝑓

𝜁2 , (35)

where

𝑐1 = −𝑄 𝑓 𝑙𝑒
𝜁

𝜁1
,

𝑐2 = −𝑄 𝑓 𝑙𝑒
𝜁

𝜁1
,

𝑐3 = 0,

𝑐4 = −
𝑄 𝑓

[
(𝜁 − 𝑙)𝑒2𝜁 − (𝜁 + 𝑙)

]
𝜁1

.

where 𝜁 =
√︁
(2 − 𝑙) 𝑓 , 𝜁1 = 𝜁3

(
𝑒2𝜁 − 1

)
.

When we put 𝑙 = 0 in Eq. (30), then it represents the velocity profile of plane-
Poiseuille flow of Newtonian fluid. Using Eq. (26), we find the value of 𝑄 for this
case and that is 𝑄 ≃ −3. Then, the expression of velocity profile is

𝑢∞ =
3
2
(1 − 𝑦2), (36)

Fig. 22 shows that the present work is consistent with Degan et al. [6] and Kar-
makar’s [7] works.

Fig. 22. Velocity profile for Da → ∞, Γ1, Γ2 → ∞, 𝜆1, 𝜆2 → ∞, 𝑁 = 0
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5. Conclusions

The flow of micropolar fluid through an anisotropic porous medium between
two impermeable plates and at both plates slip boundary conditions are consid-
ered for both velocity and microrotation. The impact of anisotropic permeability,
micropolar parameter, slip, and spin parameters on velocity and microrotation are
presented through the graphs. The main findings are listed below:

• The velocity and microrotation profiles decrease as the permeability ratio
and orientation angle increase.

• The velocity slip parameters impact the velocity vector near the plates only,
and the spin slip shows minor enhancement on the velocity vector but sub-
stantially impacts the microrotation vector.

• Velocity and microrotation profile increase as Darcy’s number increases.
• The increasing micropolarity parameter causes a decrease in velocity and

microrotation profiles.
• Skin friction increases as permeability along the flow direction increases

with a decrease in the permeability ratio and the anisotropic angle.
• If we consider constant volume flow throughout any porous channel, then

anisotropic nature of porous medium provide greater insight about flow
than an isotropic porous medium. The pressure gradient required for flow is
lowered due to the presence of slip.

• The possible applications of the present problem are in the field of the
extraction of oil, blood flow through porous layer arteries, fluid flow through
porous rocks, tree trunks, manmade porous lattice, etc.

• This anisotropic structure with slip condition at walls can be used to study
the magnetic effect on immiscible fluid, which is widely used in porous
layered arteries, in the extraction of crude oil, in the purification process,
and in other engineering process.
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