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Abstract

In this paper, we investigate non-classical reinsurance models. Two kinds of
such models are presented. One is based on dependent binomial distributions
and the second on fuzzy numbers. First, we study dependent random variables
representing claims using copulas. We investigate the number of claims the
reinsurer covers and the total value of covered claims. We present the influence
of the degree of dependence and different copulas on the number and the value
of the claims covered by the reinsurer. Second, we analyze the case in which
the main parameter of the model, the probability that the reinsurer covers the
claim, is uncertain. We treat such a parameter as a fuzzy number in this case and
combine randomness and fuzziness. We also study the case when the parameter
of a copula which describes the degree of dependence is uncertain.
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1 Introduction

The paper is devoted to selected, non-classical, mathematical reinsurer models.
We present two kinds of such models. The first is based on generalized binomial
distributions (see, Heilpern 2020) and the second is based on fuzzy numbers. First,
we investigate the dependent random variables representing claims. In classical
actuarial and financial models, random variables are generally independent. This
assumption is very convenient from a mathematical point of view. However, expecting
that claims are independent is not actually easy. There occur common external
factors: economic, political, and climatic, such as crises, catastrophic events, inflation,
recessions, pandemics, or wars. These can affect the variables’ dependency.
The dependent structure is characterized by copulas. The influence of the degree of
dependence and different copulas on the number and value of claims covered by the
reinsurer is presented using simple examples. For this purpose, we use the Clayton,
Gumbel, and Spearman copulas. When claims are identically distributed and the
copula is exchangeable, the number of claims covered by the reinsurer has a dependent
binomial distribution (Heilpern 2020). For large dependencies, it differs significantly
from the classical binomial distribution. These investigations enable a better analysis
of reinsurance problems, for instance, estimating the total value of claims covered by
the reinsurer.
Next, we study the case when the probability that the reinsurer covers the claim
is an uncertain parameter. In this situation, we treat such a parameter as a fuzzy
number (see Dubois and Prade 1980, Heilpern 1992). We obtain the combination of
randomness and fuzziness in this case. In the classical approach, this parameter is
estimated based on a random and representative sample. However, these conditions
are not always fully met, and we have some doubts as to the accuracy of the value of
the obtained parameter. For instance, we can consider the value of this parameter as
an uncertain value, a fuzzy number “about p” in this case (see Heilpern 2018; Heilpern
2020, Dębicka et al. 2022).
The paper is structured as follows. Section 2 presents the basic assumptions regarding
our models. In section 3 we assume that claims are identically distributed and that
the copula describing the dependent structure of the claims is exchangeable. We also
study the distribution of the number of claims covered by the reinsurer. The total
value of claims covered by the reinsurer is investigated in section 4. Here we analyze
a case with a random number of claims. Section 5 discusses the basic definitions and
notions connected with fuzzy sets. In section 6, we investigate the number of claims
covered by the reinsurer when the probability that the reinsurer covers the claim
is imprecise and the claims are dependent. We also study the case of imprecision
probabilities and when the parameter of the copula is imprecise.
We adopted and developed methods presented in Heilpern’s 2020 paper. He used this
model in issues related to credits.
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2 Basic assumptions
We will investigate the following excess-of-loss reinsurer contract (see, Daykin 1994;
Kolev, Paiva 2005). We consider a portfolio consisting of n claims X1, . . . , Xn, and
retention d. First, we will study the number of claims covered by the reinsurer, i.e.,
the random variable:

K =
n∑
j=1

Ij

where for every j = 1, . . . , n, Ij is the Bernoulli random variable taking the value 1 if
the reinsurer covers the claim, and the value 0 otherwise. In other words

Ij =
{

0 Xj ≤ d
1 Xj > d

.

This is the status of the claims.
In classical actuarial models, there is an assumption regarding the independence of
the occurring random variables. However, in practice, common external factors –
economic, climatic, and political – often influence the investigated risks. These may
include fires, floods, tornadoes, earthquakes, economic or political crises, inflation, or
wars. In this situation, we assume that the random variables X1, . . . , Xn describing
the claims may be dependent. We will investigate the homogeneous claims only.
Therefore, we assume that the random variables Xi have the same continuous
distribution. The random variables Ij are equally distributed, too.
The statuses I1, . . . , In are a finite sequence of Bernoulli random variables. They
represent the results of trials. To denote the probability of “success” when the
reinsurer covers the claim Xj in the j th trial Ij we use the symbol p, while for
the probability of “defeat” we use q = 1− p, i.e.

p = Pr(I = 1).

The probability mass function (p.m.f.) (see Heilpern 2020)

fI (i1, . . . , in) = Pr (I1 = i1, . . . , In = in) ,

where ij ∈ {0, 1} and I = (I1, . . . , In) and the cumulative distribution function (c.d.f.)

Fl (i1, . . . , in) = Pr (I1 ≤ i1, . . . , In ≤ in)

describe the joint distribution of the Bernoulli variables Ij . We will be interested in
the point of jump of c.d.f. only, i.e., ij ∈ {0, 1}. The marginal c.d.f. is equal to

FIj (ij) = Pr (Ij ≤ ij) = vj = Ij =
{

1 ij = 1
q ij > 0

. (1)
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The dependent structure of the random vector X = (X1, . . . , Xn) can be described
by copula functions. The copula C is the n-dimension c.d.f. on [0, 1]n with uniform
marginal distribution (Nelsen 1999). This is the link between the joint c.d.f. FX and
the marginal c.d.f. FXi and copula C to satisfy the following relation:

FX (x1, . . . , xn) = CX (FX1 (x1) , . . . , FXn (xn)) .

We assume that the random variables X1, . . . , Xn are continuous. The copula CX
then determines univocally the values of the joint c.d.f. Fx. However, the copula CI
determines univocally the values of the joint c.d.f. FI in the points of jump ij only.
The marginal c.d.f. FXi satisfies the condition:

FXj (d) = Pr (Xj ≤ d) = Pr (Ij = 0) = q.

Furthermore, the values of copulas CI and CX are equal at the point of the jump, i.e.

CI (v1, . . . , vn) = CX (v1, . . . , vn) ,

where vj is described by (1). We have

CI (v1, . . . , vn) = Pr (I1 ≤ i1, . . . , In ≤ in) = Pr (X1 ≤ r1, . . . , Xn ≤ rn) ,

where
rj =

{
∞ ij = 1
d ij = 0

and
Pr (X1 ≤ r1, . . . , Xn ≤ rn) = CX (v1, . . . , vn) ,

because
FXj (rj) =

{
q rj = d

1 rj =∞ .

We can interpret every point of jump (i1, . . . , in) of c.d.f. FI as the subset
A ⊂ {1, . . . , n}, such that ij ∈ A iff ij = 1, and we will use the notation
1A = (i1, . . . , in). The number of elements of subset A, denoted by |A|, is equal to
the number of “1” at the point of jump (i1, . . . , in).
Let us assume now that the copula CX is exchangeable, i.e. we obtain

CX (u1, . . . , un) = CX
(
uπ(1), . . . , uπ(n)

)
for any permutation π of set {1, . . . , n}. So, the copula CI is also exchangeable. Then,
we obtain

FI (1A) = FI (1B) = Fk,n,

when |A| = |B| = k. We have (see, Heilpern 2020)

Fk,n = Pr (Ik+1 = 0, . . . , In = 0) = CI(1, . . . , 1︸ ︷︷ ︸
k

, q, . . . , q︸ ︷︷ ︸
n−k

).
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The value of p.m.f. is equal to (see Cossette et. al. 2002; Heilpern 2020)

fk,n = fI (1A) = Pr (I1 = 1, . . . , Ik = 1, Ik+1 = 0, . . . , In = 0) =
k∑
j=0

(−1)j
(
k

j

)
Fk−j,n

(2)
This results from the basic property of the multidimensional cumulative distribution
function (see, Cramer 1999 (8.3.3)). The formula (2) allows us to calculate fk,n
knowing the copula CI.
The formula (2) will allow us to determine the distribution of random variable K,
the number of claims covered by the reinsurer. In this case the distribution of K is
calculated using the following formula

Pr(K = k) =
∑
|A|=k

fI (1A) =
(
n

k

)
fk,n =

k∑
j=0

(−1)j n!
(n− k)!j!(k − j)!Fk−j,n. (3)

We can see that the distribution of K depends on the c.d.f. Fk,n. But if we know the
p.m.f. fk,n, we can determine this distribution in a simple way. We will frequently
use formula (3) later in this work. It allows us to perform specific calculations in
the examples presented. We may say that the random variable K has a dependent
binomial distribution and denote it as K ∼ DB (n, p, CI). The expected value of K
takes the form (see Heilpern 2020)

E(K) =
n∑
j=1

E (Ij) = np.

The covariance of the random variables Ii, and Ij are equal

Cov (Ii, Ij) = E (IiIj)− E (Ii)E (Ij) = f2,2 − (1− q)2 = CI(q, q)− q2,

because f2,2 = F2,2− 2F1,2 +F0,2 = CI(1, 1)− 2CI(1, q) +CI(q, q) = 1− 2q+CI(q, q).
Thus, the variance of the number of claims covered by the reinsurer is equal

V (K) = V

 n∑
j=1

Ij

 =
n∑
j=1

V (Ij) + 2
n−1∑
i=1

n∑
j=i+1

Cov (IiIj) =

= npq +
(
n2 − n

) (
CI(q, q)− q2) , (4)

because V (Ij) = pq. This variance depends on the probability p that the reinsurer
covers the claim, the copula CI, and portfolio size n.
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3 Selected cases
When the random variables X1, . . . , Xn are independent, then

CX (u1, . . . , un) = Π (u1, . . . , un) = u1 · . . . · un.

Therefore, in this case, the random variable K has the classical binomial distribution
and we get

Fk,n = qn−k, fk,n = pkqn−k,

Pr(K = k) =
(
n

k

)
pkqn−k, V (K) = npq, Cov (Ii, Ij) = 0.

The comonotonicity, strict positive dependence is done using the copula

CX (u1, . . . , un) = M (u1, . . . , un) = min (u1, . . . , un) .

In this case, we obtain

Fk,n =

 q k < n

1 k = n
, fk,n = Pr(K = k) =


q k = 0
0 0 < k < n

p k = n

, V (K) = n2pq.

The copula, which is the convex combination of independency and comonotonicity

(1− ρ)Π + ρM,

where 0 ≤ ρ ≤ 1, was introduced by Joe in (Joe 1997) as family B11. It is also
called the Spearman copula (Hürlimann 2004 a, b, Heilpern 2014). The parameter ρ
is the Spearman correlation coefficient (Hürlimann 2004 a, b). The random variables
I1, . . . , In are independent with the probability 1−ρ and I1 = . . . = In with probability
ρ in this case.
Therefore, we obtain

Fk,n = CX(1, . . . , 1︸ ︷︷ ︸
k

, q, . . . , q︸ ︷︷ ︸
n−k

) = (1− ρ)qn−k + ρq,

when k < n and Fn,n = 1 and

fk,n =


(1− ρ)qn + ρq k = 0
(1− ρ)pkqn−k 0 < k < n

(1− ρ)pn + ρp k = n

.

Therefore, we can derive the probability Pr(K = k) using (3). The variance of K is
equal

V (K) = npq(1 + ρ(n− 1)),
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because CX(q, q)− q2 = ρpq in this case.
The Archimedean copulas take a simple, quasi-additive form, so they are often used
in various applications. These copulas are induced by the generator ϕ, decreasing the
convex function satisfying conditions: ϕ(0) = ∞, ϕ(1) = 0. They are defined by the
following formula (Nelsen 1999):

C (u1, . . . , un) = ϕ−1 (ϕ (u1) + . . .+ ϕ (un)) .

The c.d.f. Fk,n are equal to

Fk,n = ϕ−1((n− k)ϕ(q))

in this case and so, this value depends on the generator ϕ and the probability q only.
The Archimedean copulas form families characterized by some parameters, which
reflect the degree of dependence. These are the relations between the values of
the parameters and the Kendal or Spearman correlation coefficient (Nelsen 1999).
Every Archimedean copula C for n > 2 reflects nonnegative dependence between the
variables Ij , i.e. it satisfies the following inequalities:

Π (u1, . . . , un) ≤ C (u1, . . . , un) ≤M (u1, . . . , un) ,

and every pair (Yi, Yj) are equally correlated.
We will use the Clayton copula, calculated by the formula (Nelsen 1999)

Ca (u1, . . . , un) =
(
u−a1 + . . .+ u−an − n+ 1

)−1/a
,

where parameter a > 0, and the generator takes the form

ϕ(u) = u−a − 1

Moreover, the c.d.f is equal to

Fk,n =
(
(n− k)

(
q−a − 1

)
+ 1
)−1/a

.

The limit value of parameter a = 0 corresponds to independence, and a =∞ implies
comonotonicity. Knowing the value of the parameter a, we can determine the value
of the Kendal correlation coefficient τ using the formula:

τ = a

a+ 2 .

Using (4) we obtain the variance of random variable K when the Clayton copula
describes the dependent structure:

V (K) = npq +
(
n2 − n

) ((
2q−a − 1

)−1/a − q2
)
. (5)
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The Gumbel copula done by formula

C (u1, . . . , un) = exp
(
−
(

(− ln u1)θ + . . .+ (− ln un)θ
)1/θ

)
,

where θ ≥ 1, is another Archimedean copula (Nelsen 1999). When θ = 1 we obtain
independence and for θ =∞ we have comonotonicity. The generator is equal

ϕ(u) = (− ln u)θ,

and the c.d.f. takes the form
Fk,n = q(n−k)1/θ

.

Kendal coefficient of correlation τ is equal to

τ = 1− 1
θ

and the variance takes the following form

V (K) = npq +
(
n2 − n

) (
q21/θ

− q2
)
.

Example 1. Now, we will analyze a portfolio of n = 50 claims. Let us assume
that the probability that the reinsurer covers the claim is equal to p = 0.3, and
the dependent structure of X1, . . . , Xn is described by the Clayton and Gumbel
copulas. The distribution of K for these copulas and different values of the Kendal
τ coefficient of correlation: 0, 0.2, 0.4, 0.6, 0.8, and 1 is presented in Figure 1. The
corresponding values of the parameter a describing the Clayton family take the values:
0 (independency), 0.5, 1.33, 3, 8, and ∞ (comonotonicity), and for Gumbel copulas:
1, 1.2, 1.67, 2.5, 5 and ∞.

We can see that an increase in the value of parameter a (growth in the degree of
dependence) affects the shape of the graph of the p.m.f. of the random variable K.
It changes from the classical unimodal distribution to a distribution focusing on the
two points 0 and 1 only through right-sided asymmetric U-shape distributions.
For independence, the distribution of the number of claims covered by the reinsurer is
symmetric and unimodally condensed around the expected value equal to E(K) = 15.
For the Clayton family and smaller dependencies, the graph of p.m.f. becomes more
expanded. Then, the mass of probability moves to the left side. The lack of covered
claims obtains the highest probability value, and the next number of covered claims
becomes less probable. When the Kendall τ is greater than 0.5 , the graphs become
U-shape. The extreme values (no covered claims or all claims are covered) are the
most probable in this case. The first event is more probable. For strict dependence,
we obtain a two-point distribution. However, this case occurs very rarely. In practice
we usually obtain small dependences.
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For the Gumbel family, when the Kendall τ is smaller than 0.5 the graphs of the
p.m.f. of random variable K have two local extremes, one near k = 0 and the second
for k = 50. But for the greater values of the Kendall τ we obtain a similar situation
as for the Clayton family. We can see, that the distribution of the random variable K,
the number of the covered claims, depends significantly on the choice of the copula.
Differences occur especially for small values of the degree of dependence, a case usually
occurring in practice.

Figure 1: Distribution of the random variable K for different degrees of dependence
Clayton and Gumbel copula
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The variance of the number of claims K covered by the reinsurer is equal to

V (K) = 10.5 + 2450
((

2 · 0.7−a − 1
)−1/a − 0.49

)
for Clayton’s family whereas, the following formula we obtain for Gumbel copulas

V (K) = 10.5 + 2450
(

0.721/θ
− 0.49

)
.

We use the formula (4) in this case. The values of this variance for the different values
of the degree of dependence are included in Table 1.
When the dependent structure of X1, . . . , Xn is described by the Spearman copula,
we face a more complicated situation.

Example 2. (continuation of Example 1) Let us assume that the dependent structure
of X1, . . . , Xn is described by the Spearman copula. Figure 2 includes the graphs of
the distribution of random variable K for the values of parameter ρ, i.e. Spearman’s
coefficient of correlation. We investigated the distribution of K when the dependent
structure is characterized by Clayton and Gumbel copulas for the Kendal coefficient
of correlation equal to 0.2, 0.4, 0.6, and 0.8. The relation between the Kendal τ and
Spearman ρ coefficients of correlation is done by the formula

τ = ρ(ρ+ 2)
3

for Spearman copula case (Nelsen 1999). Thus, the coefficient ρ is equal to 0.2649,
0.4832, 0.6733 and 0.8439 in this case.

The graphs of p.m.f. for random variable K consist of three fragments, the external
parts connected with Pr(K = 0),Pr(K = 50), and the middle unimodal part centered
around the expected values of the random variable K. This part plays a decreasing
role as the dependency increases. The variance of K is included in Table 1.

Table 1: The values of V (K)

τ 0 0,2 0,4 0,6 0,8 1
Clayton 10.50 77.22 157.81 259.29 388.42 525.00
Gumbel 10.50 107.66 236.85 340.28 436.41 525.00
Spearman 10.50 146.79 259.11 356.91 444,67 525.00

The variance of the random variableK grows significantly with increasing dependency
for these copulas. We can see that the variance for the Gumbel and Spearman families
is greater than for the Clayton family. In contrast, the variance for the Gumbel family
is comparable to the variance for Spearman copulas.
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Figure 2: Distribution of the random variable K for different degrees of dependence
– Spearman copula
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4 Random number of claims

4.1 Number of claims covered by the reinsurer
Now, we can treat the number of claims as the random variable N . Then, the number
of claims covered by the reinsurer is a random sum

K =
N∑
j=1

Ij

in this case and we obtain

Pr(K = k) =
∞∑
n=k

Pr(N = n) Pr(K = k | N = n) =
∞∑
n=k

Pr(N = n) Pr (Kn = k) ,

(6)
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where k = 0, 1, 2, . . . ,Kn = I1 + . . .+ In and K0 = 0.
When the random variables Ii are independent, then the random variables Kn, for
n ≥ 2, as the sum of the Bernoulli distributed random variables, have a binomial
distribution, i.e. Kn ∼ B(n, p). If the dependent structure of Ii is described by the
exchangeable copula C, then the probability P (Kn = k) is calculated by the formula
(3). The expected value of K is equal to E(K) = E(N)p.

Example 3. Let us assume that the number of claims is determined by the Poisson
distributed random variable N with the parameter λ = 50, the probability that the
reinsurer covers the claim is equal to p = 0.3, and the dependent structure is
described by the Clayton and Gumbel copulas. We investigate six cases: independence,
τ = 0.2, 0.4, 0.6, 0.8, and comonotonicity. The distributions of the random variable K,
the number of claims covered by the reinsurer, are presented in Figure 3 for different
values of the Kendal correlation coefficient τ . For τ ≥ 0.6 the values of the probabilities
Pr(T = 0) are included in Table 2. These values are much greater than those of other
probabilities and they are not shown on the chart. The expected value of random
variable K is equal to E(K) = 15.

For lower values of the correlation coefficient τ we obtain a situation similar to that
in Example 1. However, we get the local extrema for k = 50, the expected number
of claims, for the greater values of degrees of dependence, especially in the case of
Clayton copula.

Table 2: The probability Pr(K = 0)

τ Gumbel Clayton
0.6 0.183 0.219
0.8 0.459 0.433
1 0.700 0.700

Example 4. (continuation of Example 3) We assume that the dependent structure
is described by the Spearman copula. The distributions of the random variable K are
presented in Figure 4. We investigate six cases: independence, Spearman coefficient of
correlation ρ equal to 0.2649, 0.4832, 0.6733, 0.8439, and comonotonicity. The expected
value of K is equal to E(K) = 15. Table 3 contains the values of the probability
Pr(K = 0).

For a smaller dependence, close to independence, the graph is unimodal with the
maximum near the expected value of random variable K. For a greater dependence,
the maximum is achievable for k = 0. It increases with a rise in the degree of
dependence. The graphs also have two local extrema, one in the expected value of
random variable K and the second in the expected value of random number of claims
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Figure 3: Distribution of the random variable K for the random number of claims –
Clayton and Gumbel copulas
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N equal to 50. The value of the second local extreme increases as the degree of
dependence rises.

Table 3: The probability Pr(K = 0)

ρ Spearman
0.2 0.185
0.4 0.338
0.6 0.471
0.8 0.591
1 0.700

We can observe, that for smaller values of the degree of dependence, the distributions
of random variable K for the Gumbel copula are different than Clayton copula. But
for the greater value of the degree of dependence, we obtain a similar situation. The
graph of the distribution ofK, the number of the covered claims, for Spearman copula,
is significantly different from the Gumbel and Clayton cases. Also, the probability,
that no claims will be covered by the reinsurer is greater in this case. It seems that
the distribution of the random variable K significantly depends on the choice of the
copulas.
The values of the variance V (K) are included in the Table 4.

Table 4: The values of V (K)

τ 0 0,2 0,4 0,6 0,8 1
Clayton 15 133.57 245.97 351.51 449.60 534
Gumbel 15 83.08 165.60 268.87 400.64 534
Spearman 15 120 225 330 435 534

Similarly to Example 2, the variance V (K) grows significantly with the increasing
dependency for these copulas. We can see that the values of variances for the Clayton
families are the greatest and the variances for the Gumbel copulas are the smallest.
These values of the variances depend significantly on the choice of the copula.

4.2 Total value of claims
So far we have dealt with a number of policies (the number of successes) K. Now we
will study the total value of claims covered by the reinsurer. First, we assume that
the number of claims is fixed, equal to n.
Let Zj = max (Xj − d, 0), where j = 1, . . . , n, is the value of the j th claim covered
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Figure 4: Distribution of the random variable K for the random number of claims –
Spearman copula
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by the reinsurer. The c.d.f. of Zj is equal to

FZj (x) = FXj (x+ d)

for x ≥ 0 and the random variable Zj has the atom in 0 equals FXj (d). The expected
value of this random variable is equal to

E (Zj) =
∫ ∞
d

(
1− FXj (x)

)
dx.

The total value of the reinsured claims is the random variable

Tn =
n∑
j=1

IjZj ,

the main object of our interest. The c.d.f of the total value of covered claims is equal
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to

FTn(x) = Pr

 n∑
j=1

IjZj ≤ x

 =
n∑
k=0

Pr

 n∑
j=1

IjZj ≤ x | K = k

Pr(K = k) =

= Pr(K = 0) +
n∑
k=1

Pr (Sk ≤ x)
(
n

k

)
fk,n,

where

Sk =
k∑
j=1

Zj =
k∑
j=1

Xj − kd. (7)

When the random variables Zj are independent, then the c.d.f. of sum Sk is the k th
convolution:

FSk(x) = F ∗kZ (x).
The expected value of the total sum Tn of the values of reinsured claims is equal to
E (Tn) = npE (Zj).
Now we can explore the total value of covered claims T when the number of claims
is random. We have

T =
N∑
j=1

IjZj

in this case, where the random variable N represents the number of claims. The c.d.f.
of a random variable T takes the form

FT (x) = Pr

 N∑
j=1

IjZj ≤ x

 =
∞∑
n=0

Pr

 n∑
j=1

IjZj ≤ x

Pr(N = n) =

=
∞∑
n=0

FTn(x) Pr(N = n).

Example 5. Let us assume that the values of the claims Xi have exponential
distribution with the expected value E (Xi) = 3 and retention is equal to d = 3.6,
so q = 1 − exp

(
− 3.6

3
)

= 0, 6988. We also assume that the dependent structure of
X1, . . . , Xn is described by the Spearman copula and that the random number of claims
N has Poisson distribution with the parameter λ = 50. The reinsured claims Zi, of
course, have the same dependent structure. We obtain that the sums X1+. . .+Xk have
a gamma distribution Ga(k, 3) for the independent case. When the random variables
Xj are comonotonic, then these sums have exponential distribution with the expected
value 3k. Figure 5 included the graphs of p.m.f. for the global sum T for different
values of the parameters ρ of the Spearman family without values of the probabilities
Pr(T = 0). They are presented in Table 4. The expected value E(T ) = 13.6080,
because E (Zj) = 0.9036.
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The graph of the distribution of random variable T , the total value of covered claims,
is increasing for T = 0 and decreasing in other cases for each degree of dependence. As
the degree of dependence increases, the graph becomes more flattened and stretched.
The values of probability that the total value of claims covered by the reinsurer is
equal to zero, Pr(T = 0) are greater than 0.79 . These values are much bigger than
those of other probabilities.

Figure 5: Distribution of the total value of the covered claims T for different degrees
of dependence – random number of claims
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Table 5: The probability Pr(K = 0)

ρ Spearman

0 0.790
0.2 0.810
0.4 0.832
0.6 0.855
0.8 0.881
1 0.909

5 Fuzziness
Now we will investigate a case when the probability that the reinsurer covers the claim
p is imprecisely determined. For instance, we obtain information that it is equal to
“about 0.3”. For this purpose, we use fuzzy sets.
First, we should recall some definitions and notions connected with fuzzy sets (see e.g.
Zadeh 1965; Dubois, Prade 1980). Fuzzy set A, defined in the space Z is described
by its membership function µA : Z → [0, 1], a generalization of the characteristic
function of the crisp, nonfuzzy set. Every fuzzy set is univocally characterized by its
α-cuts, the crisp sets Aα = {z ∈ Z : µA(z) ≥ α}, where 0 < α ≤ 1. The cut A1 is the
core of A, and A0, the closure of set {z ∈ Z | µA(z) > 0}, is the support of fuzzy set
A.
A fuzzy number, the main concept used in our paper, is a fuzzy subset of the real
line R. Its every α-cut Aα is the compact interval [ALα, AUα ] (Dubois, Prade 1980).
The trapezoidal fuzzy number A = (a, b, c, d) has a linear membership function at the
intervals [a, b] and [c, d]. The interval [a, d] is the support of the fuzzy number while
[b, c], when the membership function takes the value one, is its core. The triangular
fuzzy number A = (a, b, d) has a one-element core, i.e. b = c. We can order fuzzy
numbers A = (a1, a2, a3) and B = (b1, b2, b3) as follows

A ≤ B ⇔ ai ≤ bi

for i = 1, 2, 3.
The image f(A) of a fuzzy subset of Z, where f : Z → R, has the following
membership function

µf(A)(x) = sup
f(z)=x

µA(z).

This is the so-called extension principle (Zadeh 1975). The extension principle allows
us to define the arithmetic operations * on fuzzy numbers. The membership function
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of the fuzzy number A ∗B is equal to

µA∗B(z) = sup
x∗y=z

{min {µA(x), µB(y)}} .

Therefore, we can observe that the borders of α-cuts of arithmetic operation A∗B are
defined by the borders of A and B, e.g. (A+B)Lα = ALα+BLα , (A+B)Uα = AUα +BUα
(Dubois, Prade 1980).
We can define the mean value of the fuzzy number A using the following formula, see
e.g. (Campos, Gonzalez 1989; Heilpern 1992)

MV (A) = 1
2

∫ 1

0

(
ALα +AUα

)
dα.

For trapezoidal fuzzy number A = (a, b, c, d), we obtain the following formulas

ALα = (b− a)α+ a, AUα = (c− d)α+ d, MV (A) = a+ b+ c+ d

4 .

We can define the spread of the fuzzy number in the following way

S(A) =
∫ 1

0

(
AUα −ALα

)
dα.

We interpret S(A) as the measure of imprecision of fuzzy number A. For
A = (a, b, c, d), we have S(A) = ((d− a) + (c− b))/2.

6 Imprecision parameters

6.1 Fuzzy probability
Let us now assume that the random variables Ii describing the status of claims may
be dependent. Therefore, the random variable K, the number of claims covered by
the insurer, has the dependent binomial distribution DB (n, p, CI). We will suppose
that we cannot make a valid estimation of the main parameter p, the probability
that the reinsurer covers the claim, and we only know the imprecision value of such a
parameter. We can treat such imprecision value as the fuzzy number P in this case.
This fuzzy number induces the fuzzy subset K on the family of dependent binomial
random variables. We can designate its membership function

µK(K) = µP (p),

whereK ∼ DB (n, p, CI), using the extension principle. The sample size n, the number
of claims in our case, is fixed. For instance, if we know only that the probability p
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is equal to “about p0”, then we can treat such information as the triangular fuzzy
number P = (p1, p0, p2). The fuzzy set K has the following α-cut:

Kα = {K ∼ DB (n, p, CI) : p ∈ Pα} .

We can also define the expected value E(K) and the variance V (K) of K using
the extension principle. These are fuzzy subsets of the real line. Let K1 and K2
be the dependent binomial random variables, such that E (K1) = m = np and
V (K2) = s = g(p), e.g. g(p) = np(1− p)(1 + ρ(n− 1)) for Spearman copula, then

µE(K)(m) = µK (K1) = µP

(m
n

)
,

µV (K)(s) = µK (K2) = sup
{p:g(p)=s}

µP (p).

Their α-cuts take the following form

E(K)α =
{
m : µE(K)(m) ≥ α

}
=
{
m : µP

(m
n

)
≥ α

}
= {m = np : p ∈ Pα} .

Similarly, we obtain
V (K)α = {s = g(p) : p ∈ Pα} .

Example 6. Now, we assume that we have n = 50 claims and the dependent structure
of X is described by some copula Cρ. We consider Clayton, Gumbel and Spearman
copulas. We obtain information that the probability that the claim is covered by the
reinsurer is equal to “about 0.3”. We can treat this as the triangular fuzzy number
P = (0.25, 0.3, 0.4). The value of the membership function of K at K ∼ DB (n, p, Cρ)
is equal to

µK(K) = µP (p) =


20p− 5 0.25 ≤ p ≤ 0.3
−10p+ 4 0.3 < p ≤ 0.4

0 otherwise
.

For instance, if K ∼ DB (n, 0.28, Cρ), then µK(K) = 0.6. The expected value of K is
a triangular fuzzy number (12.5, 15, 20). We can interpret E(K) as “about 15”. Its
mean value is equal to 15.625.

However, the variance is not a triangular fuzzy number. When the dependent
structure is described by Spearman copula its α-cuts are equal to

Vρ(K)α =
[(
−0.125α2 + 1.25α+ 9.375

)
(1 + 49ρ),

(
−0.5α2 − α+ 12

)
(1 + 49ρ)

]
for ρ ∈ [0, 1]. Because, the function g(p) = np(1 − p)(1 + ρ(n − 1)) is increasing on
[0.25, 0.4],

Pα =
[
pLα, p

U
α

]
= [0.05α+ 0.25, 0.4− 0.1α], npLα

(
1− pLα

)
=

= 50(0.05α+ 0.25)(0.75− 0.05α) = −0.125α2 + 1.25α+ 9.375
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and npUα
(
1− pUα

)
= −0.5α2 − α + 12. The graph of the membership functions of

variance Vρ(K) for values of Spearman coefficient of correlation ρ equal to 0, 0.2649,
0.4832, 0.6733, 0.8439, and 1, that correspond to values of Kendal coefficients τ equal
to 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively, are presented in Figure 6.

Figure 6: Graph of the membership functions of Vρ(K) for different values of
coefficient τ and Spearman copula
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The function g(p) representing variance is increasing on [0.25, 0.4] for Clayton and
Gumbel copulas, too. So, we obtain the α-cuts of the variance Vτ (K) in a similar
way to the Spearman copula. We can approximate the fuzzy variance Vτ (K) using
the triangular fuzzy numbers. Table 6 contains the variances Vτ (K) treated as the
triangular fuzzy numbers, for different values of Kendal coefficient of correlation τ
and for different copulas. We also present the mean values and the spreads of them.
We can see, that as the degree of dependence increases, and the variance rises, too.
The spread is getting bigger, so the imprecision of these fuzzy sets is increased. Only
in the case of the Clayton copula the imprecision is greatest when τ is equal to 0.8.
Similarly, we can determine the fuzzy probability Pr(K ∈ B), where B is a crisp
event. Let f(p) = Pr (Kp ∈ B), where Kp ∼ DB (n, p, CI), then

µPr(K ∈ B
)

(q) = sup
f(p)=q

µP (p),

Pr(K ∈ B)α = {Pr (Kp ∈ B) : Kp ∼ DB (n, p, CI) , p ∈ Pα} .

Example 7. (continuation of Example 6) Now, we compute the probability
that there are ten covered claims, i.e. Pr(K = 10). Let CI be Spearman
copula with parameter ρ,K ∼ DB(n, p, Cρ) and fρ(p) = Pr(K = 10). The function
fρ(p) =

(50
10
)
(1− ρ)p10(1− p)40, where ρ < 1, is decreasing on the interval [0.25, 0.4].

So, the α-cuts of such a fuzzy probability are equal to

Pr(K = 10)α = [fρ(0.4− 0.1α), fρ(0.05α+ 0.25)] .

The graph of the membership function of these fuzzy sets for τ = 0, 0.2, 0.4, 0.6, and
0.8 is presented in Figure 7.
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Table 6: The parameters of fuzzy variances Vτ (K) for different values of the coefficient
τ and different copulas Clayton copula

τ triangular fuzzy numbers mean spread
Clayton copula

0 (9.38, 10.5, 12) 10.646 1.375
0.2 (45.55, 58.24, 82.08) 61.179 18.561
0.4 (96.83, 123.71, 172.63) 129.640 38.642
0.6 (172.41, 215.86, 290.38) 224.598 60.484
0.8 (291.78, 351.13, 442.46) 361.116 78.006

Gumbel copula
0.2 (88.20, 96.21, 103.56) 100.820 8.361
0.4 (176.50, 193.54, 210.77) 174.743 18.485
0.6 (271.49, 299.76, 331.55) 302.344 32.036
0.8 (370.03, 411.51, 462.70) 413.938 48.949

Spearman copula
0.265 (131.06, 146.79, 167.76) 148.830 19.223
0.483 (231.35, 259.11, 296.12) 262.705 33.931
0.673 (318.67, 356.91, 407.91) 361.870 46.739
0.844 (397.04, 444.69, 508.21) 450.863 58.233
1 (468.75, 525, 600) 532.292 68.750

We can see, that as the degree of dependence increases, the mean value and the spread
of the fuzzy probability that there are ten covered claims, decreases. Therefore, the
imprecision of such fuzzy sets decreases, too. For monotonicity ρ = 1 we obtain crisp
probability P (K = 10) = 0.
If the dependent structure of X is characterized by Clayton copula then the function
fτ (p) = Pr (Kp = 10) is decreasing on [0, 25; 0, 4], too. We computed the values of
the functions fτ (p) using (3). The graphs of these functions for the different values
of Kendall coefficient τ are presented in Figure 8.
The graphs of the membership functions Pr(K = 10) for different values of degree of
dependence are presented in Figure 9. We see that the mean value of fuzzy numbers
Pr(K = 10) and their imprecision (spread) decreases, when the degree of dependence
increases, too. This case is different, thought. The mean values are greater in this
case as for Clayton copula, but the spreads are smaller. We have less imprecision here.
The shapes of the graph are different. Unlike in the case of the Spearman copula, the
fuzzy sets Pr(K = 10) are disjoint and approximately linear.
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Figure 7: Graph of membership functions Pr(K = 10) for different values of τ and
Spearman copula
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Figure 8: Graph of the functions fτ (p) for different values of τ and Clayton copula
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Figure 9: Graph of membership functions Pr(K = 10) for different values of τ and
Clayton copula
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6.2 Imprecision copula parameter
The parameter a of copula Ca, which determines the dependent structure of X is
defined by the Kendall coefficient τ by the relation a = l(τ). For Clayton copula, we
obtain l(τ) = 2τ

1−τ , for Gumbel copula we have l(τ) = 1
1−τ and for Spearman copula

l(τ) =
√

1 + 3τ − 1. However, in many cases, we cannot estimate this coefficient
exactly. In this situation, we only know the imprecision value of such a coefficient
and treat it as the fuzzy number T . Thus, the coefficient a is also imprecisely defined.
We can also consider it as fuzzy number A. Using the extension principle, we obtain
the following membership function of A

µA(a) = µT
(
l−1(a)

)
.

Let us consider a family of copulas indexes by parameter a, e.g. Clayton family. The
fuzzy number A induces the fuzzy subset C of such a family using the formula

µC (Ca) = µA(a).

Every copula Ca generates the random variable Ka with the dependence binomial
distribution DB (n, p, Ca). We obtain the fuzzy subset of such random variables KA

with the membership function

µKA (Ka) = µA(a).

The expected value of fuzzy random variable KA is a crisp number. The expected
value E (KA) = np because we have E (Ka) = np for every a, but its variance V (KA)
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is a fuzzy number. Its membership function takes the form

µV (KA)(s) = sup
{a:v(a)=s}

µA(a),

where (see (4))
v(a) = npq +

(
n2 − n

) (
Ca(q, q)− q2) .

In this case, we can define the fuzzy probability Pr (KA ∈ B), where B is a crisp
event. Let f(a) = Pr (Ka ∈ B), where Ka ∼ DB (n, p, Ca), then

µPr(KA∈B)(q) = sup
{a:f(a)=q}

µA(a)

and its α-cut is equal

Pr (KA ∈ B)α = {Pr (Ka ∈ B) : a ∈ Aα} .

Example 8. Let n = 50 and the probability that the claim is covered by the reinsurer
be equal to 0.3. We obtain information that the Kendall coefficient of correlation is
equal to “about 0.15”.

We can treat such information as the triangular fuzzy number T = (0.1, 0.15, 0.2).
Now, we assume that the dependent structure of X is described by Clayton copula
Ca. The fuzzy number A, the fuzzy subset of the parameters, has the following
membership function:

µA(a) = µT
(
l−1(a)

)
=


20a
a+2 − 2 2

9 ≤ a ≤
6

17
−20a
a+2 + 4 6

17 < a ≤ 0.5
0 otherwise

.

because l−1(a) = a
a+2 for Clayton copula. We can approximate it using the triangular

fuzzy number (0.222, 0.353, 0.5). The expected value of E (KA) = 15.
In this case, we have

v(a) = 10.5 + 2450
((

2 · 0.7−a − 1
)−1/a − 0.49

)
.

This function increases, and then

µV (KA)(s) = µA
(
v−1(s)

)
.

Let the dependent structure of X be described by Gumbel copula Cθ. Then
l−1(a) = 1− 1

a and

µA(a) =


18− 20

a 1 1
9 ≤ a ≤ 1 3

17

4 + 20
a 1 3

17 < a ≤ 1.2
0 otherwise

.
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The triangular fuzzy number (1.111, 1.176, 1.2) approximates the fuzzy number A.
The variance function is equal to

v(a) = 10.5 + 2450
(

0.721/a
− 0.49

)
in this case. It is an increasing function, too.
For Spearman copula we have l−1(ρ) = ρ(ρ+ 2)/3 and

µA(ρ) =


20
3 ρ(ρ+ 2)− 2

√
1.3− 1 ≤ ρ ≤

√
1.45− 1

− 20
3 ρ(ρ+ 2) + 4

√
1.45− 1 < ρ ≤

√
1.6− 1

0 otherwise
.

We can approximately treat it as a triangular fuzzy number (0.140, 0.213, 0.265). We
also obtain that

v(ρ) = 10.5(1 + 49ρ)

for Spearman copula. It is, of course, an increasing function. The graphs of the
membership function of V (KA) for these copulas are presented in Figure 10.

Figure 10: Graphs of membership function V (KA) for different copulas
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The shape of these graphs is almost linear and so we can approximate fuzzy variable
V (KA) using the triangular fuzzy number for these copulas. Then, we obtain
for Clayton copula triangular fuzzy number (43.376, 59.395, 77.217), for Spearman
copula (82.620, 115.540, 146.797), and (99.266, 147.800, 194.597) for Gumber copula.
The fuzzy variance V (KA), when the dependent structure is described by Gumbel
copula, is characterized by the greatest imprecision. Because, the spreads of such
fuzzy numbers are equal, respectively, to: 16.92, 32.09, 47.67. For Clayton copula,
we obtain the least imprecision. When we compare these fuzzy variances, we get the
same relations.
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Now, we derive the fuzzy probability Pr (KA = 10) when the dependent structure is
characterized by Clayton copula. The function f(a) = Pr (Ka = 10) is decreasing (see
Figure 10) on [2/9, 0.5]. We computed the values of the functions g(a) using (3). The
membership function of the fuzzy probability takes the following form

µPr( K=10)(q) =
{
µA
(
f−1(q)

)
f(0.5) ≤ q ≤ f

( 2
9
)

0 otherwise .

The graph of such a function is presented in Figure 12.
For Spearman copula, we obtain, that

f(ρ) =
(

50
10

)
(1− ρ)p10(1− p)40,

where ρ < 1. It is a decreasing function over the entire domain in this case. The
graph of the membership function of Pr (KA = 10) is presented in Figure 11.

Figure 11: Graph of the function f(a) for Clayton copula
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We can approximate these fuzzy numbers using the triangular fuzzy numbers
(0.061, 0.071, 0.085) for Clayton copula and (0.028, 0.031, 0.033) for Spearman copula.
The shapes of these graphs are almost linear. Therefore the fuzzy probability that
the claims will be covered is greater for Clayton copula. The imprecision is greater
in this case, too.

7 Conclusions
The paper is devoted to non-classical, mathematical reinsurance models. Firstly, we
allow for the dependence of random variables representing the claims. The dependent
structure is described by the copula. The paper examined a number of losses covered
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Figure 12: Graph of membership functions Pr (KA = 10) for Clayton and Spearman
copulas
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by the reinsurer, the random variable K. The Clayton, Gumbel, and Spearman copulas
were assumed to describe the dependent structure. Two cases were considered. The
first one is when there is a constant number of claims, and the second one is when the
number of claims is random and it is described by a random variable with a Poisson
distribution. The form of the distribution is mainly influenced by two factors: the
degree of dependence and the choice of the copula. When the number of claims is fixed,
the shape of the graph of the p.m.f. of this random variable changes as the degree of
dependence increases, from unimodal distribution, through a right-sided asymmetry
to a U-shape distribution. The distribution of the K variable is significantly different
for the Spearman’s copula. The probabilistic mass is concentrated at the ends of the
domain and the local extremum. However, for the Clayton and Gumbel copulas, we
obtain similar distributions, especially for higher degrees of dependence. When we
have a random number of claims, for the Clayton and Gumbel copulas, when the
degrees of dependence are small, we obtain a similar situation as in case of a constant
number of damages. However, for larger degrees of dependence, local extremes occur.
In case of the Spearman’s copula, we have a distribution of the K variable centered
at the beginning of the domain and two local extremes. For all the copulas, the
probability Pr(K = 0) increases as the degree of dependence increases. For large
dependencies, it reaches 0.7, the highest in case of the Spearman’s copula. The
probability that the reinsurer will not cover any loss then prevails.
A random variable T representing the total value of the covered loss was also examined
in case of a random number of claims. It was assumed that the claims have an
exponential distribution and the case was considered when the relationship structure
was described by the Spearman’s copula. In this situation, the distributions were more
regular than before, with extreme right-sided asymmetry increasing as the degree of
dependence increased. The probability that the value of covered damages will be
positive Pr(T > 0) decreases as the dependency inreases, up to a value less than 0.1.
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Later, we considered cases when some parameters in the model are imprecisely defined.
We examined a situation when the probability that the reinsurer will cover the claim
is imprecisely determined and the case of an imprecise copula parameter. This
parameter was treated as fuzzy triangular number. In both cases, we were interested in
the number of claims covered by the reinsurer K and the probability Pr(K = 10). The
dependency structure was described using three different copulas: Clayton, Gumbel,
and Spearman. Whenever the probability that the reinsurer will cover the claim is
imprecise, an increase in the degree of dependence causes a rise in the variance V (K),
the mean, and the spread, i.e. the imprecision. In case of the Spearman copula, the
variation is the largest, while for the Clayton copula the smallest. However, as the
degree of dependence increases, the probabilities Pr(K = 10) and spreads decrease.
In this case, the choice of a copula is important. The fuzzy probabilities for the
Spearman copula are clearly different from those obtained for the Clayton copula.
The appropriate choice of a copula is also important when the copula parameters are
imprecise. We obtain different variances V (KA), probabilities Pr(K = 10) and their
spreads.
The paper presents two approaches to the reinsurance model. The first one, based on
copulas, considers the case where claims may be dependent. However, in the second
one, imprecisely defined parameters are studied using fuzzy sets. Both methods
complement each other, they cannot be compared, they concern different issues.
However, they can be combined, as was done in the second part of the article where
we considered a combination of randomness and fuzziness.
In future research, we would like to consider more copulas, e.g. Frank, AMH, FGM.
Moreover, in case of fuzzy parameters, we want to examine the total value of the
covered claims and investigate cases when the parameter of the copula and the
probability that the reinsurer covers the claim are imprecise. Furthermore, we plan
to use the energy and entropy measures as the measure of imprecision.
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