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Geodesic path planning characteristics
of the reconfigurable 1-S robot workspaces
for hyperbolic, elliptical, and Euclidean geometries

Haydar SAHIN

The path-planning strategies are implemented by establishing the Riemann curvature tensor
and geodesic equations of the 1-S robot workspace. This paper’s originality lies in formulation of
the parametric 1-S robot workspace for path planning, which is based on the differential geometry
of the geodesic and Riemann curvature equations. The novel results in defining the path plan
with diffeomorphic and expandable trajectories with zero and negative sectional curvatures are
encouraging, as shown in the research article’s result sections. The constant negative, constant
positive, and zero sectional curvatures produce hyperbolic, elliptical, and Euclidean geometries.
The workspace equation, derived using Lie algebra, defines the parameters of u, 7, u3, and uy
to obtain the shortest distances in path planning. The geodesic equations determine the shortest
distances in the context of Riemann curvature tensor equations. These parameters from the
workspace equation (a1, ap, 61, r1) are used in the geodesic and Riemann curvature tensor
equations. The results show that one needs to choose the most convenient parameters of the
mechanism for path-planning capabilities. Both the topology of the mechanism, which is 1-S
herein and the parameters of the workspaces should be selected for the pre-defined trajectories
of the path planning, as shown in the results. The reconfigurable robots have many mechanism
topologies to transform.

Key words: Riemann curvature tensor, geodesic equations, robot workspace, path planning,
Dirac vector, Clifford algebra

1. Introduction

Differential geometry is a branch of mathematics that uses differentials to
define geometrical motions with infinitesimal distances. Based on the differential
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geometry of Riemann curvature and geodesic equations, this article defines and
solves a parametric 1-S robot workspace. The diffeomorphic, that is differentiable
spaces in C™ are preferred for their applications in engineering. The diffeomor-
phic mapping for the manifolds involves differentiability, inverse mapping, and
isomorphism [1]. Differential geometry definitions and theorems are modified
and justified for 1-S robot workspaces.

Differentiability is critical to obtain the tangential 7, M spaces of the mani-
folds for structuring the surfaces. The mapping between the Riemann curvature
tensor and the solutions of the geodesic equations is realized in this paper to
specify the solved paths with their Riemann curvature tensors. The 1-S robot
workspace requires the maneuverability of the generated path planning to pin-
point the actuators for joint motion. The Cartan-Hadamard theorem states that
negative sectional curvature results in expandable manifold properties as well as
diffeomorphisms in Euclidean space. Therefore, the Riemann curvature tensor
is pivotal for the Riemann manifold. Sectional curvature can be derived using
the Riemann curvature tensor. The Gauss curvature is a particular case of the
sectional curvature concerning the two-dimensional surface [2]. Gauss discov-
ered that the multiplication of the principal curvatures is intrinsic as a Gaussian
curvature for the 2-manifold in R [1]. The constant negative, positive, and zero
sectional curvatures correspond to the hyperbolic, ellipsoid, and Euclidean flat
geometries, respectively [1].

Lie groups, such as invertible square matrices, are smooth manifolds similar
to the Riemann manifolds. The Riemann manifold is defined by the metric g
and the differentiable manifold M by (M, g). Additionally, the Lie group is
defined with tangential conversion via the Lie bracket of the Lie algebra for the
exponential map. Meanwhile, the inner product of the Riemann metric as tangent
space applies to any other manifolds along with the Riemann manifolds [3].

The local resemblance in R" is capable of structuring the differential geome-
tries contending with the points of space in order to establish the manifolds for
various purposes. Spheres in S space are examples of differentiable manifolds
used in differential geometry literature to structure charts and atlases. Mapping
of the manifolds of interest is required concerning the variously configured robot
mechanisms and objects via charts and atlases. In the following sections, path
planning is performed using the Riemann Curvature Tensor (RCT) and geodesic
equations derived from the workspace equation for the 1-S robot [5]. The r; is the
length of the Rigid Body (RB). 1-S robot mechanism of Fig. 1 is used to derive
the spatial workspace Egs. (1) and (2) [5]:

fg_l i = [0 0 0 cos(ay)cos(ay) — cos(ap) sin(ap) sin(az)] , (1)
Ad(gl_/,l)fg_lj : (2)
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Figure 1: 1-S robot mechanism with the parameters a1, a3, 61, and ry

Definition 1 (see [6]). [The workspace for 1-S robot]. The Cartesian coordinate
components x, y, z are defined as f.(1,1), f,(2,1), f.(3,1) in Eq. (3) where ay,
a3, 01 and ry are the parameters of the Euclidean vector function. Herein, the
workspace, f, was defined using Lie algebra as in Eq. (4). The Riemann curvature
manifolds are defined using the workspace equation in x, y, and 7 coordinate to
create the surface for the path planning purpose.

The 1-S robot Riemannian manifolds were described using the f(x, y, z) coor-
dinates. The Riemannian structure can be defined using f(x, y, z) for Riemannian
sectional curvature. For path planning, it is convenient to define the manifold by
the Riemann curvature tensor. The workspace of Eq. (2) was developed using
Lie algebra [5]. Lie algebra, g, was developed using the adjoints for the revolute
joint via the spatial workspace. Eqgs. (1) and (2) are used to derive the spatial
workspace equations using Lie algebra [5]. The 1-S robot workspace equation
is derived using the Lie algebra of the g‘1 g (with the parameters «a, a, 61,
and ry) [5].

After derivation of the workspace equation, the article herein can define the
Riemann manifold parameters using it. These parameters are the manipulation
and definition of the Riemannian sectional curvatures and geodesic equations.
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Let f, fy, f;bex, y, z components of the cartesian coordinate of

f (L D) (uy, uz, uzua) = (@1, az, 01, r1),
fy(z’ 1)(”1,1/!2, l/l3l/l4) = (al, s, 91, rl)» (3)
f:(3, 1) (w1, uz, usug) = (a1, az, 61, 1),

for the workspaces of the 1-S robot, as shown in Eq. (3).

Section 3 can derive the geodesic and Riemann curvature equations using the
workspace Eq. (4). The selected two parameters, u, are for the Riemann sectional
curvature and geodesic equations which structure the path planning of the 1-S
robots.

r1sin(2a;) cos(az)?sin(6;)
2
f =1 ri(cos(2ay) cos(2az) — cos(2az) + cos(2a1) +3)sin(f;) |- D

+ ry sin(ay) cos(6;)

[8pt] — ricos(az)(cos(ai) 003(01) — sin(ay) sin(az) sin(6))

The chart of the Riemann manifold, g, is used as the rank of two tensors for
the tangent points of the defined surfaces from the 1-S robot workspaces. The
1-S robot workspace obtains the Riemann manifold for tangent points via (M, g)
of g that is positive definite, symmetric, and nondegenerate [6].

Theorem 1. [see [7], fundamental tensor of the workspace] The fundamental
covariant 2-tensor field (0,2) determines the workspace, being positive definite,
symmetric, and non-degenerate, along with the results for g from the 1-S robot
workspaces, where g is symmetric with g12 = g»1.

See the detailed proof of the Theorem 1 in [6]. This paper uses Einstein’s
summation convention [6]. The multiplication sign in the equation is defined for
the tensors and vectors as declared in Eq. (5). One can see the positive definiteness
of the g in Eq. (6), as stated in [6]:

D idf @ df, 5)
o 0
gij=8& (6_]” W) . (6)

2. Preliminaries and methodology

The Riemannian metric for g, defined as the inner product, is assigned to the
smooth manifold of the Riemannian manifold M. Within the neighborhood of
P, gp is the tangent space metric of 7, M. The symmetric (0,2)-tensor field of



GEODESIC PATH PLANNING CHARACTERISTICS OF THE RECONFIGURABLE 1-S ROBOT
WORKSPACES FOR HYPERBOLIC, ELLIPTICAL, AND EUCLIDEAN GEOMETRIES 781

the g;; structured smooth on the manifold for the tangent point P is the Riemann
metric with positive definite characteristics for all the tangent points of P. The
e1, e2 and e3 vectors on the surface are eliminated in Egs. (7) and (18) by using
the Clifford algebra of the CI (3,0, 1). When combined with the Lie algebra, the
Dirac vector of the Clifford algebra is used for vector manipulation in a variety of
contexts [8,9]. The equations in Egs. (8—(9) and Eq. (19) show such conversions
for the geodesic equations and Riemann curvature tensor:

ds* = g;;df'df’, (7)
ofs
Ye=e ja—fk . ®)

The g fundamental covariant tensor (0,2) in S for the Riemann manifold is
derived using the directional Dirac vectors from Eq. (8) as in Eq. (9) [4, 10]

gjk = (0.5) (yjvx +viv)) - 9)
Eq. (10) shows another way to represent the Christoffel tensor [4, 10]

Tl = g T - (10)

The nonlinear geodesic equations are represented with an indicial equation
Eq. (11) using the Christoffel tensor [4, 10]

2 rk i qrj
Prt s s
ot? Vot Ot

(11)

The Riemann curvature tensor equations represent the indicial notation of
Eq. (12) using the Christoffel tensors and differential [4, 10]. The sectional cur-
vature equations are derived by substituting the indices in the Riemann curvature
Eq. (12)

i i i _ympi _rmuyi
Ry = 0k, — oy, -0, =TT, (12)
The Riemann curvature tensor equations are converted into Gaussian curva-

tures with the indicial notation of equation in Eq. (13) after using the contravariant
fundamental tensor [4, 10].

R=R, g (13)
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The references are applied to validate and verify the calculations using the
generalized Riemann curvature tensor and geodesic equations [4, 10]. The sec-
tional curvatures can create Euclidean, Ellipsoid, or Hyperbolic trajectories, as
shown in Fig. 2. Additionally, the isotropic path trajectories can be generated
using the chosen sectional curvatures with geodesic solutions. Furthermore, the
geodesic solutions in path planning can generate the shortest spatial distances,
which is advantageous in optimization.

Path Planning Using Sectional Curvatures

Euclidean Ellipsoid Hyperbolic

Figure 2: The path planning strategies for 1-S robot workspace via sectional curvature
characteristics

3. Riemann curvature tensor and geodesics of the 1-S robot workspace

The derived equations using the formulations from the preliminaries section
present the workspace of the 1-S robot in this section.

3.1. Workspace as manifold with Dirac vector of the Clifford algebra

The non-Euclidean space of the 1-S robot mechanism obtains the workspaces
as a manifold for path planning in the Eq. (4) [5]. The x, y, and z coordinates
are determined, as in Eq. (14). The multivector of geometric algebra called
Clifford algebra integrates geometry with algebra, including the indicial notations
of the tensors. Tensor algebra and vector spaces are mathematically processed
and conducted using Clifford algebra. In a geometrical approach, the bivector,
trivector, and multivector of the Clifford algebra have the potential for the tensor
algebra. The scalar curvature is related to the Riemannian manifolds using the
Dirac operator of the Clifford algebra [11, 12]. The Dirac vector is structured via
the parameters u1, uy, u3 and u4. They can specify the affine structure without the
specific coordinate system requirement. The Dirac vectors are orthogonal vectors
for the specified surface structured via u1, uo, u3 and u4. The Riemann curvature
tensor and geodesic equations confine with the aid of the Dirac vectors in the
Clifford algebra of multi-vector algebra [10]
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0.005V3 sin(as) + 0.0025 sin(a;) cos(az)?
0.00125(cos(2a1) cos(2az) —cos(2a2) +cos(2a;)+ 3) fxE“l’“Z;
, _ =| fila, a2)|. (14)
—0.01 cos(ap) \/§cozs(a1) - Sln(al)ZSIH(QZ) fx(a1, a2)

The parameters 6 and r define u; and u;. On the other hand, the substituted
parameters are u3 = @y = % and ug = an = %, as in Eq. (15)

S%rl sin(6) L cos(61)
16 2

13r, sin(6;) fe(r1,61)
16 =|f(r1,01) |. (15)

N V3 cos(6;) _ sin(6;) f2(r1,01)

2 4
2

Parameters 0 and a5 are defined for #; and u;. On the other hand, the substituted

parameters are u3 = @; = g and us = r; = 0.01, as in Eq. (16)

0.0025V3 sin(a2)? sin(6;) + 0.01 sin(az) cos(6)

5 3cos(an)) . f2(61, @2)
0.0025 (5 + —) sin(6;) _ fy(91, az)) .16
cos(6) B V3 sin(;) sin(@l)) f2(61, @2)

—0.01 cos(a») ( 2 3

Similarly, parameters of | and a; are defined for u; and u,. On the other hand,
the substituted parameters are u3 = a; = % and uy = 64 = %, as in Eq. (17)

V3r sin(a,) N V3r; cos(az)?

2 8
. (z _ cos(2a/2)) fe(r1, @2)
272 = fe(r1,a2) |- (17)
8 Iz (”1, 0’2)
3  sin(ap)
—r1 cos(az) (4_1 i )

The trivector, bivector, vector, and scalar are some of the components of the
multivector Clifford algebra, with a rank of three, two, one, and zero, respectively.
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Clifford algebra’s Dirac vectors, also known as geometrical algebra, are derived
from the Riemann metric equation’s ds invariant displacement. The Riemann
metric’s g;; covariant tensor is a fundamental symmetric tensor with rank two.

The geodesic equations use the Killing vectors on the Riemann manifold
to solve for peculiar sectional curvatures [13]. The workspaces of the robot
mechanism define the task spaces in the nonflat and non-Euclidean geometry
therein. The deviation from parallel transport can be measured using the Riemann
curvature tensor [10]. The algebraic metric tensor, the multivector algebra of the
Clifford algebra, is utilized to derive the Riemann curvature tensor

Y2 =71 (é3(cos(al) cos(6) — sin(a;) sin(a) sin(6)) sin(az))
+ r1sin(6;) (é3 sin(ay) cos(az)z)

- sin(@l)(Z (é25in(2a2)) — 2(¢, cos(2a1) sin(2012)))

4
— r1 sin(67) (€1 sin(2a) cos(az) sin(az)) + r1 cos(61)(é1 cos(az)), (18)

+

r2sin(2a1)? cos(2a2) +4r7 cos(2a1)? cos(az)? sin(6,)?
+r% sin(2a)?
+8r% cos(a) sin(a;) cos(az)? sin(az) cos(6;) + sin(6;)
+ 4r% sin(a)? cos(az)? cos(61)?

g2 =0.25 . (19)

Parameter ; in Eq. (8) [10] can be analyzed first. The unitary e; vectors are
eliminated in the g;; equations as in Eq. (19), which exist in the Dirac vector
equation as in Eq. (19). Because g;; is the metric tensor of the Riemann manifold,
the vectors e; are no longer required. The algebraic tensor can use the C1 (3,0, 1)
matrix as the coordinate system to manipulate the inner products. The Dirac
vector of the Clifford algebra is defined as C1 (3,0, 1) [10], as shown in Eq. (6).

3.2. Geodesic differential equations for workspaces

The selected two parameters, from a, a3, 61, and r|, are among those in the
1-S workspace equations. The equations solve these two substituted parameters.
The u; and u, are the selected parameters to solve in the geodesic equations,
while the u3 and u4 are constant values substituted in the geodesic and workspace
equations. Upon establishing the Riemann manifolds via M and g, the geodesic
equations solve the workspace equations for the path planning with the sectional
curvatures determined.

The variable u, is defined as " o be solved using the Runge-Kutta (RK)
u

2
numerical algorithm. RK is used to solve nonlinear geodesic differential equa-
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tions. The various two parameters of the workspace are operated to analyze the
geodesic path planning. These parameters are shown in Table 1 with the selected
scenarios.

3.3. The Riemann curvature tensor of the workspace

The Riemann curvature tensor Eq. (12) is utilized to derive the sectional
curvature equation Eq. (13). The sectional curvatures of R1121, R1212, R1112,
and R1221, as solved for various scenarios in Table 1, are determined by the
Riemannian manifolds specified by the parameters.

The spatial surface of the Riemannian manifold is formed by the solutions of
the geodesic equations and the Riemann curvature tensor. As a result, the path
planning was constrained by the results of the diffeomorphic Riemann curvature
tensors chosen.

4. Results

The selected u; and u, parameters from the 1-S robot workspace are shown
in Table 1. The results of the 1-S robot workspace equations are functions of
the sines and cosines, as shown in equations (14) and (15). The diffeomorphic
characteristic of the sinusoidal functions for the mentioned equations makes
the results of the workspaces convenient for path planning. Additionally, the
covariant tensor field (0, 2) of g for defined (M, g) Riemann manifolds is smooth
topological manifolds [6] concerning the workspaces.

Table 1: Selected parameters for u with scenarios of 1-S robot workspace to solve in
geodesic differential equations for path planning

Selected Parameters as Scenarios
uy and up a, az ag, 1 ay, 0 sz, I az, 0 01,
u3 and uy r1, 01 01, az r, @z 01, a; ay, ay, ap

The topological manifold points of M satisfy Hausdorff, homeomorphic,
and second countability. Herein, these satisfied points are generated from the
workspace equations. These covariant tensor fields of (0, 2) with g are generated
from Dirac vectors, as shown in Eq. (18). The Clifford algebra CI (3, 0, 1) creates
the differentiable topological manifolds of the (M, g) Riemann manifolds. Herein,
the Dirac vectors of the Clifford algebra are generated from the workspace equa-
tion of the 1-S robot [5, 14, 15]. The u3 and u4 parameters are arranged to create
various path-planning strategies. The objective herein is to classify the manifolds
created by the selected parameters u; and u, using the workspace generated by
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the Lie algebra. This novel classification is closing the gap in the literature for
the 1-S robot workspace of the created paths via the Riemann manifolds with
geodesic equations.

Cartan Hadamard Theorem states the negative sectional curvature causes the
diffeomorphism in Euclidean space. This diffeomorphism can be seen in the
results section herein. Though various scenarios are tested in Table 1, only the
majority of scenarios in Table 2 are revealed in the results section due to space
limitations.

Table 2: Selected parameter values for u3 and u4 with scenarios of 1-S robot workspace to solve
in geodesic differential equations for path planning

Selected u3 and u4 parameter values
ri 01 01 @ ri @ 01 @] ] r @] @
0.01 | 0.0057 | n/6 by 0.01 | n/10 | /6 b n/3 1 001 | n/6 | n/4
001 | 0.00r | n/6 | n/4 | 0.01 | n/2.5 | n/6 | w/4 n/3 | /3
0.01 /2 n/3 | n/3 n/3 | n/3
0.01 /3
001 | x/6

The shortest distance on the defined surface is derived using the geodesic
differential equations of the variables’ initial conditions. The regional categories
of the 1-S robot workspace path trajectories classify negative and positive sec-
tional curvatures. The results, as shown in Table 2, are arranged according to
the regions 1, 2, 3, and 4 of the Riemann sectional curvatures. The methods for
isotropic geometry and symmetrical and nonsymmetrical geometries are defined
using the Riemann sectional curvatures in regions 1, 2, 3, and 4. The defined
regions are for the sectional curvature region shown in Tables 2 and 3.

Table 3: Selected regions for R1121, R1121, R1221, R1212, and R1112 with parameters of 1-S
robot workspace to solve in geodesic differential equations for path planning

REGIONS CONSTRAINT EQUATIONS OF THE SECTIONAL CURVATURES
Region one —100000 < R < -5

Region two -5 < R < 50000

Region three 50000 < R < 1000000

Region four The remaining: R > 100000 & R < —100000
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5. Discussions

In the literature, geodesic trajectory planning relied on generalized algorithms
derived from geodesic equations rather than in-depth analyses based on paramet-
ric workspace equations, as completed herein. The novelty of this paper in path
planning is that the geodesic and Riemann curvature tensor equation results are
analyzed concurrently and systematically using the parameters a1, a3, 61, and r{
of the derived 1-S robot workspace [5]. The parametric integration of the geodesic
and Riemann curvature tensors in analyses is also a novel approach for the 1-S
robot workspace with the parameters a1, a3, 81, and ry. This article adds to the
literature the value of parametric analyses of the path planning strategies using
the geodesic and Riemann curvature tensors with the derived workspace of the
1-S robots [5].

5.1. The parameters a; and «a;

Geodesic path planning is established by generating the 1-S robot workspace
parameters @] and @, which define the sinusoidal diffeomorphic surfaces. The
numerical solution for @; and «; is derived from the nonlinear geodesic differ-
ential equations associated with the 1-S robot workspace equations. For the 6,
value of zero, the paths remain in the vertical plane of the z — x axis as in Fig. 3a.
In Fig. 3b, the distinguished paths are generated by varying 6; on a small scale
in the direction of the y-axis. The nonlinear geodesic differential equations have
solutions for u; = @, up = ay, r; = 0.01, and 6; = 0.0057. The workspace
equation, substituted into Eq. (14), is one of the derived nonlinear geodesic dif-
ferential equations from the workspace equations of the 1-S robot [5]. Workspace
equations for 1-S robots show u, = @ equations varying from 0 to 6 radians and
u; = ay equations varying from 0 to —90 radians. In Fig. 3c, the solution of the

. .. . . T
nonlinear geodesic differential equations for 8; = r3 generates the shortest path
plan for the range of @1 = 0—6 radians.

The parametric variations of Eq. (19) for path planning are for a; and a».
The workspaces are for the various sectional curvatures, as shown in Fig. 4a.
The characteristic of the paths yields continuous circular geodesic paths. The
geodesic equation, with large areas, can generate the route in various spatial

circular directions, as shown in Fig. 4b for the 8, = —. The characteristic of the

path is unique compared to the rest of the surfaces’ manifold. The characteristic
of the trajectory, a spider-like shape, can be defined as spreading from one point
to the spatial geodesic paths circularly.
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Figure 3: The solution of the nonlinear geodesic differential equations for u; = a3,

u =a1,r; = 0.01
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Figure 4: The solution of the nonlinear geodesic differential equations for u; = a3,
up = ) as the path trajectories in x, y and z coordinates

5.2. The parameters 6, and o,

The results concern R1112, R1212, R1221, and R1121 of all sectional curva-
tures. They are composed of negative, zero, and positive values, as in Fig. Sa. The
negative sectional curvatures for R1212, values between —50000 and 5, cause the
diffusion of the path trajectories, as shown in Fig. 5b and 6a. This situation is
addressed by Gauss-Bonnett theorem [1]. The convergent sectional curvatures of
-5 to 50000 structure the path trajectories in certain directions, as seen in Fig. 5S¢
and 6b for the positive sectional curvature values of the Gauss-Bonnet theorem.
The remaining sectional curvature values are shown for the R1212 in Fig. 5d
and 6c¢.
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Figure 6: The 8, and the @, results r; = 0.01 and 6, = /3 for R1121

5.3. The parameters 6, and r,

The geodesic path characteristic, shown in Fig. 7a, is almost on a flat surface,
which is consistent with the sectional curvature results shown in Figs. 7b and 7¢
for @y = /3. The results are nearly flat for the geodesic path parameters 6; and
r1. The low sectional curvature values are similar to the manifold of almost flat
manifold surfaces. Because curvature is the reciprocal of radius, the curvature
for almost flat trajectory is very high. As the result, low curvature implies a large
radius of curvature. Furthermore, small sectional curvature values cause maneu-
verability with a large radius of curvature. This type of radius of curvature causes
low spatial maneuverability capability since the traversing for the generated track
is close to the flat road.

As shown in Fig. 7b and 7c, the sectional curvatures of R1212 and R1121
are in the range of 0.01-0. All the remaining sectional curvatures are zeros. The
non-zero values only for the R1212 and R1121 sectional curvatures in Figs. 7b
and 7c cause the rotational path trajectory shapes on almost flat surfaces, as
shown in Fig. 7a. Additionally, the values of these only non-zero curvatures are
small. Since these nonzero curvatures are only in the range of 1073, this results
in generating trajectories on flat surfaces, resembling Euclidean space.
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Figure 7: The solution of the nonlinear geodesic differential equations for the
workspaces of the u; = 6, up = ry, @1 = n/6 and @, = « for multiply sign. u; = 6,
u, =ry, a1 = n/6 and ap = n/4 for square sign. The solution of the @ = /3 and
ay = r/3 for legend of circle

5.4. The parameters a; and r|

The sectional curvatures of the R1121 and R1112 are so small that they are
close to zero, as illustrated in Figs. 9a, 9b. The sectional curvatures of the R1121
are close to zero values for the path trajectories in Fig. 9a. The result shows the
converging paths in Fig. 9. The curvatures are mostly either negative or close to
zero values towards specific directions.

The positive curvature of the R1221 is in the lateral direction, as seen in
Fig. 9c, which states the constant positive curvatures. R1212, as shown in Fig. 9e,
has the only positive curvature that varies in the vertical direction. Thus, it is
inevitable to generate the converging trajectory, as seen in Fig. 8, according to the
mentioned theorems. The characteristics of the nonlinear workspace equations
determine the trajectories’ inclination for the selected variables of the a; and
r1 of the 1-S robot workspace. Therefore, trajectories can be designed using the
selected parameters for workspaces. Because R1112’s sectional curvatures are
close to zero, the path trajectories converge in Fig. 9b. The result shows the
converging paths in Fig. 8. The distinct path trajectory is created in Fig. 8 for the
R1221 sectional curvature, as seen in Fig. 9c.
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The negative diffusing, spreading diffeomorphic characteristics are shown in
the R1212 sectional curvature of Fig. 9d. Since the highest negative sectional
curvature exists for the R1212, the diffeomorphism with diffusion occurs in this
direction of the Riemann curvature tensor. The trajectories of Fig. 8 can verify
this trend rising in the same direction upward.

0.015

, 0.065

-0.005

B /
wr—~"

Figure 8: The solution of the nonlinear geodesic differential equations for the u; = a1,
up = ri, multiply sign @, = 7 and 6, = 7/6; square sign a; = /4, and 6; = 7 /6;
circle sign 6; = n/3, and ay = 7/3

Figure 9f shows that the low quantity of the highest values of the sectional
curvatures for R1212 results in less maneuverability. The reduction in maneuver-
ability is also evident in Fig. 8, which shows a distinct path trajectory in a specific
direction. Since the R1212’s sectional curvature range is significantly wider than
the rest, it will dominantly determine the trajectory inclinations. Therefore, only
one type of sectional curvature is majorly active in designing the path trajectories,
which will generate a clear and specific line-type trajectory. This situation makes
the path trajectories in a spatially sequential as towards to the unique line like
direction.
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5.5. The parameters a, and r;

The sectional curvatures of all scenarios, as shown in Fig. 10a and 10b,
are each extremely close to zero, indicating that the geometrical manifolds are

(b)#y =n/3 and @) = n/3

Figure 10: The solution of the nonlinear geodesic differential equations for the u; = a3,
uy=ry, 0y =manda; =n/6;0, =n/4,and a; =n/6;0, =n/3,and a; = 7/3
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Euclidean flat. The plots of the sectional curvatures are not included because they
are all very close to zero. The values range between 10713 to 1077,

6. Conclusions

The Riemann curvature tensor and geodesic equations are determined for
the 1-S robot workspace to realize the path-planning strategies. The results are
promising in specifying the path planning with the diffeomorphic and expand-
able trajectories with the zero and negative sectional curvatures analyzed in the
results sections of this paper. The constant negative, positive and zero sectional
curvatures can generate hyperbolic, ellipsoid Euclidean geometries, respectively.

The results shows that one needs to choose the convenient parameters of the
mechanism for the path planning capabilities. Both the topology of the mech-
anism, which is 1-S herein, and the parameters of the workspaces should be
selected for the pre-defined trajectories of the path planning as shown in the
results. The mechanism design and the path planning results are shown to be
very much interactively related to each other in this paper. These results will have
significant impacts on the research of the self-reconfigurable robots to match the
mechanism topology with the path planning capabilities of the selected parame-
ters. Reconfigurable robots have many mechanism topologies to transformed.

Appendix

Homeomorphic spaces are f function, for 1-S robot workspaces, topologi-
cal spaces that are bijective, continuous, and invertible as f~'. Homeomorphic
systems for 1-S robot workspaces are convertible to various manifold shapes
using the fiber bundles of path planning via the defined regions of the Riemann
sectional curvatures as shown in Fig. Al. Additionally, these are sources of the
topological manifold of the homeomorphic group of spaces.

All tangent points structure the tangent bundle 7, M space for the manifolds of
the defined 1-S robot workspace. The fiber bundle space is related to the mapping
between the differentiable manifolds submersed to structure the whole space. One
large spherically shaped manifold can be submersed with the small cylindrically
shaped manifolds as the fiber bundle spaces [6]. The tangent bundle generates the
isomorphic lines with the vectors for path planning of the 1-S robot workspace
via parallel transport.

The topological manifolds select a homeomorphic group of workspaces for
path planning of the 1-S robot as shown in Fig. Al.
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I Topological spaces (points) of the workspace

Manifolds (cluster of pomnts locally resembles the Euchidean spaces) of the workspace

TM: Tangent Bundle

Topological manifolds
Combination
of the manifolds

Manifold of nonconnected spaces I I Manifold of connected spaces (S?) I bErixzrlecs 'braniint
undles

| Homemorphic group of spaces [

submersed manifolds including the mappings
via the 1-R robot workspace equations

Defined charts for the metric g - - -
of the Riemann Manifold M | Riemann manifold of metric (g) spaces (Mg
Geodesic equations and parallel transport | I Riemann Curvature Tensor |

1

| Sectional Curvatures |

Workspace path planning for 1-R robot: Fibre Bundles for workspaces and path planning

Figure A1l: The path planning strategies for 1-S robot workspace via differential geometry of the
Riemann manifold, fibre bundles and tangent bundles
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