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Abstract.  This  paper  introduces  a  control  strategy  utilizing  the  Fractional  Variable  Order  PID  digital  controller  (FVOPID).  We  employ
two  variants  of  fractional  discrete-time  operators  with  variable  order:  the  Grünwald-Letnikov  type  and  its  convolution  version.  We  examine
and  compare  the  performance  of  both  controllers  types  on  a  higher  order  plant.  Parameter  optimization  is  conducted  using  a  particle  swarm
algorithm.
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1. INTRODUCTION

Fractional order calculus extends classical calculus to real-
number orders, proving its utility across various scientific and
engineering domains such as biophysics, thermodynamics, op-
timization, and systems modeling [1–4]. Typically, applica-
tions assume a constant derivative order. However, exploring
time-dependent orders for integrals/summations and deriva-
tives/differences yields intriguing possibilities. While deter-
mining the optimal function is complex, a straightforward ap-
proach involves piecewise-constant functions, as suggested in
[5–9]. This study delves into applying fractional variable-
order discrete-time calculus in control theory. Fractional PID
controllers, a variant of the classical PID controllers, gained
prominence since Podlubny introduced them in 1994 [10, 11].
Subsequent research yielded various designs for fractional PID
controllers, aiming for improved robustness against param-
eter variations in controlled systems [12–16]. Digital frac-
tional controllers offer precise control over processes needing
fractional adjustments, boasting reliability, low maintenance,
and easy integration into digital systems for remote monitor-
ing and control. The extension to fractional variable-order
PID controllers (FVOPID) further enhances adaptability over
time [17]. Digital implementations utilize Grn̈wald-Letnikov
operators for FVOPID controllers [5–9].

This paper compares two types of FVOPID controllers ap-
plied to two different objects: one it is a higher order system
and the second one is an automatic voltage regulation sys-
tem (AVR). Instead of conventional integration and differenti-
ation, we integrate operators of variable fractional order sum-
mation and differences into the classical PID formula. The first
version incorporates the fractional variable-order Grünwald-
Letnikov operator, termed FVOPID. However, this operator
does not take a convolution form. To address this, we propose a
discrete-time operator with a convolution form, defining it pre-
cisely in subsequent paragraphs. The second controller type,
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utilizing the convolution operator, is denoted as FVOPID-C.
Our aim is to analyze the closed-loop system response with
both controller types and check results for two objects. We
apply the method to the special objective function and find el-
ements of values of orders and coefficients of controllers using
a particle swarm optimization (PSO) method for two differ-
ent systems. Particle swarm optimization algorithm (PSO) was
proposed by J. Kennedy and R. Eberhart in [18,19]. It is one of
the best known and broadly used method of solving a variety
of optimization problems. It is a population based algorithm
which reflects the intelligence of the swarm. In its earliest form
the algorithm was designed to mimic the behavior of a flock of
birds searching for food. The algorithm is based on a swarm
of individual particles (birds) each of which can be associated
with a single potential solution. By the solution we can un-
derstand a vector of searched parameters. What is more each
particle "remembers" its optimal position and the optimal po-
sition of the swarm. In each generation the algorithm updates
the velocity and position of the particles until the optimal so-
lution is obtained or the algorithm has reached its maximum
number of iterations. A review of PSO algorithms and with
the different search approaches and adjustments can be found
in [20, 21].

2. FRACTIONAL-VARIABLE-ORDER OPERATORS

In this paper we use two different type of difference fractional-
variable-order operators based on the version of the Grünwald-
Letnikov definition. The Grünwald-Letnikov variable-order
operators can be defined by utilizing oblivion function, the
definition of which is presented in the first definition. Let for
h > 0, hZ := {. . . ,−2h,−h,0,h,2h, . . .}.

Definition 1 ( [22, 23]) Let k, i ∈ Z and ν : hZ→R+∪{0} be
an order function. Then, an oblivion function is defined as

aν(kh)(i) =


0, i < 0
1, i = 0

(−1)i ν(kh)(ν(kh)−1)···(ν(kh)−i+1)
i! , i > 0

, (1)

where h > 0 is a sample time.
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Formula (1) in Definition 1 can be translated into the recur-
rence with respect to k ∈ N0:

aν(kh)(0) = 1,

aν(kh)(k) = aν(kh)(k−1)
(

1− ν(kh)+1
k

)
, k ≥ 1 .

(2)

The recurrent form of the oblivion function given by (2) allows
to be calculated it more efficiently than by using equation (1),
since there are fewer operations performed on smaller numbers
needed, particularly if values of the order function remain con-
stant for some periods of time or when it gets repeated. One
of the properties of the oblivion function is that for positive or-
der values the sequence of aν(kh)(k) is quickly tending to zero.
More information regarding the oblivion function and its prop-
erties can be found in [22, 24, 25].

Let us present two types of fractional-variable-order dif-
ferences. The first one is the standard fractional-variable-
order Grünwald-Letnikov difference (FVOGLD), which cor-
responds to known in the literature Type A operator.

Definition 2 (FVOGLD) [ [23]] Let x : hZ→R be a bounded
function. The fractional-variable-order Grünwald-Letnikov
difference operator of function x with step h > 0 and an or-
der function ν : hZ→ R started at t = 0 is defined as a finite
sum

∆
ν(kh)
h x(kh) =

k

∑
i=0

h−ν(kh)aν(kh)(i)x(kh− ih)

=
[
1 aν(kh)(1) · · · aν(kh)(k)

]


x(kh)
x(kh−h)
· · ·

x(h)
x(0)

h−ν(kh) .

(3)

When the sample time h goes to 0, Definition 2, which rep-
resents fractional-variable-order difference, can be treated as
a discrete time version of fractional-variable-order deriva-
tive. It is worth noting that for constant order function
ν(kh) ≡ α the operator presented in Definition 2 coincides
with the Grünwald-Letnikov fractional-order backward differ-
ence. Moreover, for the negative order values (α < 0) it be-
comes fractional-order summation (which in continuous time
system corresponds to integral action). The definition agrees
with the Type A operator presented in [5, 6].
The second definition which is named fractional-variable-order
Grünwald-Letnikov difference of convolution type (FVOGLD-
C) was introduced in [26] and is presented in the next defini-
tion.

Definition 3 ( [26]) Let x : hZ → R be a bounded function.
The fractional-variable-order Grünwald-Letnikov difference–
convolution type operator (FVOGLD-C) of function x with step
h > 0 and an order function ν : hZ→ R is defined as a finite

sum

∆
ν(·)
h x(kh) =

k

∑
i=0

h−ν(ih)aν(ih)(i)x(kh− ih)

=
[

1
hν(0)

aν(h)(1)
hν(h) · · · aν(kh)(k)

hν(kh)

]


x(kh)
x(kh−h)
· · ·

x(h)
x(0)

 .

(4)

As we can see FVOGLD-C is a discrete convolution which can
be represented by:

∆
ν(·)
h x(kh) = (a∗ x)(k) = (x∗a)(k) , (5)

where “∗“ denotes the convolution operator, a(i) :=
h−ν(ih)aν(ih)(i) and x(k) := x(kh). The advantage of the con-
volution operator is that one can compute the image of this
operator in Z -transform, i.e.

Z
[
∆

ν(·)
h x

]
(z) = X(z)A (z) , (6)

where X(z) := Z [x] (z) and

A (z) :=
∞

∑
i=0

(−1)i
(
−ν(ih)

i

)
z−ih−ν(ih) .

The transform function gives a possibility of stability analysis
of the system described by the presented convolution opera-
tor which (at least for now) is not possible for the fractional-
variable-order Grünwald-Letnikov difference of Type A . Both
presented operators are evaluated by multiplying the vector of
oblivion function values by the vector of x function values.
They have property called "forgetting" the old values and this
is where the name “oblivion function" came from.

3. METHODS

FVOPID controller can be defined in a similar way to a classi-
cal PID or FOPID. In this case the constant order summation
and difference terms are replaced by the variable-order coun-
terparts like e.g. the Grünwald-Letnikov operators, which for
positive order function values realize the operation of differ-
ence (derivative in continuous-time domain), while for neg-
ative order function values are used to calculate the summa-
tion (integral) term of the controller. The general structure
of discrete-time FVOPID controller is presented in Figure 1,
where h > 0 is the controller’s sample time, k ∈ N is the num-
ber of a sample, µ is the order function of summation term,
ν is the order function of difference term, ∆

−µ

h and ∆ν
h rep-

resent fractional-variable-order (FVO) discrete-time operators
and Kp, Ki, Kd are the parameters that are also common for
PID controllers.

FVOPID controllers can utilize different types of FVO
operators. This work mainly focuses on the discrete-time
Grünwald-Letnikov FVOGLD operator and the Grünwald-
Letnikov operator of convolution type (FVOGLD-C), the cal-
culation of which are based on the previously presented Defi-
nition 2 and 3, respectively.
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Fig. 1. FVOPID controller schema

The equation of FVOPID controller of Type A is as follows:

u(kh) =Kpe(kh)+Ki∆
µ(kh)
h e(kh)+Kd∆

ν(kh)
h e(kh) (7)

and the equation of FVOPID controller of convolution type is
given by

u(kh) = Kpe(kh)+Ki∆
µ(·)
h e(kh)+Kd∆

ν(·)
h e(kh) . (8)

The orders µ and ν are calculated as follows:

µ(kh) =



µ1, for ρ(kh)> ρ1

µ2, for ρ(kh) ∈ (ρ2,ρ1〉
...
µn−1, for ρ(kh) ∈ (ρn,ρn−1〉
µn, for ρ(kh)6 ρn−1

, (9)

ν(kh) =



ν1, for ρ(kh)> ρ1

ν2, for ρ(kh) ∈ (ρ2,ρ1〉
...
νn−1, for ρ(kh) ∈ (ρn−1,ρn−2〉
νn, for ρ(kh)6 ρn−1

(10)

and ρ(kh) is given by

ρ(kh) :=
e(kh)
r(kh)

, (11)

where e(kh) is the error value and r(kh) is the setpoint value at
time kh.

Presented controllers (7) and (8) meet the following assump-
tions:

1. The designed controller is discrete-time with sampling time
h = 0.002[s].

2. The simulation time for the parameters optimization process
is set to 2[s].

3. The controller’s summation order function µ and difference
order function ν are given by the equations (9) and (10),
respectively.

4. Both order functions µ and ν have the same number of pos-
sible values (equal to 3, 5 or 7) and the values of the func-
tions are changed at the same time, as represented by (9) and
(10).

5. Values of the order functions are the parameters of the con-
troller which are searched by the optimization algorithms.

6. Additional parameters of the controller searched by the op-
timization algorithms are: Kp, Ki, Kd (see equations (7) and
(8)).

7. The number of possible order function values and the values
of ρ1− ρn−1 from the equations (9) and (10) are the con-
troller’s architecture specific constants and are not adjusted
by the optimization algorithms.

Particle Swarm optimization (PSO) algorithm is set to min-
imize multi-criteria objective function the general form of
which is given by the following equation:

OF =w1

N

∑
k=0
|e(kh)|kh2 +w2OS

+
w3

500

N

∑
k=N−499

|e(kh)|+w4ts ,

(12)

where h is a sampling time, e(kh) is a control error, OS is an
overshoot, ts is a settling time and N is the total number of
steps. If during the parameters optimization process the set-
tling time is greater than the simulation time (which means
that it is ’Not a Number’ - NaN value in Matlab), then ts is
assigned with 3 - a value that is greater than the simulation
time, which allows the objective function value to be deter-
mined for the given case (instead of assigning it with NaN).
The weighting coefficients of the objective function are set as
w1 = 1, w2 = 0.2, w3 = 100, w4 = 5. The coefficient w3 in the
presented equation is multiplied by the average absolute value
of the last 500 samples of control error, which can be associ-
ated to the steady state error.
PSO algorithm was executed 30 times for PID, FOPID,
FVOPID and FVOPID-C controllers, where the number of par-
ticles was set to:

• 30 for PID controller,
• 100 for FOPID controller,
• 200 for FVOPID and FVOPID-C controllers.

Searched parameters of the controllers were set with the fol-
lowing boundaries:

• Kp, Ki, Kd - from 0 to 30,
• orders - from 0.5 to 2.

The simulations were performed for variable order controllers
with 3, 5 and 7 different values of summation and difference
orders, with the order functions given by (9) and (10). The
order functions of variable-order controllers with 3 different
order values are as follows:

µ(kh) =


µ1, for ρ(kh)> 0.66
µ2, for ρ(kh) ∈ (0.33,0.66〉
µ3, for ρ(kh)6 0.33

, (13)

ν(kh) =


ν1, for ρ(kh)> 0.66
ν2, for ρ(kh) ∈ (0.33,0.66〉
ν3, for ρ(kh)6 0.33

. (14)
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The order functions of variable-order controllers with 5 differ-
ent values of the order function are given by:

µ(kh) =



µ1, for ρ(kh)> 0.8
µ2, for ρ(kh) ∈ (0.6,0.8〉
µ3, for ρ(kh) ∈ (0.4,0.6〉
µ4, for ρ(kh) ∈ (0.2,0.4〉
µ5, for ρ(kh)6 0.2

, (15)

ν(kh) =



ν1, for ρ(kh)> 0.8
ν2, for ρ(kh) ∈ (0.6,0.8〉
ν3, for ρ(kh) ∈ (0.4,0.6〉
ν4, for ρ(kh) ∈ (0.2,0.4〉
ν5, for ρ(kh)6 0.2

. (16)

The order functions of variable-order controllers with 7 differ-
ent values of the order function are as follows:

µ(kh) =



µ1, for ρ(kh)> 0.84
µ2, for ρ(kh) ∈ (0.7,0.84〉
µ3, for ρ(kh) ∈ (0.56,0.7〉
µ4, for ρ(kh) ∈ (0.42,0.56〉
µ5, for ρ(kh) ∈ (0.28,0.42〉
µ6, for ρ(kh) ∈ (0.14,0.4〉
µ7, for ρ(kh)6 0.14

, (17)

ν(kh) =



ν1, for ρ(kh)> 0.84
ν2, for ρ(kh) ∈ (0.7,0.84〉
ν3, for ρ(kh) ∈ (0.56,0.7〉
ν4, for ρ(kh) ∈ (0.42,0.56〉
ν5, for ρ(kh) ∈ (0.28,0.42〉
ν6, for ρ(kh) ∈ (0.14,0.28〉
ν7, for ρ(kh)6 0.14

. (18)

4. RESULTS

4.1. Results for higher order plant

The first plant object that we consider for making a comparison
between two types of considered controllers is a higher order
system given by the following equation:

G(s) =
2(15s+1)

(20s+1)(s+1)(0.1s+1)2 . (19)

The results of 30 algorithm executions are presented in Table 1
(the number of order of variable-order controllers is shown in
brackets). The parameters and qualitative criteria of optimal
PID, FOPID, FVOPID and FVOPID-C (5 order values) con-
trollers are presented in Table 2 (qualitative criteria like, e.g.,
rise time and overshoot were calculated with Matlab stepin f o
function). The parameters and qualitative criteria of FVOPID
and FVOPID-C for the controllers of 3 and 7 orders are pre-
sented in Table 3.
Step responses of the best (in terms of the objective function)
controllers of each type are presented in Figures 2 - 4.

Fig. 2. Step response comparison for higher order system (19)

Fig. 3. Step response comparison of FVOPID controllers with 3, 5 and
7 orders for higher order system (19)

Fig. 4. Step response comparison of FVOPID-C controllers with 3, 5
and 7 orders (almost the same) for higher order system (19)

4.2. Results for automatic voltage regulation system

The architecture of the controllers presented in this work was
also described in detail in the Ph.D. dissertation [27], where
the author used Yellow Saddle Goatfish algorithm (YSGA) and
Particle Swarm Optimization (PSO) to find the optimal con-
troller parameters for automatic voltage regulation (AVR) sys-
tem, which schema is presented in Figure 5.

Fig. 5. AVR closed loop schema [27]

Every block of the presented system can be described by the
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Table 1. Value of the objective function for 30 PSO algorithm executions - higher order system (19)

Type of Mean Min. Max. Stdandard OF eval.
controller deviation number

PID 1.70099959 1.70005226 1.71305749 0.00233245 6 033
FOPID 1.00386171 0.99702797 1.01130845 0.00394678 17 493

FVOPID (3) 1.37267525 1.01576458 1.82054353 0.28664918 66 993
FVOPID (5) 1.01799259 0.76701616 1.3149858 0.15999803 68 300
FVOPID (7) 0.98483434 0.57160884 1.39299451 0.21296776 65 093

FVOPID-C (3) 0.46297288 0.25030152 1.12340814 0.19697810 73 213
FVOPID-C (5) 0.42771446 0.20439328 0.68164722 0.12692378 77 713
FVOPID-C (7) 0.45877611 0.24256997 0.81513004 0.1219751 57 720

Table 2. Parameters and qualitative criteria of controllers tuned with PSO algorithm - higher order system (19)

PID FOPID FVOPID(5) FVOPID-C(5)
Kp 5.230361 15.345238 29.770907 7.375620
Ki 4.347479 10.334137 13.587000 29.999129
Kd 0.770167 1.336096 3.424964 1.597124
µ1 1 1.100071 1.459632 1.378726
µ2 1 1.100071 0.501347 1.498402
µ3 1 1.100071 0.548063 1.430928
µ4 1 1.100071 1.239560 1.892745
µ5 1 1.100071 1.122641 1.046320
ν1 1 1.268984 1.24127 1.734221
ν2 1 1.268984 1.412751 1.856177
ν3 1 1.268984 1.645277 1.827972
ν4 1 1.268984 1.648006 1.806695
ν5 1 1.268984 1.169249 1.217366

Rise Time [s] 0.20256 0.08627 0.07787 0.02148
Settling Time [s] 0.65778 0.28700 0.27101 0.13419
Overshoot [%] 0 1.196 0.344 0.007

OF value 1.70005226 0.99702797 0.76701616 0.20439328

Table 3. Parameters and qualitative criteria of controllers tuned with PSO algorithm - higher order system (19)

FVOPID(3) FVOPID(7) FVOPID-C(3) FVOPID-C(7)
Kp 2.858454 16.916252 8.049215 29.835024
Ki 11.231374 17.645302 26.708781 10.195264
Kd 7.600340 5.105802 1.505233 0.312751
µ1 1.996930 0.738103 0.766660 1.067156
µ2 1.980182 1.322293 1.542557 1.529578
µ3 1.392513 1.180508 0.985083 0.536497
µ4 - - 1.314557 0.500000
µ5 - - 1.190146 1.547862
µ6 - - 1.482524 1.766692
µ7 - - 1.158861 0.969161
ν1 1.097044 1.307180 1.662227 1.767538
ν2 1.705756 1.608851 1.824524 1.571075
ν3 1.231615 0.866664 1.985346 1.610845
ν4 - 0.719831 - 1.994750
ν5 - 1.054925 - 0.834396
ν6 - 1.582877 - 0.637365
ν7 - 1.156963 - 0.674277

Rise Time [s] 0.05186 0.06018 0.03071 0.02202
Settling Time [s] 0.24816 0.20825 0.04959 0.11719
Overshoot [%] 0.008 0.108 0 0

OF value 1.01576458 0.57160884 0.25030152 0.24256997
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first-order transfer function with gain K and time constant τ ,
given by the following general equation:

G(s) =
K

1+ τs
(20)

with the parameters presented in Table 4. The author of [27]
used YSGA algorithm to find the parameters of FVOPID and
FVOPID-C controllers and PSO algorithm to tune FVOPID.
The optimization algorithms were in this case set to minimize
a similar objective function as the one presented in the current
work. Additionally, the simulation setup was very close to the
one presented in the current work with two differences: (1) the
simulation time for the parameters optimization process was
set to 3[s]; (2) The coefficient w3 of the objective function,
associated with the steady state error, was multiplied by the
average of the absolute value of the last 750 samples.

The other aspects, such as the sampling time equal to
0.002 [s] or setting the settling time value during the optimiza-
tion process to 3 (in this case it is the value of settling time
equal to the time of the simulation) when the settling time is
NaN, were the same. Results presented in [27] for AVR sys-
tem with FVOPID controllers tuned with PSO are consistent
with the results presented in the current work. For more details
about FVOPID controllers tuned by PSO algorithm for AVR
system, refer to [27]. When it comes to FVOPID-C controllers
for the AVR system, if we tune them with PSO algorithm using
the objective function presented in [27] and for the following
boundaries assigned to searched parameters: Kp - from 0.5 to
2, Ki - from 0.1 to 2, Kd - from 0.1 to 1, orders - from 0.5
to 2, we get the controllers which parameters and qualitative
criteria are presented in Table 6. More information about the
values of the objective function obtained during the PSO opti-
mization is shown in Table 5. Figure 6 presents step response
of AVR system with PID, FOPID and FVOPID controllers de-
scribed in [27] and FVOPID-C controller (all tuned with PSO
algorithm).

Fig. 6. Step response comparison for AVR system

In Figure 7 we can see a comparison of step responses gener-
ated by FVOPID-C controller for different numbers of orders.

5. CONCLUSIONS AND FUTURE WORKS

Fig. 7. Step response comparison of FVOPID convolution controllers
with 3, 5 and 7 orders for AVR system

5.1. Conclusions
1. Variable order controllers obtained the lowest values of the

objective function.
2. The best values of the objective functions for both objects

and various numbers of piecewise-constant orders were ob-
tained by FVOPID-C.

3. The lowest rise time (time required by the response to
rise from 10% to 90% of its final value) was obtained by
FVOPID-C.

4. FVOPID-C controller generally gives better results than the
FVOPID, FOPID and PID for both considered types of ob-
jects. Moreover, it allows the analysis to be extended to the
transform methods due to its convolution form.

5. FVOPID-C controller gives better results with lower number
of piece-wise constant orders that FVOPID.

5.2. Future Works

Variable-order controllers represent a promising advancement
in control systems, offering greater flexibility and adaptabil-
ity compared to traditional PID controllers. These controllers
introduce concepts of fractional calculus, allowing for non-
integer order differentiation and integration. FVOPID con-
trollers have the potential to enhance control performance, par-
ticularly in systems with complex dynamics or time-varying
characteristics. Future research could focus on developing al-
gorithms and methodologies to exploit the flexibility of frac-
tional orders to improve control performance in various indus-
trial applications. Additionally, future research could explore
the application of Fractional Variable Order PID controllers in
nonlinear control systems, such as chaotic systems, biological
systems, or systems with hysteresis, to address challenges that
conventional integer-order controllers may encounter.
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