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Abstract. This article is the second part of a comprehensive research program investigating the structural performance of thin-walled channels
with modified cross-sectional geometries. The study involved testing six beams, three of which featured perforated webs, while the other three
had flat, solid webs. The beams were subjected to four-point bending tests in order to evaluate their load-bearing capacity. The first part of
the research presented the results of experimental tests and finite strip analysis. This article will focus on finite element analyses and analytical
calculations conducted in accordance with Eurocode 3 guidelines and the principle of minimizing potential energy. The study provides several
significant contributions: it integrates experimental, numerical and theoretical methods to deliver a thorough evaluation of beam performance.
The finite element method (FEM) simulations offer precise modeling of complex stress and strain states, while analytical calculations supply
a solid theoretical foundation for interpreting structural behavior. The research demonstrates that web perforation, while reducing critical and
maximum forces, also results in considerable weight savings, enhancing material efficiency. Additionally, the division of the research into two
articles ensures clarity and accessibility, with this second part being dedicated to detailed FEM and analytical results, thereby facilitating both

academic understanding and practical engineering applications.
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1. INTRODUCTION

Thin-walled structures produced through cold-forming technol-
ogy are widely utilized across various fields, including civil
engineering, the transportation sector (such as automotive and
railway applications), and the aerospace industry. In contempo-
rary engineering practice, there is a growing emphasis on min-
imizing material usage while maintaining structural integrity.
Thin-walled structures address this objective effectively due to
their high strength-to-weight ratio and low material consump-
tion. Additionally, these structures are advantageous in terms of
ease of assembly, further contributing to their appeal in both
industrial and structural applications.

Thin-walled structures with modified or non-standard cross-
sections are increasingly studied for their structural stability and
buckling behavior, particularly when incorporating web perfo-
rations. Research indicates that these modifications can signif-
icantly influence the load-bearing capacity and overall stability
of the structures. For instance, incorporating perforations into
web sections can result in a reduction of mass while preserv-
ing structural integrity. However, such modifications may also
render the structure more prone to buckling under specific condi-
tions, as can be found in the studies by Roslanec and Rozylo [1]
and Bakhach er al. [2]. In addition, the effectiveness of dif-
ferent cross-sectional shapes in enhancing stability has been
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investigated, revealing that custom geometries can outperform
traditional designs in certain applications, as can be read in
the work of Rozylo et al. [3,4]. However, the performance of
these modified structures is highly dependent on the configura-
tion and size of the perforations, which necessitates careful de-
sign considerations to mitigate potential buckling risks. Overall,
while innovative cross-sectional designs present opportunities
for improved performance, they also require thorough analysis
to ensure safety and reliability in engineering applications.

Heavily modified cross-sectional shapes have been thor-
oughly described in the works of Grenda and Paczos [5],
Grenda [6], Pawlak and Paczos [7], and Jasion et al. [8],
Obst et al. [9] as well as Magnucka-Blandzi ef al. [10], where
beams/columns subjected to four-point bending or axial com-
pression were analyzed. Nevertheless, most researchers con-
tinue to focus on traditional cross-sectional shapes, failing to
recognize that these modifications can positively impact the
stability of thin-walled structures and increase their critical
strength [11-13]. The use of modified cross-sections in thin-
walled structures offers numerous advantages, such as enhanced
bending strength and improved stability, leading to greater load-
bearing capacity and extended service life of the structure. These
modifications allow for significant weight reduction while main-
taining or even improving strength, resulting in material savings
and reduced costs. Additionally, altered cross-sectional shapes
can streamline production and assembly processes, as well as
enhance the aesthetics and functionality of structures, enabling
better adaptation to specific loading and environmental condi-
tions.

© 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Numerical investigations are crucial for analyzing thin-walled
structures, with the finite element method (FEM) being one of
the most frequently employed techniques. Numerical studies can
be conducted using various methods, with FEM being among
the most prevalent ones, as applied in this paper. Anbarasu [14]
utilized FEM to investigate the local, distortional and flexural-
torsional buckling behavior of cold-formed steel (CFS) beams.
Dinis and Camotim [15] explored the post-buckling behavior
of channel columns subjected to bending moments, focusing on
the interaction between local and strain buckling using FEM.
El Hadidy et al. [16] examined beams with trapezoidal webs
through FEM. Ghorashi [17] employed the variational asymp-
totic method to address problems related to thin-walled struc-
tures, applying it for nonlinear static analysis and stability anal-
ysis of composite beams. Both finite difference and finite ele-
ment methods were utilized to calculate the elastic deformations
of beams with clamped-free boundary conditions. Paper [18]
presents a numerical analysis of magnetohydrodynamic mixed
convection heat transfer in a lid-driven wavy enclosure with a fin
attached to the bottom wall, utilizing the finite element method.
Results demonstrate that fin size plays a crucial role in influ-
encing flow patterns and temperature distribution, with larger
fins significantly enhancing heat transfer at higher Richardson
numbers and lower Hartmann numbers. In article [19], dam-
age detection in an aluminum beam using vibration techniques
showed that increasing crack depth raised amplitude. Experi-
mental validation confirmed the method’s accuracy, with errors
of 7.5% for crack position and 9.1% for crack size.

The work of Manikandan and Thulasi [20] investigated the
behavior of cold-formed I-section steel plates with edge and in-
termediate web stiffening under bending loads. Their research
involved optimizing the cross-section using numerical methods
(FEM), followed by experimental tests employing strain gauges,
and concluded with calculations based on Eurocode 3 proce-
dures. Nandini and Kalyanaraman [21] conducted a study using
ABAQUS for finite element analysis, examining the interac-
tion between local, strain, and bending-torsion buckling forms.
Kubiak and Gliszczynski [22] assessed the load capacity of
thin-walled composite channel beams subjected to pure bend-
ing using ANSYS software and FEM. Zhang and Young [23]
developed a finite element model to account for initial geometric
imperfections and nonlinear material properties, applying it to
analyze cold-formed thin-walled structures with web stiffening.
Falkowicz and Debski [24] analyzed thin-walled plate elements
with regular-shaped cutouts, employing both digital image cor-
relation and FEM in their study. Debski [25] investigated the ef-
fect of eccentric loading on the stability and post-critical states of
thin-walled composite columns in compression, designing and
verifying numerical models of thin-walled composite sections
based on FEM analysis.

The motivation for this study stems from a notable gap in the
existing literature concerning the analysis of thin-walled sec-
tions with modified cross-sectional geometries. This research
seeks to address this gap by examining the effects of web per-
forations on both critical and maximum forces, thereby offering
valuable insights into the trade-offs between weight reduction
and structural performance. The findings of this investigation are

expected to inform more refined design practices and enhance
the safety and effectiveness of thin-walled structural members
across various engineering applications.

2. GEOMETRY OF CROSS-SECTIONS

In this section, a brief overview of the subject of study is pre-
sented, as it has already been comprehensively described in
Part 1 of this article, titled “Bending behaviour of thin-walled
perforated channel beams with modified cross sectional shape —
Part 1: experimental tests and FSM”. This study focuses on six
thin-walled, cold-formed channel beams (B1-B6) with mod-
ified cross-sectional configurations, where three beams have
solid webs (B1, B3, and B5), and three have perforated webs
(B2, B4, and B6). The dimensions of the beam cross-sections
are shown in Fig. 1 and Table 1.

Fig. 1. Dimensioned cross-sections of the analyzed beams

Table 1
Dimensions of the cross-sections of the beams

H =160.0 mm c; =18.0mm

b =80.0 mm ¢cp =10.0 mm
a=79.5mm c3=10.0 mm

w =79.0 mm f=10.0 mm
d=18.0mm £=36.0mm
hpz =68.5 mm n=24.0 mm
hp4,6 =40.0 mm m =18.0 mm
k =8.0 mm s=15.0mm

Figure 2 illustrates the dimensions of the perforations and
provides an image of the perforated beam web.
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Fig. 2. Geometry and dimension of perforations

In Part 1, the mechanical properties of the steel used to manufac-
ture the beams were described in detail. These properties were
determined based on results obtained from a static tensile test.

3. ANALYTICAL CALCULATIONS

Analytical calculations were conducted in order to determine the
critical moments of the beams subjected to bending, focusing
on beams B1, B3 and B5. Beams B2, B4 and B6, which feature
perforations in the web, were excluded from these analyses due
to Eurocode 3’s limitation in accommodating significant modi-
fications in cross-sectional shapes. The challenge of developing
formulas for critical moments in these complex geometries fur-
ther complicated their inclusion, as Eurocode 3 only addresses
single additional bends. This chapter presents the mathematical
formulas implemented in MATLAB for efficient and accurate
calculations, along with the resulting data.

The mathematical formulas presented in this chapter have
been developed based on the principle of minimum total poten-
tial energy [26—28]. This principle serves as a fundamental basis
in the analysis of rigid body mechanics, allowing for the deter-
mination of equilibrium and stability conditions in structures.
By utilizing this method, it has become possible to accurately
model the behaviors of beams, which is crucial for understand-
ing their responses to different loads. Basing the calculations
on this principle also enables more precise results and effective
predictions of structural behaviors under real-world conditions.

This study presents comprehensive analytical calculations for
global, local and distortional buckling. However, it is evident
that thin-walled structures do not experience global buckling.
The mathematical formulas introduced in this work have been
implemented into MATLAB, where a specialized program was
developed to calculate critical forces for beams with arbitrary
cross-sectional sizes and lengths. Additionally, this work aims to
demonstrate how the prepared program computes these critical
force values.

3.1. Calculation procedure — theoretical introduction

to analytical calculations
Pure bending is simulated by a four-point bending test. The
total length of the beam is denoted by L., the distance between
the force applied and the supports equals L, and the distance
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between supports is equal to Ly. The part of the beam which
is under pure bending conditions has the length L. Thus, the
critical moment M., in the middle span of the beam can be
calculated using the following formula:
M = 1F L= !

cr — 2 cri~s — 4
where F¢, is the critical force. Thin-walled beams are suscep-
tible to loss of stability because of the high ratio of length
and cross-sectional dimensions to plate thickness. In the con-
text of thin-walled structures, we distinguish three types of loss
of stability: general buckling, local buckling and distortional
buckling. This paper presents a procedure for determining the
values of critical moments for the different forms of buckling of
thin-walled beams.

The critical state of a thin-walled beam that was loaded with a
bending moment of constant value was determined using energy
methods. The energy or elastic deformation U, can be defined
as follows:

FeLs, ey

Us=Ug+Ugp, (2)

where U, is linear elastic deformation energy and U, is non-
linear elastic deformation energy. Components of energy are
expressed in the following form:
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where G is Kirchhoft’s modulus, E is Young’s modulus and A is
a cross-sectional area of the beam. The next designations are: u,
v, w — shear center displacement S; J, Jy, J, — moment of in-
ertia of the beam; J,,, — wrapping moment, J; — the Saint-Venant
torsion constant; ky, k,, ky — spring rates in the flange model



www.czasopisma.pan.pl P
=

N www.journals.pan.pl

P. Jasion, A.M. Pawlak, P. Paczos, M. Plust and M. Rodak

for distortional buckling; B, Bsy, B, — Wagner’s coeflicient;
up,vp,wp —displacement components of the point P, 72 — polar
radius of the inertia about the shear center S,  — torsion angle,
N — axial force, M, M, — bending moment about y and z axis,
B — bimoment, and z,, y,; — coordinates of the shear center S.

3.1.1. Global buckling

Dislocation of thin-walled beams is characterized by simulta-
neous torsion of the beam and its spatial bending. The analysis
assumes that the cross-section of the beam does not change its
shape. Figure 3 shows a general stability diagram for a beam
with a non-standard cross-section shape.

Fig. 3. Schematic diagram of general loss of stability for a thin-walled
beam with modified cross-sectional shape

As the buckling half-wave length increases, the value of the
critical force or moment decreases. The angle of rotation for
general buckling for beams simply supported at both ends for
any coordinate x can be represented by a mathematical formula:

X

\/_I/L_Mzsi
L?

ur Y
where /| is a dimensionless parameter. The bending moment
can be written as:

(&)

My (x) =M. (6)

The derived system of second order equilibrium equations was
used to determine the critical moment for general buckling:

N, MZ’ BZO, Iyz BSZ? ﬁo) :0,
ky. ko ky =0.

(7
®)

Thus, based on (3) and (4), an expression describing the elastic
strain energy of the form was obtained:

L 2 2 2
1 d?v d*w dy
Ug—z EJZ @ +EJy @ +EJw F
0
dy |\ 2y
+GJ, (a‘”) dx+ [ My~ ydx 9)

0

The work of external forces W is written using the following
formula:

(10)

It is defined that w(x) is the displacement in the z-axis direction
and v(x) is the displacement in the y-axis direction. The formula
describing the critical moment at general buckling was also
determined:

lobal) _ 7T m\?2
Mc(rgo a):Z\/EJZ [GJt'F(Z) ij] .

The above transformations led to a formula that will be used to
determine the critical moment for global buckling.

Y

3.1.2. Distortional buckling

Considering the loss of beam stability by buckling of the flange
with simultaneous deformation of the web, the flange can be
treated as an elastically supported beam at the edge of its con-
nection with the web (point P(y,,z,) of the cross-section).
Figure 4 shows the buckling model and the cross-section of the
beam and flange. A central coordinate system (x, y, 7), centred
at 6, is associated with the shelf.

k,
V k:
H _____ ;_ ______________________': °§
k P = = |
’ y ¢ |
\
P —
______ 1 oS
A3 c |
Y:

Fig. 4. Distortional stability loss diagram of a beam with a modified
cross-section
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There are normal stresses in the flange, which can be ex-
pressed by the following mathematical formula:

o (x,5,2) = ]—y(f—fc)~ (12)

y
Where (7, 7) is the central coordinate system associated with
the beam flange, and Z¢ is the coordinate of the beam section
center in the coordinate system associated with the flange. It can
be seen that there is a relationship with Z¢ = —zz. The internal
forces present in the flange can be expressed by the formula
below:

My~ My
N = ——ZcA, M)-, = —J)';,
Jy Jy
(13)
M,y _
MZ =——J)72, B=O
‘Iy

The model was simplified, as shown in Fig. 5. After simplifying
vp=0,wp=0and k, =0, we get:

\7=(ZP—Zg)lﬁ, (14)
w=—(yp-3s5)¥ 15)
And the strain energy of the beam flange equals:
L L
271\2 7172
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0 0
IMy .5 - -
- gx[rpZCA—z Psz
L
712
dys
- QBPnyE]/(a) dx, (16)
0
where:
Jy+J.
2 yriz 2 2
Fp=——+3p+7p,
P ¥ ptip
- - _ _ 2 - _ _ _ _ -
or =Jo+(Fp=335) Ty =2(3p=35) (Zr—Z5) /5= (17)
+(zp-125) Tz
B_P}_’:BS)?"')_’S‘_)_’P BPZ=BS§+Z§—ZP.
The critical moment was calculated from the following:
5(Ug) =0. (18)
By substituting the expression:
- . WX
¥ (x) = sin— (19)

L

and solving the equation using the Ritz method, we obtain the
formula describing the critical moment for distortional buckling:

_ _ 2
GJ,+EJ,;, (%)

FpicA=2BpsJ5 —2Bp:J5:

M C(rdistortional) _ Jy (20)
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The above transformations led to the formula that will be used
to determine the critical moment for distortional buckling.

3.1.3. Local buckling

Local stability is characterized by the fact that the length of the
buckling half-wave is comparable to the transverse dimensions
of the beam and is most often considered as buckling of indi-
vidual beam walls. In this paper, local buckling is considered as
buckling of individual beam walls:

e hinged at the four edges — spanning walls (Fig. 5a),

e hinged on three edges and one free edge — cantilever walls

(Fig. 5b).

The critical state of a thin-walled beam that was loaded with a
bending moment of constant value was determined using energy
methods.

simply
supported

_________

(a) span structure

simply
supported

(b) cantilevered structure

Fig. 5. Beam support scheme

Figure 5 shows the beam support scheme in the local coordi-
nate system (x, 77, ¢’) associated with the beam wall. Rectangular
walls are shown.

The procedures for determining the critical moment for local
buckling are well known, as they are described in detail in PN-
EN 1993-1-5[29]. The standard distinguishes between two ways
of supporting a wall: spanning compression walls and cantilever
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compression walls. A simplified model is adopted in which the
critical stress is calculated from the formula below:

< VR 2L

From (21), the value of the critical moment can be determined:

J
M = _yo-cr .
YR

(22)

The critical stress for pure bending and the corresponding
factor « are calculated. Let’s denote o] = max (—oy) > 0 and
7D r°E (t)2 Therefore, f ing wall
o1=K =K — ) . Therefore, for a spanning wall,
T T 2 (1-02) b panning
the stresses can be expressed by the following formula:

oy (x,m) = —(1 - 2)0'1 —20'2

b b
(R

where ¢ = 2, oy — see Fig. 5, b is the beam width and ¢ is the
o

thickness of tile plate from which the beams were made. Critical
values for the coefficient k were obtained, e.g. foryy =1, k =4 and
for = —1, « is about 24. These values are valid for sufficiently
long beams. For a cantilevered, pinned wall supported on three
edges and one free edge, = 0. However, for a spanning, pinned
wall supported on four edges, n = b. These data were obtained
on the basis of the indicated standard. In summary, the critical
moment value for local buckling is expressed by the following
formula:

) Jy [ 6 1 4
(local) y
M =—|=l-v)+=|x——
P R (ﬂz( ) /12) 1+3y
n’E £\2
X —— (-], 24
12(1—1/2)(17) (24)

where R(yg,zg) is the point lying at one end of the wall cen-
terline. At the point where the compressive stresses reach their
maximum stresses o7 are denoted, while at the other end o are
denoted.

3.2. Results of calculations

The results of the analytical calculations presented in this chap-
ter were obtained using a specialized program that applies the
analytical formulas outlined herein. This program, named GUI,
was developed in MATLAB and authored by Dr. Marcin Rodak.
The first step in the process involves specifying the beam lengths
and the span between supports, and identifying the mechanical
properties. For the purposes of this article, the mechanical prop-
erties implemented in the program were determined through
static tensile tests, as detailed in Section 2 of this work. In the
second step, the specific dimensions of the cross-section must be
defined, as illustrated in Fig. 6. The following section provides a
comprehensive examination of the analytical methods employed
and the corresponding results generated by the program.

Init Section 8.1 Section 82 Section 83 Section 9.1 Section 92 Section 93 Section 10.1 Section 102 Section 103 Section 11.1 Section 112 Section 121 Se... |,
value units

= [te60 mm spanbel
L= [400 500 600] mm

E= 210000 MPa
G= 807692308 MPa
03

-«

Init Section 8.1 Section 8.2 Section 8.3 Section 9.1 Section 9.2 Section 93 Section 10.1 Section 102 Section 103 Section 11.1 Section 112 Section 121 Se... |
Resuits
Length |

795
1= |40
a3= |10
b= 50

d

L= o mm

Global bucking
0
Mer= (2446614 him
a
Y| Distotional bucking
4
1 o= [o.2800 i
0

Local bucking

Mer= 04171 KNm

400 420 440 460 480 500 520 540 560 580 600

L [mm]

Fig. 6. Interface of the program for calculating critical moments of bent
beams, developed by Dr. Marcin Rodak using the analytical formulas
from this section

For the lengths specified in the first step, the program calcu-
lates the critical moments based on (11), (20), and (24). An es-
sential aspect of using this program is understanding the buck-
ling mode to which each beam is susceptible. The program com-
putes critical moments for global, distortional and local buckling
modes. All results generated by the program are presented in Ta-
ble 2. For the final comparison with results obtained from other
methods, the value corresponding to the buckling mode iden-
tified in the experimental tests was selected. This ensures that
the most relevant and accurate data are used for comparison and
analysis.

The results of the analytical calculations are shown in Ta-
ble 3. The values of critical moments for the corresponding
forms of beam buckling are indicated: B1 and B3 —local, B5 —

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. €153435, 2025
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Table 2
Results of the analytical calculations

Beam Critical moments M¢; [kKNm]
BI | B3 | BS

Length L [mm] 400
t=14mm 6.25 6.32 25.84
t=1mm 2.28 2.30 18.22
t=0.6 mm 0.49 0.50 10.83
Length L [mm] 500
t=14mm 6.26 6.33 16.78
t=1mm 2.28 2.31 11.75
t=0.6 mm 0.49 0.50 6.95
Length L [mm] 600
t=1.4mm 6.27 6.35 11.86
t=1mm 2.29 2.31 8.23
t=0.6 mm 0.49 0.50 4.84
Length L [mm] 700
t=1.4mm 6.25 6.33 8.90
t=1mm 2.28 2.31 6.12
t=0.6 mm 0.49 0.50 3.57
Length L [mm] 800
t=14mm 6.25 6.32 6.97
t=1mm 2.28 2.30 4.74
t=0.6 mm 0.49 0.50 2.75
Buckling form Local Local Distortional

distortional. Different beam lengths L, i.e. 400, 500, 600, 700
and 800 mm and three different plate thicknesses ¢, i.e. 1.4 mm,
1 mm and 0.6 mm, were taken into account.

For beams B1 and B3, which are subject to local buckling,
the critical moment remains constant regardless of the beam’s
length. This occurs because, as the beam length increases, the
difference between the actual buckling half-wave length and the
half-wave length associated with the smallest critical moment
decreases. Consequently, for longer beams, the critical moment
for local buckling stabilizes and does not vary with changes in
length. This behavior is a characteristic feature of local buck-
ling in thin-walled structures, where the buckling wavelength is
largely independent of the overall beam length once a certain
threshold is reached.

As previously mentioned, for beams experiencing local loss
of stability, the critical moment remains constant regardless of
the distance between supports. This constancy underscores the
fact that local buckling is primarily governed by the geometry
of the cross-section rather than the beam length. However, this
is not the case for beam B5, which is subject to distortional
instability. In this instance, the critical moment decreases as
the beam length increases, reflecting the more complex nature
of distortional buckling, where both cross-sectional and length
factors play significant roles.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. €153435, 2025

Furthermore, an analysis of the effect of plate thickness on the
critical moment reveals that the critical moment decreases with a
reduction in plate thickness. This relationship holds true across
all the beams tested, emphasizing the importance of material
thickness in resisting buckling. Among the tested beams, beam
BS5 demonstrated the highest critical moment with a support
length of 400 mm and plate thickness of 1.4 mm. This result
highlights the interplay between length, thickness and buckling
mode, also illustrating how these factors collectively influence
the structural performance of the beams under load.

4. FINITE ELEMENT METHOD

This section presents the results of numerical analyses per-
formed using the finite element method (FEM) to investigate
the behavior of the beams under study. ANSYS software was
employed to conduct these simulations, providing detailed in-
sight into the structural response of the beams under different
loading conditions. The following sections outline the method-
ology, boundary conditions and material properties used in the
simulations, as well as a discussion of the key findings obtained
from the FEM analysis. Through these numerical analyses, a
deeper understanding of the critical factors influencing the sta-
bility and performance of the beams is achieved, complementing
the analytical calculations presented earlier.

4.1. FE model of the beam and boundary conditions

Numerical analyses were performed using the finite element
method within ANSYS software. The procedures for linear and
non-linear calculations available in this system were used. To
model all beams, the DesignModeler, forming part of ANSYS,
has been used. Since the buckling mode and the mode of failure
may have an asymmetric form, a whole beam has been mod-
elled although the geometry, load and support conditions were
symmetrical. It was decided to abandon modelling the bend-
ing radii, bearing in mind that in the actual beam the strain
hardening effect may influence the behavior of the beam by in-
creasing its stiffness. Straight corners on the cross-sections of
the FE models prevent the generation of small, distorted finite
elements which could appear on the bending radii and adversely
affect the numerical solution.

Pure bending load conditions have been applied to the model,
which is a typical load for testing structural elements such as
beams. Since the effect of such load is to be achieved in the
simplest possible manner without reproducing the test stand, a
number of simplifications have been made. Only the central part
of the beam, which undergoes pure bending, has been modelled.
The bending conditions were achieved by adding rigid plates at
both ends of the model (see Fig. 7) and by applying forces to
the upper and lower edge of the plates, compressive and tensile
one, respectively. The Young’s modulus of rigid plates is 103
times higher than the one for the beam. A similar solution has
been used in the paper by Jasion et al. [8].

Pure bending load conditions have been applied to the model,
which is a typical load for testing beams. The bending condi-
tions were achieved by adding rigid plates at both ends of the
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model (see Fig. 7) and by applying forces to the upper and lower
edge of the plates, compressive and tensile one, respectively.
The model was supported along the line at mid-height of the

a) rigid plate

=Y

2S5 ‘

ST

L [ st

“‘““,“g{%” T
==agg

TV

rigid plate in the way that the displacements in the y and z direc-
tion were blocked. Additionally, to avoid a rigid body motion,
displacement in the x direction was blocked at one node on the
vertical symmetry plane of the beam. Between the beam and the
rigid plates the contact conditions have been defined in the form
of bonding connection.

The whole model of the beam has been covered with a second
order shell elements shell281 with 8 nodes and 6 DOF in each
node. This element is suited for modelling thin shell-like struc-
tures for linear elastic analyses but also for structures undergoing
large strains and large rotations in non-linear analyses. It can be
also related with plastic properties of the material model. The
size of the finite element has been chosen based on the conver-
gence analysis the results of which are shown in Fig. 7d. The size
is equal to 5 mm, which constitutes a compromise between the
computational time and the precision of results. An additional
condition about the element size has been imposed on the perfo-
rated web to obtain a finer mesh, about 2 mm size of the element,
around the circular holes. No special effort on the mesh around
the holes was paid since the deformation of the perforated web
is slight and has the form of mild buckling waves. The defor-
mation is even smaller in the non-linear analyses since here it
is mostly the flange that undergoes deformation. Moreover, the
circular shape of the holes prevents local stress concentrations
from arising.

The convergence analysis has been performed for two beams.
One of them had a flat flange, beam B3, and the second one
had a corrugated flange, beam B5. The parameters which have
been analyzed during calculations included the critical bending
moment, the left vertical axis and the normal stress measured in
the mid-length of the upper flange, as well as the right vertical
axis. To simplify the reading of the plots, the power trend lines
have been added to each set of the data.

In the case of the beam with a flat flange, the size of the
finite element does not influence the results practically at all.
The decrease in the size of the element results in a change of
the analyzed parameters by only about 0.3%. For beam B5 the
results are not so smooth, which can be explained in two ways.

2.70 T . . .
d) ! beam|no. 3 = First of all, due to the shape of the corrugation, the relation
g T & [ . - -~ 2 between the size of the element and the number of elements is not
é 268 =1 5001 & smooth. Secondly, the buckling mode has a local character and
N * . .
p 267 Xﬁ(\ the change of the location of the waves may change the buckling
[ R 7R X X . C e . )
2.66 load in a distinctive way. However, if the values on the vertical
M, )7 \_Simm . Lo
2.65 : 50.90 axes are observed, the stress varies within the range of 0.5%,
10000 30000 50000 70000 90000 110000 130000 and the buckling load within the range of 6%. Thus the selected
number of nodes size of the element appears to be enough, bearing in mind that
10.2 T r 50.8 the main goal of the analyses is to determine the critical and
— ~—a | . beam|no. 5 — e X . .
£ 9.81 . —— [ 506 & limit load. The precise analysis of a local phenomenon like the
i 94 ﬂ [ . e % local fold in the plastic range would need further improvements
$9.0 . 50.4 & :
| M, S in the model.
E&G\k:, — | For the li buckli lysis a li lasti ial h
82 | % X X] X 4502 or the linear buckling analysis a linear elastic material has
7'8 5 mm /| X 500 been modelled with the following parameters: Young’s mod-

20000 40000 60000 80000 100000 120000

number of nodes

Fig. 7. Details of FE model: (a) model of the beam under pure bending;
(b) boundary conditions; (c) mesh pattern around the holes of perfora-
tion and on the corrugated flange; (d) results of the convergence study

ulus E = 185000 MPa, Poisson’s ratio v = 0.3 and mass den-
sity p = 7850 kg/m>. For the post-buckling analysis the bilin-
ear elastic-perfect plastic model has been assumed with yield
strength R,y = 328 MPa. The stiffened plates attached at both
sides of the beam have been modelled using the same material,
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a linear elastic one, but its stiffness, i.e. Young’s modulus, is 10
times this of the material of the beam. The thickness of these
plates equals 10 mm.

After accepting the results of the convergence study, the val-
idation process has been made on the model of the beam to
determine how accurately it reflects the behavior of an actual
beam. First the flat specimen has been modelled to which the
material properties have been ascribed, as listed above. The ge-
ometry of the model corresponds to this of the actual specimens
presented in Fig. 1. The comparison of the FE results with the
four plots obtained from the experiments is provided in Fig. 9a.
It is seen that in the elastic range the behavior of the material
and its model is the same. Also the plastic flow starts at about
the same value of the load. On the plot only its initial part is
provided since it seems to be enough, bearing in mind that the
goal of the investigation is the determination of the buckling and
limit load.

As a second step of the validation, the normal stress in the
web of the B1 obtained from the strain gauge measurements has
been compared with the stress determined in the FE analysis
(see Fig. 8b). The difference in the initial stiffness manifested
by a different slope of the paths is acceptable remembering that
the FE model is not intended to reproduce the test stand but
is simplified to provide a pure bending condition in a simple
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Fig. 8. Validation of the FE model of the beam: (a) static tensile test
of the material; (b) stress in the web of the beam under bending
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way. The most important information is points marked on both
curves which correspond to subsequent stages of the loss of
stability and deformation. For both curves they are at about the
same level of load. The lower value indicates the initial loss of
stability and the higher one is related to the start of formation of
alocal folding. Although the curves differ after the second point
is exceeded, the results are acceptable because the goal was to
determine the limit load. The differences in the shape of the two
curves are the result of the final failure mode shape. In the case
of the FE model the local fold appeared near the mid-length of
the beam where the stresses were read and thus their changes
were seen when the fold on the web and then on the flange were
formed. In contrast, during the experiment the failure took place
near the support, giving a gentler curve.

4.2. Influence of the length, thickness and perforation
on buckling behavior

The first type of analysis performed in order to investigate the
buckling resistance of beams was the linear buckling analysis.
Due to it one may analyze the influence of the geometry of the
cross-section, the thickness of the sheet metal and the length of
the beam on the value of the buckling load and the corresponding
buckling mode.

This analysis also provides the opportunity to compare the
beams with different cross-sections and indicates the way to im-
prove the buckling resistance of such structures. In the present
investigation there are three different cross-sections being inves-
tigated, however, each of them exists in two different versions
— with a solid web and with the web containing perforation in
the form of small holes. For each pair of beams a separate plot
has been prepared on which the relation between the length of
the beam and the critical bending moment is shown. Three pairs
of curves correspond to three different thicknesses of the sheet
metal used to model the beam.

In the case of beams B1 and B2, the buckling shape has the
same character — the waves appear on the web, flange and the lip
(see Fig. 9). The character is similar for all analyzed thicknesses
and lengths. The difference is in the number of waves. From the
plot shown in Fig. 9 it is seen that the perforation decreases the
buckling load by 10% with the loss of the weight by about 14%.
The reason for that is that the buckling waves appear also on the
web, the stiffness of which is reduced due to perforation.
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Fig. 9. Results of buckling analysis for beams B1 and B2
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For beams B3 and B4 (see Fig. 10), the buckling load has
the form of short waves which appear on the flange and the
lip. The web remains flat due to corrugation, which increases its
stiffness. As aresult, the value of the buckling load for both types
of beams is very similar. The perforation decreases this value
by only about 1.5% whereas the mass of the beam is decreased
by about 8%.

8
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_ 4 - perforated web

E 4

=

s

~ /

§U 3 g
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t|= 0.6 mm

0
400 500 600 700 800
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Fig. 10. Results of buckling analysis for beams B3 and B4

The relation between the length and the thickness of the sheet
metal, and the buckling behavior of beams B5 and B6, shown
in Fig. 11, is more complex than for previously analyzed cases.
For longer beams made of thicker sheet metal, a global buckling
mode appears in the form of one half-wave encompassing the
whole upper flange. These cases are marked in Fig. 11 with
circles. For other beams, the local phenomenon appears in the
form of short waves located on the lip. The dashed line on the
plot corresponds to the buckling load, which has local character
(2nd and 3rd buckling modes).

35

30 "\"
25
_ - solid web bk‘\?

5 20 <‘ # - perforated web
-
23

O - global buckling

0
400 500 600 700 800
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Fig. 11. Results of buckling analysis for beams B5 and B6

From the results it follows that for beams which buckle in
a global way the corrugation decreases the buckling load by
up to 2%. For the beams which buckle locally this decrease
reaches about 1%. The weight of the beam due to perforation
has decreased by about 17%.

It is also worth to notice that the value of the linear buckling
load for beams B1 to B4 does not depend on the length of the
beam in a significant way. The differences between the values

10

for the shortest and the longest beam do not exceed 2%. Similar
results can be observed for beams B5 and B6, which buckle
locally. The influence of the length parameter on the buckling
load is clearly visible for beams which buckle in a global way.
This can be explained by the fact that there is only one half-
wave spread on the whole length of the flange and in such a case
this length influences the buckling resistance in a considerable
manner. The critical moment for the longest beam is 52% smaller
than for the shortest one for # = 1.4 mm and 22% for t = 1.0 mm.
Some additional attention should be paid to the longest version
of beams B5 and B6 for which ¢ = 1.4 mm. The first buckling
mode is a global one and the corresponding buckling load equals
about 15 kNm. However, if it would be possible to enforce a local
buckling (third buckling mode), the load could be increased
about 109%.

4.3. Comparison of beams with different cross-sections

Additional comparison have been prepared for all cross-sections
considered in the investigations. This way the influence of the
modifications of the shape of the cross-section on the buckling
resistance of the beam can be analyzed. Two families of beams
have been investigated: the first one of the length L = 500 mm
and the second one of the length L = 800 mm. The results are
presented in Fig. 12 in the form of relation between the sheet
metal thickness and the critical moment.

a) 35 b) 16
1 =500 thm _ beam|no. 5
- Eea .rw-.i * “ (=800 mm beamlno. 6
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2 ; | 12
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‘ ZN|
2 éﬁ eant no. ’1
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U.
06 0.8 1.0 12 14
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Fig. 12. Comparison of buckling loads of beams with different cross-
sections: (a) beams with the length equal to 500 mm; (b) beams with
the length equal to 800 mm

As can be expected, since the deformation of the beams due to
buckling is concentrated on the flange, modification of this part
of the beam gives the highest increase in buckling resistance.
Depending on the sheet metal thickness, the buckling strength
is about 1.2 to 4.7 times higher for beams B5 and B6 than for
other beams. The modification of the web provides the increase
of the buckling load by about 7 to 11% when beams B1 and B3
are compared, depending on the thickness parameter.

4.4. Parametric study

The shape of the cross-sections of beams investigated in this
paper has been based on the results of previous analyses, the
experience of the authors and most of all they were limited with
the manufacturing process. However, to show a broader view
of the influence of this shape on the buckling behavior of the
beam, the parametric study has been conducted for beam BS5.
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Two parameters have been introduced to control the geometry
of the cross-section. The first one is the width of the base of
the trapezoid in the flange fi, and the second one — the width
of the base of the trapezoid in the web f, (Fig. 13j). For the
parameters equal to f; =19.75 mmand f, =61.5 mm, the cross-
section takes the form of the classical lipped channel as shown
in Fig. 13g, which constitutes a reference shape for this study. If
both parameters equal zero, the most extreme case is obtained, as
shown in Fig. 13c. Other parameters describing the cross-section
are provided in Fig. 13j. Dimensions a, w and d are the same
as in the analyses presented in previous sections. Additionally,
an angle parameter @ has been introduced, the value of which
equals 30°.

a)

fiz

d d

Fig. 13. Exemplary shapes of cross-sections of beams (a—i); geometri-
cal parameters of the cross-section (j)

The finite element model is the same as in the previous anal-
yses. Only one length of the beam has been taken into account,
i.e. L =500 mm. The thickness of the reference shape is equal to
t = 1.4 mm. Thicknesses for other shapes have been determined
in such a way as to keep the weight of the beam equal to the
weight of the reference beam, which is approximately 1.94 kg.
Thicknesses of sheet metal for all analyzed models are provided
in Table 3 along with the values of the critical bending moments
corresponding to the first buckling mode.

From Table 3 it is seen that the highest buckling load equals
20.09 kNm and corresponds to the beam characterized by pa-
rameters f; = 14 mm and f> = 48 mm. Thickness of the cor-
responding sheet metal equals 1.226 mm. The corresponding
cross-section is provided in Fig. 14a.

To simplify the analysis of the results, the plot has been pre-
pared based on Table 3, which is shown in Fig. 14b. Looking at
the plot, it is seen that parameter fi has much higher influence on
the buckling resistance of the beam than parameter f>. The value
of the buckling load for a given value of f; changes only slightly
for different values of f,. For example for f; = 14 mm the dif-
ference between the highest and lowest value equals 1.8 kNm,
which is 9.1% of the highest value. For f| =2 mm the difference
reaches 20.8% and is the largest one. If similar calculations are
made for selected values of parameter f>, the differences are
between 50 and 55%. The variants with flat web and flat flange
were omitted in this calculation. The fact that parameter f, does

Table 3
Buckling loads and thickness of beams

0.0 t [mm] 1.328 | 1.307 | 1.280 | 1.229 | 1.182 | 1.139 | 1.098 | 1.060 | 1.025 | 0.992 | 0.961 | 0.932
My [Nm] | 6429.7 | 9221.5 | 13071 | 15447 | 18259 | 17199 | 14970 | 12729 | 10703 | 9176.4 | 8470.1 | 8497.0

80 ¢ [mm] 1.337 | 1.316 | 1.288 | 1.237 | 1.189 | 1.145 | 1.104 | 1.066 | 1.031 | 0.997 | 0.966 | 0.937
My [Nm] | 6558.9 | 9354.0 | 13148 | 15625 | 18372 | 17058 | 15050 | 12794 | 10759 | 9207.8 | 8345.0 | 8679.2

16.0 ¢t [mm] 1.346 | 1.325 | 1.297 | 1.245 | 1.196 | 1.152 | 1.110 | 1.072 | 1.036 | 1.002 | 0.971 | 0.941
M¢r [Nm] | 6698.8 | 9504.1 | 13468 | 16010 | 18776 | 17754 | 15453 | 13169 | 11073 | 9491.7 | 8777.8 | 8838.0

£y [mm] | 240 ¢ [mm] 1.355 | 1.334 | 1.305 | 1.252 | 1.204 | 1.158 | 1.117 | 1.078 | 1.041 | 1.007 | 0.976 | 0.946
M [Nm] | 6837.5 | 9658.1 | 13778 | 16372 | 19156 | 18147 | 15854 | 13492 | 12324 | 9715.5 | 8987.6 | 9053.3

3.0 ¢t [mm] 1.365 | 1.342 | 1.314 | 1.260 | 1.211 | 1.165 | 1.123 | 1.083 | 1.047 | 1.012 | 0.980 | 0.950
My [Nm] | 6983.6 | 9784.5 | 14133 | 16770 | 19533 | 18603 | 16237 | 13796 | 11618 | 9945.3 | 9174.5 | 9241.6

oy ¢ [mm] 1.374 | 1.352 | 1.323 | 1.268 | 1.218 | 1.172 | 1.129 | 1.089 | 1.052 | 1.018 | 0.985 | 0.955
M [Nm] | 7103.2 | 9940.0 | 14488 | 17116 | 19885 | 19031 | 16596 | 14116 | 11868 | 10195 | 9381.0 | 9449.5

48.0 t [mm] 1.384 | 1.361 | 1.331 | 1.276 | 1.226 | 1.179 | 1.136 | 1.095 | 1.058 | 1.023 | 0.990 | 0.959
My [Nm] | 7217.4 | 10092 | 14716 | 17232 | 20093 | 19411 | 16951 | 14406 | 12129 | 10404 | 10534 | 9621.2

56.0 ¢ [mm] 1.393 | 1.370 | 1.340 | 1.285 | 1.233 | 1.186 | 1.142 | 1.101 | 1.063 | 1.028 | 0.995 | 0.964
M [Nm] | 7246.9 | 10228 | 14421 | 16822 | 19776 | 19745 | 17218 | 14656 | 12331 | 10593 | 9763.7 | 9811.3

615 ¢t [mm] 1.400 | 1.377 | 1.347 | 1.290 | 1.239 | 1.191 | 1.147 | 1.106 | 1.067 | 1.032 | 0.998 | 0.967
M [Nm] | 7050.4 | 9396.3 | 12842 | 11464 | 11731 | 9946.7 | 8939.3 | 7977.0 | 6646.4 | 5996.8 | 5679.9 | 5557.1

19.75 | 19.00 | 18.00 | 16.00 | 14.00 | 12.00 | 10.00 | 8.00 6.00 4.00 2.00 0.00

f1 [mm]
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a)

f,= 48 mm
t=1.226 mm
M,=20.093 kNm

fy [(mm]

Fig. 14. Buckling loads for beams from parametric study (a) cross-
section with the highest buckling resistance; (b) critical moment as a
function of f| and f»

not influence the buckling resistance of the beam significantly
is directly related to the buckling modes which, for selected
beams, are shown in Fig. 15. For a given value of f; the mode
remains roughly the same for all values of f.
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Fig. 15. Buckling modes of selected beams

While analyzing the table from Fig. 15, it can be seen that
for the initial configuration, the buckling mode has the shape of
short waves located on the web, flange and the lip (bottom left
corner). If the corrugation of the flange increases ( f| decreases)
the flange becomes stiffer and the waves are concentrated on
the web. A similar situation can be observed for the web — for
higher corrugation (smaller values of f,) the waves disappear
from the web. For small values of both f; and f, the buckling
mode has the form of short waves located on the lip only. The
highest value of the buckling load corresponds to the buckling
mode in the form of one half-wave located on the upper flange.

12

This observation suggests that further increase of the buckling
resistance can be achieved by increasing the stiffness of the
flange.

4.5. Limit load

When thin-walled beams are to be used as structural elements,
it is necessary to investigate their post-buckling behavior and
to determine the load at which the beam loses its load capacity.
For this reason the non-linear analysis has been performed using
the arc-length method which apart from the limit load gives the
possibility to analyze the way the beam will collapse. A large
deflection effect was applied. The model was loaded with the
forces acting the same way as in the linear buckling analysis and
the convergence parameter was the force the value of which was
controlled by the system. The initial imperfections introduced
into the model had the form of the first eigenmode obtained from
the linear buckling analysis and their magnitude was equal to
1% of the sheet metal thickness.

Two types of non-linear models have been created. The first
one was a geometrically non-linear model in which the linear
elastic behavior of the material was assumed. The second one
was a geometrically and materially non-linear model. In the
latter case, the elastic-perfectly plastic model of the material
has been used. The second model gives the possibility to predict
the maximum load the beam can be loaded with before the
plastic deformation appears.

The analyses have been performed for each of the six beams.
The initial imperfections introduced into the model had the form
of the first eigenmode obtained from the linear buckling analysis
and their magnitude was equal to 1% of the sheet metal thick-
ness. The results are presented in the form of equilibrium paths.
The horizontal axis corresponds to the maximum displacement
normalized by the sheet metal thickness whereas the vertical
axis corresponds to the dimensionless bending moment which
is the bending moment applied during the analysis divided by
the critical moment. To the plots the pictures have been added
on which the deformation is shown for the case of the elastic
material, while for the case of plastic material, apart from the de-
formation, the equivalent plastic strain distribution is provided.
Additionally, to have the possibility to compare the numerical
results with the results of experiments, the equilibrium path has
been provided in which the applied moment versus the displace-
ment of the point located in the mid-length of the upper flange
is shown.

When comparing the paths presented in Figs. 16 to 21 two
different behaviors can be distinguished. For beams B1 to B4,
the flange of which is flat, the critical load is slightly below
the buckling load determined in linear buckling analysis for
both models of the material. Initially, after the buckling load
is exceeded, the paths for both materials’ models overlap each
other, which suggests that the buckling appears in an elastic
range. After that, at about 1.4 of the critical load the paths start
to separate. For the elastic material the buckling waves located
on the upper flange
and the lip increase. For the elastic-plastic material, after the
plastic limit is reached, the deformation starts to increase locally
and the collapse of the beam can be observed.
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Different behavior can be observed for beams B5 and B6,
which have a corrugated flange. Due to the corrugation, the
buckling load for these beams is distinctly higher than for the
other beams. The consequences are that the stresses reach dis-
tinctly higher values and before the buckling appears, the mate-
rial starts to flow plastically. It is seen on plots in Figs. 17 and 18
that the limit load for these beams is about 50% of the linear
buckling load.

The total deformation for beams B5 and B6 in the non-linear
analysis is the same for both materials’ models adopted and has
the global form. It is similar to the buckling mode obtained in
the linear analysis but in addition to the flange deformation in
the form of one half-wave the web also deforms.

5. COMPARISON AND CONCLUSION

In the following section, the research results will be presented,
encompassing both experimental findings and finite strip analy-
ses that were thoroughly detailed in the first part of this article.
Additionally, this section will incorporate results derived from
analytical solutions and finite element analyses. Together, these
diverse methodologies provide a comprehensive understanding
of the structural behavior of the thin-walled beams under in-
vestigation, yielding valuable insights into their stability and
load-bearing capacity.

The primary objective of this research was to assess the im-
pact of web perforations on buckling modes, stability resistance
(critical force) and ultimate load-bearing capacity (maximum
force). The critical force values obtained from all four methods
are presented in Table 4.

Table 4
Critical forces [kN], EXP — experimental tests, FSM — finite strip
method, AC — analytical calculations, FEM — finite element method

’ Beam ‘ Fergxp Ferpgy ‘ Ferae ‘ Ferppy
B1 6.00 5.07 4.60 4.80
B2 5.10 - - 4.20
B3 5.00 5.67 4.60 5.40
B4 6.50 - - 5.20
BS 14.90 31.49 23.60 13.80
B6 11.20 - - 13.60

Beams B1 and B2, with the classic lipped channel cross-
section, served as reference points for comparing the stabil-
ity results of beams with modified cross-sectional shapes. As
cross-sectional complexity increases, critical force values also
increase, indicating improved resistance to stability loss. The
highest critical force values were obtained for the beams with
trapezoidal flanges (B5 and B6), emphasizing that modified ge-
ometries positively impact stability. Quantitative analysis shows
that beam BS5, with a solid, flat web, offers nearly 2.5 times
the stability of the classical B1 cross-section, underscoring the
benefits of cross-sectional modifications for stability.
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Perforations in the web lead to a significant reduction in criti-
cal force values, which negatively impacts the beams’ resistance
to loss of stability. However, when evaluating the effect of per-
forations on structural performance, the reduction in weight of
the beams plays a crucial role. Beams with perforated webs are
lighter than those with solid webs, which is a significant ad-
vantage. Table 5 presents a dimensionless comparison of the
critical force relative to the beam’s weight, and the purpose of
this analysis is to determine whether the percentage reduction
in weight outweighs the slight decrease in critical force.

Table 5
Non-dimensional critical forces with corresponding beam weights

Beam Weight [kg] Fergyp [KN] Ferggy [KN]
Bl 5.19 6.00 4.80
B2 4.40 5.10 4.20

B1/B1 1.00 1.00 1.00

B2/B1 0.85 0.85 0.88
B3 5.25 5.00 5.40
B4 478 6.50 5.20

B3/B3 1.00 1.00 1.00

B4/B3 0.91 1.30 0.96
B5 6.31 14.90 13.80
B6 5.85 11.20 13.60

B5/B5 1.00 1.00 1.00

B6/B5 0.93 0.75 0.99

For the dimensionless comparison, beams with solid, flat
webs served as the reference cross-section for each pair. Eval-
uations were conducted separately for each pair, leading to the
following conclusions:

e Inbeams B1 and B2, the perforated beam’s weight decreased
by 15%, accompanied by a 15% reduction in critical force.

e For beams B3 and B4, the perforated beam’s weight reduced
by 9%, while the critical force increased by 30%.

e In the comparison of beams B5 and B6, the perforated
beam’s weight decreased by 7%, yet the critical force
dropped significantly, by 25%.

For pairs B1/B2 and B5/B6, the decrease in weight correlated
with the expected reduction in critical force. However, for beams
B3 and B4, the perforated beam exhibited a significant increase
in critical force despite weight reduction. Finite element anal-
ysis indicated that the critical force for beam B4 (perforated)
decreased by only 4% as compared to beam B3 (solid, flat web).
Thus, in this case, the benefits of using perforations are evident,
as the weight reduction outweighs the minor decrease in critical
force.

In the analysis of thin-walled structures, geometric imperfec-
tions significantly impact their resistance to loss of stability.

Figure 22 illustrates the geometric imperfections in beams
B1, B3 and B5. The yellow color represents the ideal CAD
dimensions, while the black line indicates the shape deviations
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projected onto the cross-sectional view along the entire length
of the beam. Beam B5 exhibits the most significant deviations.
These geometric imperfections notably affect the stability and
load-bearing capacity of bent beams and compressed columns,
as shown in the study by Pawlak et al. [30].
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Fig. 22. Geometric imperfections of the cross-sections of beams

An important innovation in this work is the modification of the
beam cross-sectional shape, which significantly increases both
critical and maximum forces, enhancing structural performance.
Additionally, while web perforations cause a slight reduction
in critical force, they lead to considerable weight reduction,
providing efficiency gains with minimal impact on stability.

6. SUMMARY

In this part of the article, conclusions from analyses conducted
using the four methods — experimental studies, finite strip analy-
sis (FSM), finite element analysis (FEM) and analytical calcula-
tions — are all presented. This broad spectrum of methodologies
enabled mutual verification of results, which was crucial given
the unique combination of cross-sectional shape modifications
and perforations in the beams analyzed. The lack of references in
the literature for such constructions necessitated additional ac-
curacy and validation, provided by the multi-method approach.

e Modifying the cross-sectional shape, as a significant inno-
vation, increases both the maximum load capacity and the
critical force; a more modified shape results in a higher
critical force, positively influencing the structure’s overall
stability.

o Perforations in the web significantly reduce beam weight, en-
hancing material efficiency and cost savings in lightweight
design. Critical force values, crucial for thin-walled struc-
ture analysis, decrease slightly relative to weight reduction,
indicating a favorable compromise between stability and
mass.

e The use of perforations balances the goal of minimizing
structure mass while maintaining high strength. This ap-
proach responds to the increasing demand for lightweight
yet durable structural solutions.

e The studies demonstrated that regardless of whether the
beams had a solid, flat web or were perforated, they experi-
enced local loss of stability. This instability mechanism was
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documented in both experimental analyses and numerical
simulations conducted using FEM.

e The influence of geometric imperfections in thin steel sheets
is significant, and discrepancies in results may stem from
these imperfections, affecting stability and load capacity.
The authors are currently undertaking a research project fo-
cused on analyzing the impact of geometric imperfections
on the strength and stability of thin-walled steel elements,
aiming for improved understanding and design recommen-

dations.
NOTATIONS
ky,kz,ky  — spring rates in the flange model for distortional buck-
ling
Jy,Jyz,J;  — moments of inertia of the cross-section
u,v,w — shear center displacement S
uUR,vR,wr — displacement components of the point R
X, 9,2 — basic beam coordinate system
x,¥9,Z — central coordinate system connected to the flange of

beam with the middle at point C
Bsz:Bsy,-Bw — Wagner’s coefficients

X,1,< — local coordinate system

My, M, — bending moments about y and z axes

YR>ZR — coordinates of the point R, lying at one end of the
midline of the wall

Vs, Zs — coordinates of the shear center S

A — cross-sectional area of the beam

B — bimoment

C — center of gravity of the beam cross-section

C — center of gravity of the flange

c’ — displaced center of gravity of the beam cross-section
for overall buckling

E — Young’s modulus

For — critical force

G — Kirchhoft’s modulus

Jy — Saint-Venant torsion constant

Jw — warping constant

L — length of the middle span subjected to pure bending

L¢ — total length

Lo — distance between supports

Lg — distance between applied force and supports

My — critical moment

Mg — bending moment

N — axial force

ré — polar radius of inertia about the shear center §

Rey = fyp  — Yyield strength

Rm=fu — ultimate strength

t — thickness

Ug — elastic deformation energy

Uen — nonlinear elastic deformation energy
Ug — linear elastic deformation energy

w — work of external forces

w — deflection of the wall towards ¢
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Zc — coordinate of the beam section center in the coordinate system
associated with the flange
. . . . . L
k — coefficient depending on the ratio of wall dimensions A = W
and parameter 3
ker — critical coefficient depending on the ratio of wall dimensions
L
A= ’ and parameter 8
— slenderness of the beam
v — Poisson’s ratio
— mass density
0g — bending stress
oy — normal stress in the x-axis direction
Y — torsion angle
Y1 — dimensionless parameter
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