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Abstract. In this study, the methods used for the detection of sub-station pollution failures in district heating and cooling (DHC) systems are
analyzed. In the study, high, medium, and low-level pollution situations are considered and machine learning methods are applied for the detection
of these failures. Random forest, decision tree, logistic regression, and CatBoost regression algorithms are compared within the scope of the
analysis. The models are trained to perform fault detection at different pollution levels. To improve the model performance, hyperparameter
optimization was performed with random search optimization, and the most appropriate values were selected. The results show that the CatBoost
regression algorithm provides the highest accuracy and overall performance compared to other methods. The CatBoost model stood out with an
accuracy of 0.9832 and a superior performance. These findings reveal that CatBoost-based approaches provide an effective solution in situations
requiring high accuracy, such as contamination detection in DHC systems. The study makes an important contribution as a reliable fault detection

solution in industrial applications.
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1. INTRODUCTION

District heating and cooling (DHC) systems play an important
role in urban energy management. These systems provide ef-
ficient heating and cooling to buildings, increasing energy ef-
ficiency and reducing costs. However, the reliability of DHC
systems can be compromised by various failures. This neces-
sitates the development of an effective fault detection and di-
agnosis (FDD) model. Traditional methods, especially manual
checks, are insufficient to handle the complexities of modern
DHC systems [1].

In recent years, advances in data-driven techniques, espe-
cially machine learning (ML) based approaches, offer promis-
ing solutions to these problems. However, the lack of compre-
hensive and high-quality data sets limits the effectiveness of
these models [2, 3]. This shortcoming has led researchers to
rely on synthetic data sets generated by simulations or open
data sources. Among ML algorithms, logistic regression, de-
cision tree, random forest, and CatBoost regression have been
successfully applied for fault detection in DHC systems. How-
ever, these methods proved to have limitations, especially for
subtle problems such as thermal losses [4]. Strategies such as
the integration of real-time data with simulation results are un-
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der investigation to improve model robustness [5]. Historically,
fault detection often relies on reactive methods, which in most
cases are inefficient and costly [6]. Today, modern data analytics
methods, ML, and deep learning techniques can provide earlier
warnings by detecting trends before failures occur [7, 8].

This study compares ML algorithms such as logistic regres-
sion, decision tree, random forest, and CatBoost regression for
the detection of pollution faults in DHC substations. The dataset
used in the study is synthetically generated and represents dif-
ferent pollution levels (high, medium, low). To optimize the
performance of the models, hyperparameter adjustments were
performed and the random search optimization method was used
in this process. The results show that the CatBoost regression
algorithm provides the highest accuracy rate (98.32%) and the
best overall performance compared to other methods. The main
objective of the study is to improve early fault detection in DHC
systems, especially to provide solutions to complex problems
such as pollution. However, along with the advantages of the
CatBoost regression model, challenges such as the need for
large data sets and the need for validation with real-world data
have also been noted.

This paper contributes to the literature by presenting the ap-
plicability of ML for fault detection and its implications for
industrial applications. Section 1 provides an overview of the
problem, Section 2 reviews the literature related to the study,
and Section 3 presents the materials and methods. Section 4
presents the discussion and conclusions, while Section 5 details
future work and general conclusions.

© 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)


https://orcid.org/0000-0002-0181-3658
https://orcid.org/0000-0001-8461-8702
mailto:emrah.aslan@dicle.edu.tr

N

www.czasopisma.pan.pl P N www.journals.pan.pl

<

M. Cinar, E. Aslan, and Y. Oziipak

2. LITERATURE REVIEW

The literature on FDD in DHC systems reveals a growing em-
phasis on leveraging advanced analytical techniques to address
operational inefficiencies. Traditional methods, while effective
inidentifying obvious failures, often fall short in detecting subtle
issues. ML and hybrid approaches have emerged as promising
alternatives, offering robust solutions to complex problems. This
section synthesizes key studies that highlight both the progress
and gaps in this domain, providing a comprehensive background
for the current research.

FDD in DHC systems has been a prominent research topic,
focusing on identifying and mitigating failures that can disrupt
system efficiency. Common failures at the DHC system level
include issues related to sensors, actuators, and commission-
ing, which can often be monitored using available process data.
The literature extensively discusses generic methods for de-
tecting sensor-related failures through operational data analysis.
For instance, IEA DHC Annex XIII provides a comprehensive
overview of typical failures in DHC systems, serving as a foun-
dational framework for fault detection studies [9, 10].

Panday et al. [11] explored fault detection methodologies
in boilers and combined heat and power systems, identifying
critical strategies for improving operational reliability. Simi-
larly, Hundi and Shavari [12] examined inefficiencies in DHC
systems, emphasizing the importance of identifying subtle op-
erational anomalies. Gadd and Werner [13] noted that many
failures occur at substations, often due to heat load pattern ir-
regularities and poor control mechanisms. These findings are
further supported by Buffa ef al. [14] and Mansson et al. [15],
who provided in-depth analyses of substation-level failures and
detection methods. Leoni et al. [16] highlighted that improper
configuration of substation valves often results in elevated return
temperatures, exacerbating system inefficiencies.

In a study by Bilici and Ozdemir, three mathematical models
were developed with meteorological data to forecast Turkey’s
natural gas demand [17]. The scarcity of high-quality data fur-
ther challenges the development of robust, data-driven fault de-
tection models. Hybrid ML approaches, which integrate real-
world data with simulation outputs, have shown considerable
potential for diagnosing faults across various energy systems,
including DHC [18].

Simulation-based datasets have also played a crucial role in
evaluating DHC system failures. For example, a dataset designed
for fault detection in DHC systems demonstrated the effective-
ness of five ML models, underscoring the importance of inte-
grating simulation results in model development [19]. Bilici et
al. compared four different meta-heuristic algorithms to forecast
Turkey’s natural gas demand. In the models trained with 2010-
2017 data and tested with 2018-2020 data, the quadratic model
of the particle swarm optimization algorithm showed the most
successful forecasting performance [20]. Leakage fault detec-
tion using ML has achieved significant results, with an accuracy
of 85.85%, providing a foundation for further advancements in
the field [21].

This study contributes to the existing literature by focusing on
contamination detection in DHC substations through a detailed

comparative analysis of advanced regression-based ML models.
Unlike previous studies that primarily emphasize leakage or
actuator failures, this work addresses the underexplored area
of fouling-induced contamination. By employing a simulation-
based dataset and optimizing model performance using random
search optimization, this study achieves a high accuracy rate of
98.32% with the CatBoost regression model. Not only do these
findings highlight the applicability of regression models for fault
detection but also provide actionable insights for improving
system efficiency and reliability in industrial DHC applications.

3. MATERIALS AND METHODS

In this study, different ML algorithms are used for the detec-
tion of sub-station pollution faults in DHC systems. logistic re-
gression, decision tree, random forest, and CatBoost regression
methods are modeled and optimized to detect faults according
to pollution levels. The dataset used in the study is synthetically
generated and contains errors representing different pollution
concentrations (high, medium, and low) through simulations.
The dataset is split into 70% training and 30% test data to mea-
sure the performance of the models and evaluate their general-
ization capabilities. The hyperparameter settings of the models
were optimized with the random search optimization method
and the best results were obtained for each algorithm. The re-
sults are compared using performance metrics such as accuracy,
Matthews correlation coefficient, and processing time [22,23].
This section presents the development process of the proposed
model, describing the scope of the study and the details of the
applied methods.

3.1. Dataset

The dataset used in this study contains synthetic error data for
substation contamination in DHC systems. The dataset was de-
veloped within the scope of the International Energy Agency’s
(IEA) DHC Annex XIII project “Artificial Intelligence Fault
Detection and Prediction of Heat Production and Demand in
District Heating Networks”. The project aims to develop arti-
ficial intelligence methods for the prediction of heat demand
and production and to evaluate the algorithms used for fault
detection. The experiments in the dataset were created through
simulations covering 28 days. During this time, failures at dif-
ferent time points were observed and pollution conditions of
different intensities (high, medium, and low) were integrated
into the model. Failures were simulated through scenarios that
could occur suddenly or gradually. Fault intensities can be in-
terpreted in different ways depending on the simulation model
used. This dataset provides a valuable resource for the develop-
ment of new approaches for fault detection in DHC systems.
The dataset used in the study is divided into two parts for
model training and testing, 70% training and 30% testing. The
training data is used to complete the learning process of the
models, while the test data is used to evaluate the overall perfor-
mance of the models. This approach is preferred as a standard
method to measure the generalization capacity of the models
and to objectively evaluate their performance. The basic statisti-
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cal information of the dataset, the names of the input variables,
and their respective descriptions are presented in Table 1. This
information provides a detailed overview of the scope of the
study and the structure of the dataset.

Table 1
Basic statistical information about the data used in the dataset
’ Variable ‘ Explanation ‘ Min ‘ Max ‘
BC 1d of the bour'ldary CO.IldltIOIlS used 0 12
for this experiment
F1_type Type of fault used in the experiment 0 1
F1_start Start time of the fault, in hours 0 671
F1_stop Stop time of the fault, in hours 0 672
F1_init Imtla.l intensity of the fault, 0 1
in the range [0-1]
F1_final F1na¥ intensity of the fault, 0 1
in the range [0-1]

The heating and cooling sources, storage units, and flow to
residential and commercial buildings are shown in the simplified
block diagram of a DHC system in Fig. 1. The diagram sum-
marises the operational framework of the system, which serves
as the basis for the fault detection methods discussed in this

paper.

Heating
storage Unidirectional
unit(s) water flow
Heating return pipeline
¥
h Heating supply pipeline

Heating source(s)

Cooling source(s)
Cooling supply pipeline

1 BE X ° L
Cooling retumn pipeling

Cooling

storage
unit(s)

Fig. 1. DHC system block diagram [24]

3.2. Logistic regression

Logistic regression is a statistical ML method used for clas-
sification problems. The method uses a sigmoid function to
estimate the probability that the dependent variable belongs to a
certain category. The model produces a finite output (for exam-
ple, O or 1) using a linear combination of independent variables.
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The predicted probabilities are compressed by the sigmoid func-
tion between 0 and 1 and classified according to a threshold value
(usually 0.5). The basic mathematical expression of a logistic
regression model

ho(x) = — (1)
1+

e—0Tx ’

where hg(x) is the probability that an observation belongs to
a class, 6 is the model parameters, and x is the values of the
independent variables. The loss function is defined as negative
log-likelihood in logistic regression and is written as

1 & . .
Jo= — [ ON (h (z))
0= ; ylog|ho(x™)
+(1=yD)log (1= ho ()] @)
This function is used to optimize the model parameters.

3.3. Decision tree

Decision tree is an algorithm that performs classification or
regression tasks by branching the data. At each node, the data
is divided and subdivided according to a specific feature and
threshold value. This process is optimized using a measure of
data purity (e.g., Gini coefficient or information gain).

The Gini coefficient used as a purity measure of a decision
tree is calculated as

n
Gini=1->"p}, 3)
i=1

where p; is the probability of belonging to the i-th class.

Decision tree models provide fast learning but often tend to
overfit. Therefore, the complexity of the model is controlled by
methods such as pruning.

3.4. Random forest

Random forest is an ensemble version of decision tree algo-
rithms. It creates multiple decision trees and combines the re-
sults of these trees for classification or regression tasks [25].
Each tree is trained on a random sampling of the dataset and a
subset of features. In classification problems, the vote of each
tree is taken to determine the final class; in regression, the trees
are averaged. The basic mathematical expression of random for-
est is

B
WA @
b=1

where B is the total number of trees and f, (x) is the prediction
result of the b-th tree.

3.5. CatBoost regression

CatBoost is a gradient-boosting algorithm optimized for cate-
gorical data. Unlike other boosting algorithms, it reduces the
need for data preprocessing by automatically coding categorical
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variables. It also uses an innovative ordered boosting mechanism
to avoid overfitting.

The main goal of CatBoost is to generate successive forecasts
using decision trees to minimize the loss function. The gradient
boosting procedure of the model can be described as

Frp1(x) = Fip(x) +'yhm(x), )

where F,,(x) are the predictions of the model at the m-th itera-
tion, h,, (x) are the weak students generated by the decision tree,
and v is the learning.

3.6. Random search optimization

Random search optimization is a widely used technique for
hyperparameter optimization that offers a simple approach. This
method is an optimization process in which hyperparameters
are randomly selected in various ranges of values. Basically, a
specific range is defined for each hyperparameter and random
values are selected from this range. The performance of the
model is then evaluated for each selected combination [26,27].

This method is particularly preferred when the hyperparam-
eter space is very large or when other optimization techniques
are costly and complex to implement. One of the advantages
of random search is that the probability of reaching the global
optimum is higher because the parameters are chosen randomly,
so the probability of getting stuck in a local minimum is lower.

Compared to methods such as grid search, random search
can achieve better results with a much smaller number of tri-
als. This is because grid search tests all possible values of each
parameter, while random search takes only a few random sam-
ples, which can be more time-efficient. Mathematically, random
search operates on a set of hyperparameters 6 and selects a
random combination of hyperparameters,

6" = argrggi(fw), (6)

where 6 represents a randomly chosen combination of hyper-
parameters in the hypothesis space, A is the space containing
all possible hyperparameter combinations, f(6) is an objective
function that measures the performance of the model, usually
accuracy, error rate, or some other performance metric. 6* de-
notes the hyperparameter combination that achieves the best
performance. As a result, random search optimization often
provides more efficient hyperparameter optimization and can
achieve good results in a shorter time, avoiding high computa-
tional costs.

3.7. Generation of synthetic failure dataset

To develop the dataset, potential failure modes were first iden-
tified through failure modes, effects, and criticality analysis
(FMECA). Various failure scenarios were then modeled based
on these identified modes. The simulations were designed to
replicate different fault profiles, including both step and ramp
failures, under a variety of conditions, such as fluctuating out-
door temperatures and varying heat demand. Additionally, criti-
cal parameters, such as the onset time of faults and their severity
levels, were incorporated into the simulation process.

The dataset was intentionally diversified to mimic real-world
conditions by randomly selecting the fault onset times and the as-
sociated severities. Each simulation instance recorded essential
variables, ensuring that the dataset was structured and format-
ted appropriately for training ML models used in FDD tasks.
This diversity in the data helps in capturing the complexity and
variability found in actual system operations.

In the simulations, failure profiles were modeled as either step
or ramp types. A step profile represents a sudden onset of a fault,
whereas a ramp profile simulates a gradual development of the
fault over time. The failure dynamics were further defined by
the following parameters:

Start time (7#9): The moment when the fault begins, initiating
the fault condition.

End time (7,): This parameter is specific to ramp profiles,
marking the point in time when the fault reaches its maximum
severity.

Start intensity (vo): The intensity of the fault at the moment
of onset, which always starts at zero.

Final severity (v, ): The final severity level of the fault, rang-
ing from O to 1, where 1 indicates the maximum severity of the
fault.

These parameters were used to construct various fault scenar-
ios within the simulations, ensuring a comprehensive dataset
that could be used for different types of fault detection tasks.
The severity of faults in the dataset was expressed on a scale
from O to 1, where O represents the absence of any fault, and 1
signifies the highest possible severity level for that fault type.
This scale of severity is model-dependent and varies depending
on the fault type simulated.

Figure 2 illustrates the fault appearance profiles used in the
simulation process. The left side of the figure depicts the ramp
profile for faults that gradually increase in severity, while the
right side shows the step profile for faults that occur abruptly.
These profiles serve as the basis for generating synthetic fault
data used in the ML models for detection and diagnosis.

Vv, V,
14 14

Vi |- - - r—

v

to

Fig. 2. Fault appearance profiles used in the simulation (left: ramp for
advancing faults, right: step for abrupt faults) [19]

4. RESULTS AND DISCUSSION

In this study, four different regression methods are applied to
detect pollution failures in DHC systems. These methods are
logistic regression, decision tree, random forest, and CatBoost
regression. The dataset used consists of synthetic fault data gen-
erated by Modelica simulations. In the dataset, high, medium,
and low pollution scenarios were created and these scenarios
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were divided into 70% training and 30% testing data to test
the accuracy of the model. While the training data supported
the learning process of the model, the test data was used to
objectively evaluate the performance of the models.

In this study, four regression models were utilized for fault
detection in DHC systems: logistic regression, decision tree,
random forest, and CatBoost regression. Each of these models
has distinct advantages and disadvantages, depending on the
type of problem and the data used. Below, a summary of the ad-
vantages and disadvantages of each model is provided, followed
by Table 2 summarizing these aspects for clarity.

Table 2
Advantages and disadvantages of regression models
Regression .
Advantages Disadvantages
model
— Simple and easy to . .
>1mp y — Struggles with nonlinear
implement . .
. . . relationships
Logistic | — Efficient for binary .
. . . — Underperforms with
regression classification .
. e highly correlated
— Provides probabilistic
features
output
— Intuitive and easy to
interpret .
— Prone to overfittin
.. — Can handle both o J
Decision . — Sensitive to small
categorical and .
tree : changes in data
continuous data . .
. — Less robust in noisy data
— Captures nonlinear
relationships
— Combines multiple
decision trees for better | — Computationally
Random accuracy expensive
forest | — Robust and less prone to | — Difficult to interpret due
overfitting to many trees
— Can handle large datasets
— Optimized for .
P . — Computationally
categorical data intensive
CatBoost | — Excellent handling of .
. . — Requires more memory
regression | imbalanced datasets
.. and resources than
— Minimal data .
. . simpler models
preprocessing required

To improve the performance of the model, the hyperparame-
ters of each regression model were optimized using the random
search optimization algorithm. This method aims to identify the
best model parameters by making random choices in the hyper-
parameter space. The optimization process was performed to
obtain the optimal results by evaluating different combinations
of hyperparameters for each model. Table 3 shows the hyper-
parameters set for each regression model and their values. This
method was used as an effective strategy to improve the overall
accuracy of the model and achieve better performance.

The hyperparameter ranges used in our study were determined
by considering studies in the literature and the characteristics of
the methods. These ranges aim to comprehensively address crit-
ical variables that may affect model performance. The random
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Table 3
Hyperparameters tuned for regression models using random search
optimization
Regression model Hyperparameter Op\t/iarlnuiged

Logistic regression C Tuned
Solver Ibfgs
Max iterations 1000

Decision tree Max depth 10
Min samples split 2
Min samples leaf 1
Max features None

Random forest Number of estimators 100
Max depth 10
Min samples split 2
Min samples leaf 1

CatBoost regression Learning rate 0.1
Depth 6
L2 regularization term 3
Iterations 1000

search optimization method scans these ranges and determines
the optimal combinations that improve model performance. This
process aims to minimize bias in parameter selection and im-
prove the generalisability of the model.

In this study, four different regression models are used for
fault detection in DHC systems: logistic regression, decision
tree, random forest, and CatBoost regression. The performance
of the models was evaluated using key metrics such as accuracy,
Matthews correlation coefficient (MCC), and elapsed time. Ta-
ble 4 clearly shows the performance of each model on these
metrics and these results reflect the capacity of the models to
detect contamination failures in DHC systems.

Table 4
Performance metrics for the regression algorithms
Algorithms Accuracy i\g?rt.t}:;\::fs. El(?;ifi:;;le
Logistic regression 0.8723 0.7286 14.35
Decision tree 0.9051 0.8125 32.15
Random forest 0.9506 0.9012 60.25
CatBoost regression 0.9832 0.9664 112.50

First, the highest performance in terms of accuracy came
from the CatBoost regression model, which achieved the best
results with an accuracy of 98.32%. This high accuracy rate
demonstrates the success of CatBoost in capturing patterns in
complex datasets. The random forest model ranked second with
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an accuracy of 95.06%, while the decision tree and logistic
regression models performed lower with 90.51% and 87.23%
accuracy rates respectively. The lower accuracy of the decision
tree may be due to its tendency to overlearn (overfitting). Logistic
regression, on the other hand, is a simpler model and did not
model the non-linear relationships in the dataset well enough.

Matthews correlation coefficient (MCC) is a metric that mea-
sures the accuracy of each model as well as the balance of the
classification, providing a more accurate performance assess-
ment in imbalanced data sets. The CatBoost regression model
scored the highest among all models with an MCC value of
0.9664. Random forest ranked second with an MCC value of
0.9012, while decision tree and logistic regression performed
lower with MCC values of 0.8125 and 0.7286, respectively.
These results show that CatBoost is successful in correctly clas-
sifying both positive and negative classes.

The processing times of the four regression models used in
the study were analyzed to shed light on the practical use of the
algorithms in different application scenarios. The fastest model
was logistic regression with a processing time of 14.35 seconds.
This was followed by the decision tree at 32.15 seconds and
the random forest at 60.25 seconds. The CatBoost regression
model, which has the highest accuracy rate, had a processing
time of 112.50 seconds.

The long processing time of CatBoost regression reflects the
gradient-boosting structure of the algorithm and the large num-
ber of trees used. This shows that while faster models, such as
logistic regression or random forest, may be preferred in appli-
cations requiring a quick response, CatBoost is a superior option
when high accuracy is required.

Figure 3 compares the performance of various ML algo-
rithms in terms of accuracy, the Matthews correlation coefficient

Performance Metrics of Regression Algorithms
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Fig. 3. Comparison of accuracy performance of ML algorithms

(MCC), and processing time. In terms of accuracy, CatBoost re-
gression achieved the highest performance with an accuracy
rate of 98.32%, followed by random forest (95.06%), decision
tree (90.51%), and logistic regression (87.23%). These results
indicate that CatBoost regression provides superior classifica-
tion performance, making it the most suitable algorithm for this
dataset.

The Matthews correlation coefficient (MCC) values further
emphasize the robustness of CatBoost regression, as it obtained
the highest MCC value (0.9664), indicating a well-balanced
classification in terms of true positives and true negatives. Ran-
dom forest (0.9012) and decision tree (0.8125) displayed moder-
ate performance, while logistic regression had the lowest MCC
value (0.7286). The high MCC value of CatBoost regression
underscores its effectiveness in minimizing false positives and
negatives compared to other algorithms.

In terms of computational cost, the processing time results re-
veal that logistic regression is the fastest algorithm (14.35 sec-
onds), followed by decision tree (32.15 seconds) and random
forest (60.25 seconds). CatBoost regression, despite its high ac-
curacy and MCC, is the slowest algorithm with a processing time
of 112.50 seconds. These findings suggest that while CatBoost
regression excels in performance metrics, faster algorithms like
logistic regression may be more suitable for applications requir-
ing quick results.

The Confusion matrix in Fig. 4 is used to evaluate the pre-
diction performance of the model. According to the results, the
model performed very well with an accuracy rate of 98.32%. No
errors were made in the prediction of the negative class (False
Positive: 0), while 979 samples were classified as false negative
in the positive class (False Negative). The Precision value calcu-
lated for the positive class was 100%, indicating that all positive
predictions were correct. The Recall value was 95.74%, indicat-
ing that the positive class was correctly detected at a high rate.
The F1-Score was 97.81%, indicating a balanced performance
between Precision and Recall. These results prove that the model
provides a reliable solution, especially in fault detection, and is
suitable for industrial applications.

Confusion Matrix

True Label

Predicted Label

Fig. 4. Confusion matrix

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 3, p. €154063, 2025



www.czasopisma.pan.pl P N www.journals.pan.pl
PO AKADEMIA N

Comparison and optimization of machine learning methods for fault detection in district heating and cooling systems

In Fig. 5, the performance of the CatBoost regression model
at different pollution levels (75% very high, 20% and 11%
medium, and 5% low) is analyzed in terms of fault detection

probability and UA (heat transfer coefficient) values. At an ex-
tremely high pollution level (75%), with a sharp drop in the
UA value, the model showed a high accuracy rate, detecting the

Case with very high fouling (75%)
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Fig. 5. Performance of the CatBoost regression model
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fault quickly and accurately. In this case, there were no false de-
tections, demonstrating the reliability of the model at this level.
At medium pollution levels (20% and 11%), the change in the
UA value was slower, but the model successfully detected the
fault. However, slight delays in detection time were observed
at medium levels, indicating the effect of the rate of pollution
increase on the model. At the low pollution level (5%), although
the change in the UA value was quite slow, the CatBoost model
correctly detected the fault and performed its task with minimal
false detections. In general, the CatBoost regression model is
characterized by fast and accurate detection, especially at high
pollution levels, and adaptive and reliable performance at low
and medium levels. These findings confirm that the model offers
an effective solution for critical applications such as contamina-
tion detection in DHC systems.

The ground truth expression in Fig. 5 refers to the reference
values that reflect the reality of the labeled data in the dataset.
These values are used to ensure that anomalies or normal con-
ditions occurring in the system are correctly classified.

5. CONCLUSIONS

This study was conducted using various regression models,
namely logistic regression, decision tree, random forest, and
CatBoost regression models for fault detection in DHC systems.
The performance of the models is evaluated by key metrics
such as accuracy, MCC, and processing time. CatBoost regres-
sion was the most successful model with the highest accuracy
(98.32%) and MCC (0.9664). Random forest performed well
with high accuracy (95.06%) and balanced MCC (0.9012), of-
fering a good balance between high accuracy and computational
efficiency. Although CatBoost provides the best results, consid-
ering the high processing time (112.50 seconds), random forest
may be a more efficient alternative for real-time applications
where time constraints are important. The decision tree and lo-
gistic regression models, although faster, achieved lower results
in terms of accuracy and MCC, and are therefore less suitable
for complex fault detection tasks. In conclusion, although Cat-
Boost regression is the most accurate model for fault detection
in DHC systems, it should be considered in terms of processing
time. Random forest offers a strong alternative in terms of per-
formance and computational efficiency, while decision tree and
logistic regression may be preferable for simpler tasks where
speed is of the utmost importance. In future work, strategies can
be developed to improve computational performance without
compromising model accuracy.
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