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Abstract: This paper presents a method of diagnosing a squirrel-cage induction motor
based on the results of machine vibration analysis. The paper considers a fault involving
an interturn short circuit in the winding of all phases of the stator. The waveforms of the
diagnostic signals were recorded for selected configurations of winding shorts during steady
state operation of the motor under constant torque load. In the next step of the study, wavelet
packet decomposition was used to analyze the recorded waveforms of the vibration signals.
The study focused on determining the correlation between the wavelet analysis results and
the number of shorted turns. In addition, the effect of the wavelet used in the wavelet packet
analysis on the correlation results was compared. As a result, a method was developed to
detect shorted turns in the stator winding of an induction motor based on the results of
wavelet packet analysis of the motor vibration.

Key words: correlation, diagnostic method, induction machine, shorted turns, vibrations,
wavelet packet analysis

1. Introduction

The diminishing natural resources of the planet, which are vital for industrial processes, highlight
the need for greater focus on extending the operational lifespan of machinery. Technological
advancement plays a pivotal role in this endeavor, as it can markedly reduce production costs
and enhance the efficiency of machinery. This is closely intertwined with the crucial aspect of
equipment diagnostics.
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Induction machines are one of the most commonly utilized devices in industry [18], employed
in a multitude of sectors, including the production of belts, fans and compressors [1,2]. As
has been documented in numerous publications, some of the most common forms of damage
observed in induction machines pertain to the stator winding area. The most common cause of
stator damage in induction machines is the formation of coil short circuits [3,6,7]. In contrast
to multiphase short circuits or ground faults, the impact of a short circuit in a single phase of
the motor is often less perceptible. Furthermore, despite the occurrence of such a short circuit,
the machine may continue to operate. A short circuit has a direct impact on the electromagnetic
circuit of the machine, resulting in phenomena such as rotor misalignment or increased vibration.
This can result in the destabilization of the entire system, which, in the long term, may result in
permanent damage to the machine. Consequently, there is frequently an increase in mechanical
and thermal loads, which further contribute to the deterioration of components. This can result
in the premature failure of elements such as bearings, windings, and other critical components.
Furthermore, the regular occurrence of short circuits can also result in a reduction of the lifespan
of the machine, necessitating more frequent repairs and maintenance procedures, which in turn
give rise to additional costs.

In the field of electrical machine diagnostics, a plethora of diagnostic methods exist, including
thermal imaging analysis [8, 9], partial discharge analysis (PDA) [10, 11], electrical signature
analysis (ESA) [12, 13], motor current signature analysis (MCSA) [5, 14-16], and vibro-acoustic
analysis. Thermal imaging analysis employs the use of thermal cameras to identify any temperature
anomalies, which may indicate the presence of an overload or damage to the object in question.
Partial discharge analysis is of great importance in the assessment of insulation conditions,
particularly in high-voltage motors, where it is able to identify potential points of insulation failure.
Concurrently, the examination of electrical signals through techniques such as ESA or MCSA
entails the assessment of parameters including voltage and current, with the objective of identifying
both electrical irregularities such as short circuits or supply asymmetries, and mechanical faults.
As previously stated, one of the numerous diagnostic techniques for induction machines is the
vibration-acoustic method, which employs a vibration signal [4]. This method encompasses both
vibration and acoustic analysis. Vibration analysis is a process that entails the measurement and
assessment of the vibrations produced by a machine with the objective of identifying potential
issues such as imbalance or bearing faults. In contrast, acoustic analysis entails the monitoring
of the sounds generated by the machine, which can potentially reveal additional types of fault,
such as those pertaining to gear system issues. Although the vibroacoustic method has been
successfully employed to detect mechanical damage in the structural components of induction
motors, this article proposes its utilization for the identification of damage in the electrical circuitry
of the machine. The vibration-acoustic method is distinguished by its non-invasive nature, as it
does not necessitate the cessation of machine operation during diagnosis. This quality renders
it particularly advantageous for the continuous operation of essential machinery. Furthermore,
the straightforwardness of the connection process facilitates straightforward implementation. The
early detection of faults is beneficial in preventing unexpected breakdowns and costly periods
of downtime. The high sensitivity of this method to changes in machine conditions renders it
areliable tool for predictive maintenance strategies, thereby enabling optimized maintenance and
extended equipment life.

Nevertheless, the obtained time performance results are entirely illegible and necessitate
sophisticated analysis to be accurately interpreted. In order to address this challenge, the authors
of this paper employ the technique of Wavelet Packet Decomposition as a means of analyzing the
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vibration signal waveform. Wavelet Packet Decomposition is a modern technique that decomposes
a signal into various frequency components, thereby significantly enhancing analytical capabilities
for the detection and interpretation of subtle anomalies.

The results of the wavelet analysis were correlated with the number of shorted turns in induction
machines, thus enabling a precise correlation between vibration data and the actual defects. This
approach not only enhances the clarity and interpretability of the data but also facilitates the early
detection of potential faults. By decomposing the signal into its constituent frequency components,
this method permits the identification of anomalies that may be indicative of early-stage failure.
As a result, this approach offers a comprehensive framework for diagnosing intricate issues in
induction machines.

2. Experimental procedure for vibration data acquisition

A measurement system was designed and constructed for the purpose of recording machine
vibration waveforms. A three-axis SVANTEK SV 150 accelerometer, coupled with a 958A meter
acting as a signal amplifier, was employed for the purpose of recording and archiving the vibration
waveforms of the induction motor. The 3SIE100L4B squirrel-cage induction motor, manufactured
by Celma Indukta, was selected for testing purposes. In order to facilitate the testing of inter-turn
short circuits, the machine was prepared by leading selected turn wires outside the housing. A
diagram of the measurement system is provided in Fig. 1 for reference.

Data recordi g

[t

= 1

== |

Tested induction
machine \

Fig. 1. The configuration of the measurement system
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Figure 2 presents a flow chart that illustrates the algorithm of the developed software.

@

Start Data Recording Process:
e Set measurement parameters (e.g.,
sampling frequency, number of channels).
¢ Begin recording data from the
measurement system.

Data Acquisition:
® Read data from individual channels of the
measurement cards.
e Temporarily store data in memory.

Data Processing:
 Scale data according to required units or
ranges.
o Calculate basic signal parameters, such as
the root mean square (RMS) value.
e Perform Fast Fourier Transform (FFT)
analysis on the measurement data.

Saving Results:
¢ Automatically save the results of the
analysis and processed data to files on the
computer’s hard drive.
v
Data Visualization:
e Generate plots and visualizations of
signals for control purposes.
 Display FFT results and other analyzed
data.

5

Registering another
signal?

Completion of Data Recording and
Archiving:
* End the data recording session.
* Save all relevant results and analysis
outcomes in archival files.

Disconnect:
 Disconnect from the measurement
system.
® Close the MATLAB program and release
system resources.
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 Verify the accuracy of saved data and
results.
© Prepare a report of the measurements
and analyses conducted.

@

Fig. 2. The algorithmic approach employed for the measurement
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The National Instruments CompactDAQ housing, equipped with a set of measurement cards,
was employed for the purpose of recording the waveforms. The measurement configuration was
managed using the manufacturer’s DAQ Express software, while MATLAB was employed for
the archiving of measurements on disk and subsequent processing. The vibration transducer
employed permitted the utilisation of the machine’s vibration acceleration waveform for the
subsequent test procedures. In order to facilitate the experimental research, software was developed
using the MATLAB environment. The software automates the process of recording and archiving
measurement data. Furthermore, the software enables communication with the measurement system,
the reading of data from individual measurement card channels, the automatic saving of results to
the computer’s hard drive, and signal processing, including the scaling of measurement data, the
calculation of signal parameters such as the root mean square (RMS) value, the performance of
FFT analysis, and the simultaneous visualisation of waveforms for control purposes.

Measurements were performed for specified values of the number of shorted turns, as well as
load torque. All possible combinations of parameters are illustrated in Fig. 3. It should be noted
that the phases were not distinguished during the measurements, which may have introduced some
degree of inconsistency.
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Fig. 3. The combination of measurements

In total, 315 distinct tests were conducted. The selected measurement results of the machine
vibration signal waveforms are presented in Fig. 4. The figure illustrates the waveform of a healthy
machine and a machine with four shorted turns in the stator winding. In both cases, the machine
was operated at its rated torque.

In order to provide greater precision in the observation of the characteristics, Fig. 5 depicts the
same graph for a more concise period of time.



346 M. Marczak, W. Pietrowski, K. Gorny Arch. Elect. Eng.

0.07 T i
Healthy
Faulty

0.06 -

0.05 -

0.04
0.03 -
0.02
0.01 -

T

acceleration, a (111/52)

-0.01 |

-0.02 | I | | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

time, t (s)

Fig. 4. The waveforms of vibration acceleration for a healthy and a damaged machine, with a time scale from
0 to 0.01 seconds
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Fig. 5. The waveform of vibration acceleration for a healthy and damaged machine, with a temporal duration
of 0 to 0.005 seconds
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It can be observed that the vibration patterns of a healthy and damaged machine exhibit distinct
frequency characteristics. Concurrently, these waveforms are characterised by high non-stationarity.
Accordingly, an appropriate analytical methodology must be employed for the examination of such
signals. One such method is wavelet packet analysis.

3. Wavelet packet decomposition for vibration signal analysis

A wavelet transform is employed for the analysis of a signal through the utilisation of Packet
Wavelet Analysis. Wavelet analysis is a mathematical method that enables the decomposition of
signals into components at various scales, thereby facilitating the simultaneous analysis of local
features in both the time and frequency domains. The wavelet transform is a more flexible tool
than the Fourier transform, making it particularly effective for examining nonlinear, discontinuous,
and dynamically changing signals.

Wavelet analysis significantly enhances the ability to detect short circuits in the stator winding
at an early stage of fault development. By enabling the simultaneous examination of local signal
features in both the time and frequency domains, this method allows for the identification of subtle
changes in signal structure that are undetectable using traditional techniques. The application of
wavelet transformation in vibration studies enables the precise detection of discontinuities and
transient events characteristic of the initial stages of faults.

The point at which short circuits become visible in the vibration signal depends on the severity
of the fault and the sensitivity of the analytical tools employed. Wavelet transformation, combined
with statistical methods and artificial intelligence techniques, facilitates earlier detection of signal
changes. This approach ensures more effective diagnosis, even in cases where signal differences
are minimal, providing critical insights for machine condition monitoring and failure prevention.

From a mathematical perspective, wavelet analysis employs the use of functions designated as
wavelets, which possess a finite duration and can be scaled and shifted to accurately represent
the various components of a signal. This process entails the utilisation of the discrete wavelet
transform (DWT), which decomposes the signal into details (high-frequency components) and
approximations (low-frequency components). This is accomplished through the utilisation of
low-pass and high-pass filters. The low-pass filter permits the passage of low frequencies, thereby
generating the approximation signal, whereas the high-pass filter allows high frequencies to
pass through, thus creating the detail signal. This technique enables the efficient analysis and
interpretation of complex vibration patterns, the detection of transient events, and the reduction of
noise, which is of great importance in engineering monitoring and diagnostics. More information
on wavelet analysis can be found in the paper [17].

The available collection of wavelets is both comprehensive and extensive, comprising a vast
array of diverse and sophisticated forms. Wavelets are classified according to a principle known as
the “mother wavelet”, which is employed to ascertain the fundamental structure of the group. The
most commonly utilised wavelets can be categorised into the following groups: the Daubechies,
Coiflet, Symlet, biorthogonal, and other wavelets. In this article, the authors present the results
for three distinct Daubechies wavelets: Daubechies 3, 5, and 7 (db3, db5, and db7, respectively).
Daubechies wavelets were selected for this study due to their exceptional properties that make
them highly suitable for signal processing and analysis. Specifically, Daubechies wavelets are
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known for their compact support and orthogonality, which enable efficient computation and precise
localization in both time and frequency domains. Their ability to represent signals with sharp
discontinuities and to capture intricate details makes them ideal for analyzing complex datasets.
Additionally, the different orders of Daubechies wavelets (db3, dbS, db7) offer varying degrees of
smoothness and vanishing moments, providing flexibility in balancing signal approximation and
detail preservation. This selection allows for a comprehensive analysis by leveraging the strengths
of each wavelet order to capture a wide range of signal characteristics. The waveforms for all the
applied wavelets are presented in Fig. 6, while the parameters are shown in Fig. 7.

The filter coefficients for the wavelet db3, db5 and db7 are provided in Table 1.

Table 1. Values of wavelet coefficient

Coefficient db3 dbs db7
hO 0.3326706 0.0033357 0.0003537
hl 0.8068915 -0.0125808 -0.0018016
h2 0.4598775 -0.0062415 0.0004296
h3 -0.1350110 0.0775715 0.0125510
h4 —-0.0854413 —-0.0322449 -0.0165745
h5 0.0352263 —0.2422949 —-0.0380299
h6 0.1384281 0.0806126
h7 0.7243085 0.0713092
h8 0.6038293 -0.2240362
h9 0.1601024 —0.1439060
h10 0.4697823
hll 0.7291321
h12 0.3965393
h13 0.0778521

In this study, the Daubechies wavelets db3, db5, and db7 were selected for the analysis of
vibration signals from induction machines due to their excellent time-frequency localisation
properties, which are essential for the detection of transient and non-stationary faults. The
db3 wavelet is effective in capturing subtle changes and transient events within the signal,
thereby providing a clear and detailed analysis of the machine’s operational conditions. The
combination of simplicity and effectiveness makes it an appropriate selection for both computational
efficiency and accurate fault detection. Furthermore, the established history of success in machine
diagnostics guarantees dependability and resilience in the analysis. This selection enhances the
diagnostic procedure, facilitating more expedient identification of faults and enabling more precise
maintenance planning.

Given the non-stationary nature of the machine’s vibration waveforms, it was determined
that Packet Wavelet Analysis would be the most appropriate analytical technique to employ.
This analysis entails the filtering of the input signal into its approximation and detail. This is
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Fig. 6. The Daubechies wavelet waveforms are presented in red (db3), green (db5), and blue (db7)
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accomplished through the utilisation of low-pass and high-pass filters, respectively. The distinction
between this and the discrete wavelet transform (DWT) lies in the subsequent step of the wavelet
packet decomposition (WPD) analysis, wherein both the approximation and detail are subjected to
filtration. As a result, the analysed signal is decomposed into a set of approximations and details.
The complete process can be represented in the form of a decomposition tree, as illustrated in Fig. 8.

A Measurement D
— —
7/ N\ ' N\
AA AD DA DD
7/ N\ ' N\ 7/ N /7 N
AAA AAD ADA ADD DAA DAD DDA DDD

Fig. 8. The decomposition tree in wavelet packet analysis

The subsequent stage of the analysis involved the calculation of the energy associated with the
approximations and details present in the nodes of the decomposition tree at the lowest level. The
calculation of the signal’s energy in a wavelet decomposition tree necessitates an analysis of the
energy distribution across the various frequency bands represented by the wavelet coefficients at
different decomposition levels. By summing the squares of the wavelet coefficients at each level, the
energy of the signal can be quantified, thereby providing insight into the signal’s characteristics and
the presence of anomalies. The aforementioned energy calculation is instrumental in identifying
significant components and transient events, which are frequently indicative of faults or alterations
in the machine’s operational state. For each node n in the wavelet packet tree, calculate the energy
E,, by summing the squares of its coefficients:

Ey=>)cl, (1)

i=1

where ¢, ; are the coefficients for node n and N, is the number of coefficients in node ».

4. Selected results of diagnostic signal analysis

The vibration waveforms of a healthy machine and a damaged machine were selected for
Packet Wavelet Analysis for 9 load torque values, i.e., from no-load to a load of 105% of the rated
torque. For the tests on the faulty machine, the waveforms of the vibrations were considered for
the number of shorted turns ranging from 1 to 4 for all wavelets tested. Using the above formula,
the energy for each node was calculated and the results are presented sequentially in Fig. 9 for db3,
Fig. 10 for db5, and Fig. 11 for db7.
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Fig. 9. Results of Packet Wavelet Analysis of the vibration signal using the db3 wavelet
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Fig. 10. Results of Packet Wavelet Analysis of the vibration signal using the db5 wavelet
The evaluation of the charts displayed above is rendered challenging by their substantial

similarity. Accordingly, the decision was taken to calculate the mean of all the values and to
determine the standard deviations. The results of these calculations are presented in Fig. 12.
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As can be observed, the greatest standard deviation is evident in the DDA node. The results
demonstrate that the various wavelets under examination exhibit comparable outcomes. It is
therefore evident that the deployment of a higher-order wavelet is not a viable proposition in this
particular context.

The results of the Packet Wavelet Analysis are shown in Fig. 13. The healthy machine is coloured
green, and the faulty machine is coloured red. The figure shows the tendency that as the number
of shorted turns increases, the percentage of energy transferred for the obtained ADA and DDA
increases. This phenomenon would be almost impossible to observe with a smaller number of cases.
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Fig. 13. The waveforms of vibration acceleration for a healthy and faulty machine, presented at two different
resolutions: (a) low resolution and (b) detail

Subsequent research was conducted with the objective of identifying the relationship between
machine vibrations and the number of short-circuited turns in its stator winding. To achieve this,
the correlation between the two aforementioned quantities was calculated using the following
methodology. The Pearson correlation coefficient was selected for this purpose, as it is widely
used in statistical analysis to measure the strength and direction of a linear relationship between
two variables. Its application in this study allows for a clear evaluation of how changes in the
number of short-circuited turns affect the vibration signal, providing valuable insights into the
diagnostic potential of vibration analysis. The general form of the Pearson correlation coefficient
is presented in Eq. (2)

1 (A=) (Bi - s
p(A,B)—N_I;( - )( - ) @)

In this context, u4 and o4 represent the mean and standard deviation of A, while up and op
correspond to the mean and standard deviation of B.

The A value represents the energy values for the subsequent nodes of the decomposition tree
for the reference signal, whereas the B values pertain to the correlated one. Table 2 illustrates the
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values of A and B, which are employed in the calculation of the correlation in a healthy machine
between the signal measured at 7 = 0and T = Ty.

Table 2. Example values for A and B

Node of decomposition tree A B
AAA 99.1590 98.8261
AAD 0.3491 0.5534
ADA 0.1196 0.1869
ADD 0.1646 0.2252
DAA 0.0292 0.0188
DAD 0.0331 0.0243
DDA 0.0944 0.1158
DDD 0.0510 0.0471

A correlation matrix was obtained by calculating the correlation between all measured
waveforms for a specific machine fault condition and a variable load torque. The matrix for
a healthy machine and single-phase faults is depicted in Fig. 14 as a plane.

The correlation results presented in Fig. 14 provide clear evidence of the distinctions between
the degrees of damage caused by the machine. In the context of low load torque values, the
correlation is most tenuous in the case of a healthy machine. Nevertheless, as the load torque
increases, a notable correlation becomes evident.

The experiments were repeated, this time utilising the remaining wavelets (db5 and db7), and
the results are presented in Fig. 15.

While patterns can still be discerned in the plots, the assessment of fault is now considerably
more ambiguous. In both cases, for a machine in good working order, the correlations between
the plots for high torque values are relatively low, while they are high for low torque values. To
facilitate a more detailed analysis, green markers with varying degrees of fill were incorporated,
and the results are presented in Fig. 16.

Figure 16 provides a more detailed illustration of the reduced correlation observed between the
examined signals when the db3 wavelet is employed, particularly in the context of a healthy machine.
Conversely, for the db5 and db7 wavelets, regions can be identified where these correlations are
higher (for low torque values) and lower (for high torque values).

In the final step, the correlation values were compared by calculating the difference between
the values obtained for the healthy machine and the faulty one. The db3 wavelet was employed for
the requisite transformations, and the resulting data are presented in Fig. 17.

The high level of correlation is particularly evident for the points calculated for cases exhibiting
high load torques. As demonstrated in the chart above, these areas represent the optimal conditions
for observing the correlation, which is essential for achieving optimal results.
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5. Conclusions

This paper presents a method for diagnosing interturn short circuits in different phases of
the stator winding of a squirrel-cage induction machine by analysing its vibrations. A dedicated
measurement system was developed for the study, which allowed the simulation of faults in all
phases of the machine and the adjustment of the torque. The resulting data from these simulations
were subjected to Packet Wavelet Analysis using the third, fifth and seventh Daubechies wavelets.
The results clearly show that this analysis is crucial for interpreting aperiodic waveforms, such as
the vibration accelerations recorded.

The energy of the derived waveforms was then calculated. By comparing the energy values
under different scenarios, clear trends emerged, indicating their potential application in diagnostic
techniques. The next step was to calculate the correlation between the previously obtained energy
characteristics under different load torques, with the results presented as a three-dimensional
surface plot. By comparing the surfaces representing a healthy machine with those of a machine
with varying degrees of failure, characteristic points were identified, revealing trends that help to
assess the condition of the machine. To improve visualisation, two-dimensional projections of the
graphs were also created, along with colour markers to highlight specific results. Analysis of these
visualisations supports the effectiveness of the proposed diagnostic method in identifying faults in
squirrel-cage induction machines.

The conclusions drawn in this article suggest the need for further research to extend these
findings, in particular by analysing a wider range of cases. In particular, the development of
a classification method based on machine learning that exploits the observed dependencies is
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recommended. The described method, which combines wavelet analysis and correlation, could also
be applied to the diagnosis of other types of rotating machinery and different fault conditions. In
conclusion, the vibration-based diagnostic approach for squirrel-cage induction machines proposed
in this article shows promise but requires further research to fully validate its industrial application.
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