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Abstract: This paper presents a method of diagnosing a squirrel-cage induction motor 
based on the results of machine vibration analysis. The paper considers a fault involving 
an interturn short circuit in the winding of all phases of the stator. The waveforms of the 
diagnostic signals were recorded for selected configurations of winding shorts during 
steady state operation of the motor under constant torque load. In the next step of the 
study, wavelet packet decomposition was used to analyze the recorded waveforms of the 
vibration signals. The study focused on determining the correlation between the wavelet 
analysis results and the number of shorted turns. In addition, the effect of the wavelet 
used in the wavelet packet analysis on the correlation results was compared. As a result, a 
method was developed to detect shorted turns in the stator winding of an induction motor 
based on the results of wavelet packet analysis of the motor vibration. 
Key words: correlation, diagnostic method, induction machine, shorted turns, vibrations, 
wavelet packet analysis 

 
 
 

1. Introduction 
 
The diminishing natural resources of the planet, which are vital for industrial processes, 

highlight the need for greater focus on extending the operational lifespan of machinery. 
Technological advancement plays a pivotal role in this endeavor, as it can markedly reduce 
production costs and enhance the efficiency of machinery. This is closely intertwined with the 
crucial aspect of equipment diagnostics. 

Induction machines are one of the most commonly utilized devices in industry [18], 
employed in a multitude of sectors, including the production of belts, fans and compressors [1, 
2]. As has been documented in numerous publications, some of the most common forms of 
damage observed in induction machines pertain to the stator winding area. The most common 
cause of stator damage in induction machines is the formation of coil short circuits [3, 6, 7]. In 
contrast to multiphase short circuits or ground faults, the impact of a short circuit in a single 
phase of the motor is often less perceptible. Furthermore, despite the occurrence of such a 
short circuit, the machine may continue to operate. A short circuit has a direct impact on the 
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electromagnetic circuit of the machine, resulting in phenomena such as rotor misalignment or 
increased vibration. This can result in the destabilization of the entire system, which, in the 
long term, may result in permanent damage to the machine. Consequently, there is frequently 
an increase in mechanical and thermal loads, which further contribute to the deterioration of 
components. This can result in the premature failure of elements such as bearings, windings, 
and other critical components. Furthermore, the regular occurrence of short circuits can also 
result in a reduction of the lifespan of the machine, necessitating more frequent repairs and 
maintenance procedures, which in turn give rise to additional costs. 

In the field of electrical machine diagnostics, a plethora of diagnostic methods exist, 
including thermal imaging analysis [8, 9], partial discharge analysis (PDA) [10, 11], electrical 
signature analysis (ESA) [12, 13], motor current signature analysis (MCSA) [5, 14–16], and 
vibro-acoustic analysis. Thermal imaging analysis employs the use of thermal cameras to 
identify any temperature anomalies, which may indicate the presence of an overload or 
damage to the object in question. Partial discharge analysis is of great importance in the 
assessment of insulation conditions, particularly in high-voltage motors, where it is able to 
identify potential points of insulation failure. Concurrently, the examination of electrical 
signals through techniques such as ESA or MCSA entails the assessment of parameters 
including voltage and current, with the objective of identifying both electrical irregularities 
such as short circuits or supply asymmetries, and mechanical faults. As previously stated, one 
of the numerous diagnostic techniques for induction machines is the vibration-acoustic 
method, which employs a vibration signal [4]. This method encompasses both vibration and 
acoustic analysis. Vibration analysis is a process that entails the measurement and assessment 
of the vibrations produced by a machine with the objective of identifying potential issues such 
as imbalance or bearing faults. In contrast, acoustic analysis entails the monitoring of the 
sounds generated by the machine, which can potentially reveal additional types of fault, such 
as those pertaining to gear system issues. Although the vibroacoustic method has been 
successfully employed to detect mechanical damage in the structural components of induction 
motors, this article proposes its utilization for the identification of damage in the electrical 
circuitry of the machine. The vibration-acoustic method is distinguished by its non-invasive 
nature, as it does not necessitate the cessation of machine operation during diagnosis. This 
quality renders it particularly advantageous for the continuous operation of essential 
machinery. Furthermore, the straightforwardness of the connection process facilitates 
straightforward implementation. The early detection of faults is beneficial in preventing 
unexpected breakdowns and costly periods of downtime. The high sensitivity of this method to 
changes in machine conditions renders it a reliable tool for predictive maintenance strategies, 
thereby enabling optimized maintenance and extended equipment life. 

Nevertheless, the obtained time performance results are entirely illegible and necessitate 
sophisticated analysis to be accurately interpreted. In order to address this challenge, the 
authors of this paper employ the technique of Wavelet Packet Decomposition as a means of 
analyzing the vibration signal waveform. Wavelet Packet Decomposition is a modern 
technique that decomposes a signal into various frequency components, thereby significantly 
enhancing analytical capabilities for the detection and interpretation of subtle anomalies. 

The results of the wavelet analysis were correlated with the number of shorted turns in 
induction machines, thus enabling a precise correlation between vibration data and the actual 
defects. This approach not only enhances the clarity and interpretability of the data but also 
facilitates the early detection of potential faults. By decomposing the signal into its constituent 
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frequency components, this method permits the identification of anomalies that may be 
indicative of early-stage failure. As a result, this approach offers a comprehensive framework 
for diagnosing intricate issues in induction machines. 

 
 

2. Experimental procedure for vibration data acquisition 
 
A measurement system was designed and constructed for the purpose of recording 

machine vibration waveforms. A three-axis SVANTEK SV150 accelerometer, coupled with a 
958A meter acting as a signal amplifier, was employed for the purpose of recording and 
archiving the vibration waveforms of the induction motor. The 3SIE100L4B squirrel-cage 
induction motor, manufactured by Celma Indukta, was selected for testing purposes. In order 
to facilitate the testing of inter-turn short circuits, the machine was prepared by leading 
selected turn wires outside the housing. A diagram of the measurement system is provided in 
Fig. 1 for reference. 

 

 

Fig. 1. The configuration of the measurement system 
 
The National Instruments CompactDAQ housing, equipped with a set of measurement 

cards, was employed for the purpose of recording the waveforms. The measurement 
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configuration was managed using the manufacturer's DAQ Express software, while MATLAB 
was employed for the archiving of measurements on disk and subsequent processing. The 
vibration transducer employed permitted the utilisation of the machine's vibration acceleration 
waveform for the subsequent test procedures. In order to facilitate the experimental research, 
software was developed using the MATLAB environment. The software automates the 
process of recording and archiving measurement data. Furthermore, the software enables 
communication with the measurement system, the reading of data from individual 
measurement card channels, the automatic saving of results to the computer's hard drive, and 
signal processing, including the scaling of measurement data, the calculation of signal 
parameters such as the root mean square (RMS) value, the performance of FFT analysis, and 
the simultaneous visualisation of waveforms for control purposes. Figure 2 presents a flow 
chart that illustrates the algorithm of the developed software. 
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START

System Initialization:
 Launch the MATLAB environment.
 Load the required libraries and modules

Establish Connection with the 
Measurement System:

 Configure communication settings (e.g., 
ports, protocols).

 Establish a connection with the 
measurement system.

Start Data Recording Process:
 Set measurement parameters (e.g., 

sampling frequency, number of channels).
 Begin recording data from the 

measurement system.

Data Acquisition:
 Read data from individual channels of the 

measurement cards.
 Temporarily store data in memory.

Registering another 
signal?

STOP

Yes No

Data Processing:
 Scale data according to required units or 

ranges.
 Calculate basic signal parameters, such as 

the root mean square (RMS) value.
 Perform Fast Fourier Transform (FFT) 

analysis on the measurement data.

Saving Results:
 Automatically save the results of the 

analysis and processed data to files on the 
computer’s hard drive.

Data Visualization:
 Generate plots and visualizations of 

signals for control purposes.
 Display FFT results and other analyzed 

data.

Completion of Data Recording and 
Archiving:

 End the data recording session.
 Save all relevant results and analysis 

outcomes in archival files.

Disconnect:
 Disconnect from the measurement 

system.
 Close the MATLAB program and release 

system resources.

Verification and Reporting:
 Verify the accuracy of saved data and 

results.
 Prepare a report of the measurements 

and analyses conducted.
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Fig. 2. The algorithmic approach employed for the measurement 
 
Measurements were performed for specified values of the number of shorted turns, as well 

as load torque. All possible combinations of parameters are illustrated in Fig. 3. It should be 
noted that the phases were not distinguished during the measurements, which may have 
introduced some degree of inconsistency. 

 

 

Fig. 3. The combination of measurements 
 
In total, 315 distinct tests were conducted. The selected measurement results of the 

machine vibration signal waveforms are presented in Fig. 4. The figure illustrates the 
waveform of a healthy machine and a machine with four shorted turns in the stator winding. In 
both cases, the machine was operated at its rated torque. 

In order to provide greater precision in the observation of the characteristics, Fig. 5 depicts 
the same graph for a more concise period of time. 
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Fig. 4. The waveforms of vibration acceleration for a healthy and a damaged machine, with a time scale 
from 0 to 0.01 seconds 
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Fig. 5. The waveform of vibration acceleration for a healthy and damaged machine, with a temporal 
duration of 0 to 0.005 seconds 

 
It can be observed that the vibration patterns of a healthy and damaged machine exhibit 

distinct frequency characteristics. Concurrently, these waveforms are characterised by high 
non-stationarity. Accordingly, an appropriate analytical methodology must be employed for 
the examination of such signals. One such method is wavelet packet analysis. 

 
 

3. Wavelet packet decomposition for vibration signal analysis 
 
A wavelet transform is employed for the analysis of a signal through the utilisation of 

Packet Wavelet Analysis. Wavelet analysis is a mathematical method that enables the 
decomposition of signals into components at various scales, thereby facilitating the 
simultaneous analysis of local features in both the time and frequency domains. The wavelet 
transform is a more flexible tool than the Fourier transform, making it particularly effective 
for examining nonlinear, discontinuous, and dynamically changing signals. 

Wavelet analysis significantly enhances the ability to detect short circuits in the stator 
winding at an early stage of fault development. By enabling the simultaneous examination of 
local signal features in both the time and frequency domains, this method allows for the 
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identification of subtle changes in signal structure that are undetectable using traditional 
techniques. The application of wavelet transformation in vibration studies enables the precise 
detection of discontinuities and transient events characteristic of the initial stages of faults. 

The point at which short circuits become visible in the vibration signal depends on the 
severity of the fault and the sensitivity of the analytical tools employed. Wavelet 
transformation, combined with statistical methods and artificial intelligence techniques, 
facilitates earlier detection of signal changes. This approach ensures more effective diagnosis, 
even in cases where signal differences are minimal, providing critical insights for machine 
condition monitoring and failure prevention. 

From a mathematical perspective, wavelet analysis employs the use of functions 
designated as wavelets, which possess a finite duration and can be scaled and shifted to 
accurately represent the various components of a signal. This process entails the utilisation of 
the discrete wavelet transform (DWT), which decomposes the signal into details (high-
frequency components) and approximations (low-frequency components). This is 
accomplished through the utilisation of low-pass and high-pass filters. The low-pass filter 
permits the passage of low frequencies, thereby generating the approximation signal, whereas 
the high-pass filter allows high frequencies to pass through, thus creating the detail signal. 
This technique enables the efficient analysis and interpretation of complex vibration patterns, 
the detection of transient events, and the reduction of noise, which is of great importance in 
engineering monitoring and diagnostics. More information on wavelet analysis can be found 
in the paper [17]. 

The available collection of wavelets is both comprehensive and extensive, comprising a 
vast array of diverse and sophisticated forms. Wavelets are classified according to a principle 
known as the "mother wavelet," which is employed to ascertain the fundamental structure of 
the group. The most commonly utilised wavelets can be categorised into the following groups: 
the Daubechies, Coiflet, Symlet, biorthogonal, and other wavelets. In this article, the authors 
present the results for three distinct Daubechies wavelets: Daubechies 3, 5, and 7 (db3, db5, 
and db7, respectively). Daubechies wavelets were selected for this study due to their 
exceptional properties that make them highly suitable for signal processing and analysis. 
Specifically, Daubechies wavelets are known for their compact support and orthogonality, 
which enable efficient computation and precise localization in both time and frequency 
domains. Their ability to represent signals with sharp discontinuities and to capture intricate 
details makes them ideal for analyzing complex datasets. Additionally, the different orders of 
Daubechies wavelets (db3, db5, db7) offer varying degrees of smoothness and vanishing 
moments, providing flexibility in balancing signal approximation and detail preservation. This 
selection allows for a comprehensive analysis by leveraging the strengths of each wavelet 
order to capture a wide range of signal characteristics. The waveforms for all the applied 
wavelets are presented in Fig. 6, while the parameters are shown in Fig. 7. 
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Fig. 6. The Daubechies wavelet waveforms are presented in red (db3), green (db5), and blue (db7) 
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Fig. 7. The parameters of the high-pass filter (brown) and low-pass filter (orange) for db3, db5, and db7 

 
The filter coefficients for the wavelet db3, db5 and db7 are provided in Table 1. 
 

Table 1. Values of wavelet coefficient 

Coefficient db3 db5 db7 

h0 0.3326706 0.0033357 0.0003537 

h1 0.8068915 –0.0125808 –0.0018016 

h2 0.4598775 –0.0062415 0.0004296 

h3 –0.1350110 0.0775715 0.0125510 

h4 –0.0854413 –0.0322449 –0.0165745 

h5 0.0352263 –0.2422949 –0.0380299 

h6  0.1384281 0.0806126 

h7  0.7243085 0.0713092 

h8  0.6038293 –0.2240362 
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h9  0.1601024 –0.1439060 

h10   0.4697823 

h11   0.7291321 

h12   0.3965393 

h13   0.0778521 

 
In this study, the Daubechies wavelets db3, db5, and db7 were selected for the analysis of 

vibration signals from induction machines due to their excellent time-frequency localisation 
properties, which are essential for the detection of transient and non-stationary faults. The db3 
wavelet is effective in capturing subtle changes and transient events within the signal, thereby 
providing a clear and detailed analysis of the machine's operational conditions. The 
combination of simplicity and effectiveness makes it an appropriate selection for both 
computational efficiency and accurate fault detection. Furthermore, the established history of 
success in machine diagnostics guarantees dependability and resilience in the analysis. This 
selection enhances the diagnostic procedure, facilitating more expedient identification of faults 
and enabling more precise maintenance planning. 

Given the non-stationary nature of the machine's vibration waveforms, it was determined 
that Packet Wavelet Analysis would be the most appropriate analytical technique to employ. 
This analysis entails the filtering of the input signal into its approximation and detail. This is 
accomplished through the utilisation of low-pass and high-pass filters, respectively. The 
distinction between this and the discrete wavelet transform (DWT) lies in the subsequent step 
of the wavelet packet decomposition (WPD) analysis, wherein both the approximation and 
detail are subjected to filtration. As a result, the analysed signal is decomposed into a set of 
approximations and details. The complete process can be represented in the form of a 
decomposition tree, as illustrated in Fig. 8. 

 

 

Fig. 8. The decomposition tree in wavelet packet analysis 
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The subsequent stage of the analysis involved the calculation of the energy associated with 
the approximations and details present in the nodes of the decomposition tree at the lowest 
level. The calculation of the signal's energy in a wavelet decomposition tree necessitates an 
analysis of the energy distribution across the various frequency bands represented by the 
wavelet coefficients at different decomposition levels. By summing the squares of the wavelet 
coefficients at each level, the energy of the signal can be quantified, thereby providing insight 
into the signal's characteristics and the presence of anomalies. The aforementioned energy 
calculation is instrumental in identifying significant components and transient events, which 
are frequently indicative of faults or alterations in the machine's operational state. For each 
node n in the wavelet packet tree, calculate the energy En by summing the squares of its 
coefficients: 

 𝐸௡ = ∑ 𝑐௡,௜
ଶே೙

௜ୀଵ , (1) 

where cn,i are the coefficients for node n and Nn is the number of coefficients in node n. 
 
 

4. Selected results of diagnostic signal analysis 
 
The vibration waveforms of a healthy machine and a damaged machine were selected for 

Packet Wavelet Analysis for 9 load torque values, i.e., from no-load to a load of 105% of the 
rated torque. For the tests on the faulty machine, the waveforms of the vibrations were 
considered for the number of shorted turns ranging from 1 to 4 for all wavelets tested. Using 
the above formula, the energy for each node was calculated and the results are presented 
sequentially in Fig. 9 for db3, Fig. 10 for db5, and Fig. 11 for db7. 
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Fig. 9. Results of Packet Wavelet Analysis of the vibration signal using the db3 wavelet 

 

 

Fig. 10. Results of Packet Wavelet Analysis of the vibration signal using the db5 wavelet 
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Fig. 11. Results of Packet Wavelet Analysis of the vibration signal using the db7 wavelet 

 
The evaluation of the charts displayed above is rendered challenging by their substantial 

similarity. Accordingly, the decision was taken to calculate the mean of all the values and to 
determine the standard deviations. The results of these calculations are presented in Fig. 12. 
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Fig. 12. The standard deviation values for the wavelets db3, db5, and db7 

 
As can be observed, the greatest standard deviation is evident in the DDA node. The 

results demonstrate that the various wavelets under examination exhibit comparable outcomes. 
It is therefore evident that the deployment of a higher-order wavelet is not a viable proposition 
in this particular context. 

The results of the Packet Wavelet Analysis are shown in Fig. 13. The healthy machine is 
coloured green, and the faulty machine is coloured red. The figure shows the tendency that as 
the number of shorted turns increases, the percentage of energy transferred for the obtained 
ADA and DDA increases. This phenomenon would be almost impossible to observe with a 
smaller number of cases. 
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(a)                                                                                   (b) 

Fig. 13. The waveforms of vibration acceleration for a healthy and faulty machine, presented at two 
different resolutions: (a) low resolution and (b) detail 

 
 
Subsequent research was conducted with the objective of identifying the relationship 

between machine vibrations and the number of short-circuited turns in its stator winding. To 
achieve this, the correlation between the two aforementioned quantities was calculated using 
the following methodology. The Pearson correlation coefficient was selected for this purpose, 
as it is widely used in statistical analysis to measure the strength and direction of a linear 
relationship between two variables. Its application in this study allows for a clear evaluation of 
how changes in the number of short-circuited turns affect the vibration signal, providing 
valuable insights into the diagnostic potential of vibration analysis. The general form of the 
Pearson correlation coefficient is presented in Eq. (2) 

 𝜌(𝐴, 𝐵) =
ଵ

ேିଵ
∑ ቀ

஺೔ିఓಲ

ఙಲ
ቁ ቀ

஻೔ିఓಳ

ఙಳ
ቁே

௜ୀଵ . (2) 

In this context, μA and σA represent the mean and standard deviation of A, while μB and σB 

correspond to the mean and standard deviation of B. 
The A value represents the energy values for the subsequent nodes of the decomposition 

tree for the reference signal, whereas the B values pertain to the correlated one. Table 2 
illustrates the values of A and B, which are employed in the calculation of the correlation in a 
healthy machine between the signal measured at T = 0 and T = TN. 

 
Table 2. Example values for A and B 

Node of decomposition tree A B 

AAA 99.1590 98.8261 
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AAD 0.3491 0.5534 

ADA 0.1196 0.1869 

ADD 0.1646 0.2252 

DAA 0.0292 0.0188 

DAD 0.0331 0.0243 

DDA 0.0944 0.1158 

DDD 0.0510 0.0471 

 
A correlation matrix was obtained by calculating the correlation between all measured 

waveforms for a specific machine fault condition and a variable load torque. The matrix for a 
healthy machine and single-phase faults is depicted in Fig. 14 as a plane. 
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Fig. 14. Correlation plane, three-dimensional view, and bottom projection 

 
The correlation results presented in Fig. 14 provide clear evidence of the distinctions 

between the degrees of damage caused by the machine. In the context of low load torque 
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values, the correlation is most tenuous in the case of a healthy machine. Nevertheless, as the 
load torque increases, a notable correlation becomes evident. 

The experiments were repeated, this time utilising the remaining wavelets (db5 and db7), 
and the results are presented in Fig. 15. 

 

 

Fig. 15.  Graphs for db5 (left) and db7 (right) 

 
While patterns can still be discerned in the plots, the assessment of fault is now 

considerably more ambiguous. In both cases, for a machine in good working order, the 
correlations between the plots for high torque values are relatively low, while they are high for 
low torque values. To facilitate a more detailed analysis, green markers with varying degrees 
of fill were incorporated, and the results are presented in Fig. 16. 
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Fig. 16. Plot of markers: original plot (left), low green marker – 60% (centre), high green marker 
− 80% (right) 

 
Figure 16 provides a more detailed illustration of the reduced correlation observed between 

the examined signals when the db3 wavelet is employed, particularly in the context of a 
healthy machine. Conversely, for the db5 and db7 wavelets, regions can be identified where 
these correlations are higher (for low torque values) and lower (for high torque values). 

In the final step, the correlation values were compared by calculating the difference 
between the values obtained for the healthy machine and the faulty one. The db3 wavelet was 
employed for the requisite transformations, and the resulting data are presented in Fig. 17. 
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Fig. 17. The differentiation between machines that are in a state of good health and those that are not 

 
The high level of correlation is particularly evident for the points calculated for cases 

exhibiting high load torques. As demonstrated in the chart above, these areas represent the 
optimal conditions for observing the correlation, which is essential for achieving optimal 
results. 

 
 

5. Conclusions 
 
This paper presents a method for diagnosing interturn short circuits in different phases of 

the stator winding of a squirrel-cage induction machine by analysing its vibrations. A 
dedicated measurement system was developed for the study, which allowed the simulation of 
faults in all phases of the machine and the adjustment of the torque. The resulting data from 
these simulations were subjected to Packet Wavelet Analysis using the third, fifth and seventh 
Daubechies wavelets. The results clearly show that this analysis is crucial for interpreting 
aperiodic waveforms, such as the vibration accelerations recorded. 

The energy of the derived waveforms was then calculated. By comparing the energy values 
under different scenarios, clear trends emerged, indicating their potential application in 
diagnostic techniques. The next step was to calculate the correlation between the previously 
obtained energy characteristics under different load torques, with the results presented as a 
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three-dimensional surface plot. By comparing the surfaces representing a healthy machine 
with those of a machine with varying degrees of failure, characteristic points were identified, 
revealing trends that help to assess the condition of the machine. To improve visualisation, 
two-dimensional projections of the graphs were also created, along with colour markers to 
highlight specific results. Analysis of these visualisations supports the effectiveness of the 
proposed diagnostic method in identifying faults in squirrel-cage induction machines. 

The conclusions drawn in this article suggest the need for further research to extend these 
findings, in particular by analysing a wider range of cases. In particular, the development of a 
classification method based on machine learning that exploits the observed dependencies is 
recommended. The described method, which combines wavelet analysis and correlation, could 
also be applied to the diagnosis of other types of rotating machinery and different fault 
conditions. In conclusion, the vibration-based diagnostic approach for squirrel-cage induction 
machines proposed in this article shows promise but requires further research to fully validate 
its industrial application. 
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