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Efficient algorithms for navigation of underwater
vehicles with communication constraints. An overview

Bhaskar Jyoti TALUKDAR, Bibhuti Bhusan PATI and Bikramaditya DASo

Because of the Autonomous Underwater Vehicles (AUVs) potential for use in marine and
oceanographic research, as well as in sectors like environmental monitoring and oil and gas
development, underwater exploration and offshore wind energy, research in the underwater en-
vironment has gained a lot of attention in recent years. AUV navigation in the complicated and
unpredictable underwater environment is one of the biggest challenges. Research in underwater
technology has advanced dramatically, and current AUVs with proper path planning can operate
for prolonged periods of time at vast depths to complete the underwater operations. This study
investigates several paths planning techniques, classifying them as local or global strategies,
and incorporates classical, graph-based, and intelligent optimization algorithms to improve nav-
igation and obstacle avoidance. The examination focuses on the history of these approaches,
demonstrating their increased efficiency in dynamic and complicated situations. This overview
addresses the challenges that AUVs encounter in the maritime environment, notably in terms of
course navigation planning and communication constraints. When applying these algorithms to
AUV path planning issues, researchers frequently include extra limitations and goals unique to
underwater environments, such as currents, obstructions, energy consumption, and communica-
tion constraints. It places a strong emphasis on navigating an ideal path between the starting to
the end point. The global and local components of the path planning method are used to address
underwater navigation under communication constraint. The several path-planning techniques
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for AUVs using efficient navigation algorithms are briefly discussed in this review study based on
their advantages and disadvantages. A suggestion for additional research on AUV path planning
is made on effectiveness of the reported path planning the strategies will serve as a catalyst to
inspire researchers within the field to concentrate on specific issues identified for the future ad-
vancement of AUVs. The global and local path planning methods are used to address navigation
based on tradition, group intelligent optimization and graph search algorithms.

Key words: AUV, navigation strategies, path planning, optimization, communication constraints,
underwater communication constraints

1. Introduction

Globally, ideas and initiatives in underwater environment are applied to so-
cietal concerns as technology advances. AUVs have an extensive list of uses in
civilian as well as military uses, which includes underwater, the field of geo-
science underwater pipeline assessment, cooperative investigation and research,
visual assessment of hydroelectric dams, marine exploration, etc. in the midst of
complicated and unreliable marine environments [1–4]. Control architectures for
the AUVs and sensor data bus-based control architecture are the thrust research
area in underwater exploration. The research method for navigating path uses
high resolution camera/ sensors to elucidate the actual AUV position and ve-
locity to enhance the vision-based localization accuracy in the underwater AUV
environment [5]. The outcome of the camera position and improved navigation
method was implemented based on the localization and mapping approach used
in path planning. The sensors connected in AUV are used for application pur-
poses, designated for task allocation, such as communication-constrained path
planning. Underwater path planning control is complicated by communication
constraints such as long propagation delays, Doppler dispersion, loss, route dis-
ruption, multi path fading, and high error probability, low bit rates, packet delays,
and packet dropouts. A sensor data bus increases system design flexibility by al-
lowing high-level control to respond quickly to low-level sensor input. Algorithms
are reviewed based on the procedures carried out to confirm its effectiveness by
discussing their advantages and disadvantages.

Underwater robotics has created a new area of technology, and there are
several strategies for exploiting and developing this new technology to address
economic and social concerns. It highlights how vital AUVs are to modern society
since they provide maritime surveillance, which can lead to innovations and
improved river/ocean safety. Current technologies Numerous techniques using
remotely operated vehicle (ROV) or AUV have been explored by researchers to
address the issue of aquatic lifeforms without contaminating the water. AUVs are
a dependable instrument that are used for searching, identifying, and retrieving
seabed material. For such applications, path planning and avoiding obstacles
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pay the critical role for AUVs to achieve the aforementioned requirements. It is
impossible to anticipate an accurate mathematical model for a certain arrangement
in engineering applications because natural systems contain a lot of unexpected
and unexplained phenomena [6].

Path planning technology for AUVs primarily encompasses modelling tech-
niques and search algorithms for trajectories. Over the last ten years, advance-
ments in AUV path planning technology have progressed at an impressive rate.
AUVs encounter greater challenges compared to land-based robots, as they nav-
igate through intricate and unpredictable underwater settings while considering
various factors such as water pressure, currents, and terrain. Notably, 3D path
planning presents multiple challenges, particularly in ensuring the robustness of
algorithms for real-time navigation adjustment. Although robust methods can
function rapidly, they need support to adapt to the erratic underwater condi-
tions. In barrier-free environments, such general path planning approaches can
prioritize aspects like travel duration, energy efficiency, and current. Underwater
ecosystems are intricate systems were obtaining precise information about poten-
tial dangers prior to course planning can be exceedingly difficult, if not unfeasible.
Although global route planning may help in determining the ideal path, an AUV
still needs local route scheduling to maneuver around invisible and constantly
altering impediments, such as boats, waves, and underwater species. Latest ad-
vancements in intelligent algorithms have shown promise in addressing these
challenges, yet further progress is essential to enhance their efficiency and adapt-
ability [5]. Due to the numerous barriers present underwater, designing paths in
these environments ranks among the most challenging tasks. AUVs are increas-
ingly recognized as essential tools for the exploration of marine biodiversity.
Core technologies like trajectory planning are essential for enabling autonomy
in AUV operations. Numerous algorithms exist for trajectory planning, leverag-
ing these models to determine optimal solutions and navigate efficiently through
unpredictable environmental conditions. Figure 1 depicts the differentiation of
path planning algorithms into local and global path planning. It divides global
path planning into three categories: traditional, graph-based, and group intelligent
optimization methods, with several techniques listed for each. These algorithms
aid in efficiently discovering ideal paths for autonomous navigation. An AUV
possesses numerous potential trajectories from its initial location to the target
destination. Nevertheless, there are scenarios in which specific parameters, such
as the minimal distance, the course of action. The most common criterion is
selecting the minimum possible distance that can be travelled in the least time.
For better clarity, this has been divided into two components. In the global path
planning phase, the AUV establishes a predefined trajectory. The goal of global
path planning is to minimize cost while choosing the shortest path during navi-
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gation. A trajectory consists of a series of segments passing through designated
nodes or waypoints. In primary planar transit, the cost of a trajectory is directly
influenced by its length, risk, and partitioning expenses.

Figure 1: Types of AUV path planning methods

Several general approaches have been put forth by researchers to help AUVs
plan their global paths around known obstructions. A* algorithms, GA, PSO, DE
algorithms, ACO algorithm, ACBO algorithm, coverage path planning (CPP),
and fast marching are some of these [7–18]. It is suggested that swiftly exploring
random trees technique be used to accommodate dynamic restrictions. A method
for quickly browsing random trees is suggested to handle dynamic limitations.
The APF algorithm is used to reduce the chance of collision for AUVs in case
of local path planning. By predicting possible challenges and the extent that
caused the collapse this method introduces an APF to the task’s objectives,
assisting an AUV in avoiding impediments and minimizing the danger of hitting
something. A model-predictive control technique is used for path planning, and
consideration is also given to optimal vehicle dynamics management. The global
plan unit determines the desired route and acceleration, whilst the impression
module identifies impediments including traffic limits. These data are supplied
into the motion planning system [19].

In the maritime environment, AUVs encounter severe course of communica-
tion issues, such as dynamic impediments and environmental uncertainty [20].
Communication restrictions are an important consideration for path planning
since underwater acoustic channels have limited capacity, significant delay, and
signal attenuation [21]. These restrictions impede real-time data interchange,
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making it difficult for AUVs to collaborate in multi-agent systems and react to
unexpected challenges. As a result, decentralized decision-making and predictive
planning are critical to ensure efficient and dependable navigation [15, 22, 23].
Table 1 compares the possibilities for global versus local path planning. An of-
fline Method is a stationary path planning technique that use offsite computation

Table 1: A few studies focused on the elements that distinguish the two methodologies

No. Author
[ref no.] Key aspect Algorithm

used
Global path

planning
Local path
planning

1 Li et
al. [24]

Ensures
complete

coverage while
minimizing

local
extremum

issues

Hierarchy
Coverage Path

Planning
(HCPP)

Generates an
optimized traversal

sequence of
coverage tasks to

maintain
connectivity

Plans a path
between coverage

cells while
avoiding local
extremums and
fragmentation

2 Feng et
al. [25]

Ensures
efficient and
collision-free
path planning
for multi-AUV

formations

Varied-width
A* (VWA*)
Algorithm

Plans an optimal
navigation scheme
considering both

path feasibility and
formation control

Adjusts formation
shape dynamically

and adapt to
environmental
changes and

maintain
navigation
efficiency

3 Si et
al. [26]

Ensures
efficient and
adaptive path
planning with

real-time
correction

Improved A* +
Dynamic
Window
Approach
(DWA) +

Fuzzy PID
Controller

Improved A*
algorithm generates
an optimal global

path while
considering

environmental
changes

DWA enables
real-time path

adjustments, while
Fuzzy PID refines
control to maintain

smooth and
precise navigation

4 Cui et
al. [27]

Ensures safe
and energy-

efficient
dynamic path
planning and
tracking for

deep-sea
mining
vehicles

Quatre-
Artificial

Potential Field
(QuatAPF) +

MPC

Utilizes four
specialized artificial
potential fields to

compute an optimal
navigation path
while ensuring

safety, efficiency,
and energy

conservation

Uses Model
Predictive Control
(MPC) to enable

precise navigation
and accurate

tracking of the
planned path while

dynamically
adapting to

environmental
changes
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to create collision-free paths when complete environmental data is available. On
the other hand, it is difficult to monitor all data about the environment in actual
time/ physical surroundings, especially if communication constraint is present.

This paper consists of 5 sections. Path planning algorithms are discussed in
Section 2. Section 3 provides a review of the global path planning and Section 4
is about the local path planning. Section 5 presents the conclusion of this paper.

2. Path planning algorithms for AUV

In this section, the different path planning algorithms which are used for
AUV is discussed. The traditional algorithms, graph-based algorithms and group
intelligent algorithms are discussed in detail.

2.1. Traditional path planning algorithms

Some of the first and most popular algorithms for determining a whole path
from a start to a destination location in a known environment are referred to as
traditional global path planning algorithms. Numerous fields have investigated
and used these algorithms extensively, such as computer games, autonomous
navigation, and robotics. Some of the traditional global paths planning algorithms
are as follows.

2.1.1. Artificial potential field (APF) algorithm

In 1986, Khatib proposed APF as an immediate solution to path planning
of robots. AUVs rely on path planning to navigate in unpredictable underwater
environments, resulting in nearly ideal routes. However, the APF technique can
easily achieve a local minimum.

Figure 2 is the representation of the working model using APF algorithm.
The APF technique is extensively utilized for AUV path planning because of its
straight forwardness and effectiveness in ensuring smooth navigation. Nonethe-
less, traditional APF encounters issues such as local minima, unreachable targets,
and challenges in adapting to dynamic environments. Ma et al. executed and
refined a quadrotor path planning algorithm, tackling local minimum problems
by enhancing APF methods [28]. Zhu et al. observed that AUVs could become
ensnared in closed loops when they fail to identify a viable path [29]. The tech-
nique of velocity synthesis combined with APF successfully navigates around dy-
namic ocean currents and moving entities [30,31]. Ge et al. devised an improved
potential field (IPF) method for multi-AUV target pursuit, integrating disper-
sion, homodromous, and district-difference metrics to boost coordination [32].
Zhuang et al. investigated collaborative local path planning for several AUVs,
employing a two-stage re-planning approach to circumvent unforeseen dynamic
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Figure 2: Flowchart of APF

disturbances [33]. Wang et al. merged APF with velocity synthesis to enhance
underwater navigation, building upon their previous research on APF-driven nav-
igational control [34]. Fan et al. presented a revised APF method that integrates
the Visibility Graph Technique to evade dynamic barriers, presuming that AUVs
cannot communicate underwater due to time lags or data loss [35]. Xin et al. ad-
vanced APF by incorporating decision trees to mitigate local minima, variations
in barriers, and concave environments, introducing a leader-follower strategy for
multi-AUV collaboration [36]. Wang et al. utilized a rotation matrix and stringent
attenuation factors to bolster attractive potential and collision prevention, launch-
ing AUV-Self Potential (SP) technology for seabed exploration [37]. C. Liu et
al. modified APF for intricate marine settings by integrating environmental pa-
rameters like water depth and shifting ocean currents [38]. Fu et al. fused APF
with ACO to enhance global path planning, showcasing that hybrid strategies in-
crease both global and local path planning effectiveness [39]. These innovations
collectively enhance AUV navigation, facilitating real-time course planning and
dependable collision avoidance.
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2.1.2. Rapidly exploring random trees (RRT) algorithm

The RRT technique generates a planning path without the need for an environ-
ment by randomly selecting points from a tree. This approach is highly efficient
and easy to utilize in extended multidimensional situations. The RRT algorithm
involves randomly distributing locations in a search space and linking them to
form a robot’s mobility path. Tan et al. illustrate the process of a fundamental
RRT algorithm [41].

(a) (b)

Figure 3: RRT algorithm based on local and global path planning [40]

The RRT algorithm is extensively utilized for AUV motion planning because
of its capability to navigate intricate underwater settings. Figure 3a and 3b show
RRT-based path planning: the first exhibits local path planning with a sparsely
planted tree, while the second depicts global path planning with a more complete
study of the surroundings. Tan et al. presented the Manucurve Automation (MA)
model, which incorporates RRT to streamline motion planning while guarantee-
ing optimal trajectories [42]. Hernández et al. introduced the homotopic RRT,
which leverages sonar-generated topological graphs to enhance path planning ef-
ficiency in two-dimensional environments [43]. Li et al. advanced Li-RRT, which
improves the direction of tree growth for AUV navigation, while Lĳun et al. [44].
Integrated path smoothing, convergence, and angle considerations to enhance
AUV trajectory planning. An innovative method that merges RRT* with Bezier
curve optimization was also proposed, boosting real-time applicability [45, 46].
Li et al. expanded RRT for target interception within dynamic three-dimensional
environments by employing rolling planning and junction screening [47]. Zhang
et al. optimized Bi-RRT for uncharted underwater regions, ensuring paths that
are smooth and continuous [48]. Yuan et al. introduced an RRT cache technique
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to improve real-time navigation in dynamic conditions [49]. These innovations
collectively enhance AUV path planning by increasing efficiency, adaptability,
and immediate responsiveness.

2.1.3. Simulated annealing (SA) algorithm

SA is a probabilistic optimization technique inspired by the metallurgical an-
nealing process, wherein controlled heating followed by gradual cooling aids in
refining structures by minimizing imperfections. In the realm of global path plan-
ning, SA identifies optimal or near-optimal routes between a starting point and a
destination by initializing with a temperature (T), an initial path (either random
or heuristic-based), and a cooling schedule that governs the reduction of temper-
ature over time [21]. The algorithm investigates all viable paths, probabilistically
accepting or dismissing new paths depending on the current temperature. At
the outset, with a high temperature, suboptimal paths are accepted to facilitate
broader exploration. As the temperature lowers, the algorithm becomes increas-
ingly discerning, refining the best paths identified while evading local minima.
The process iterates until a defined stopping criterion is satisfied, continuously
generating new paths, assessing costs through a specified function, and updating
the existing path. Although it is computationally intensive and does not always
guarantee an optimal solution, SA remains a well-established approach in global
path planning due to its extensive research and application across multiple fields.
Algorithm 1 offers a structured approach to AUV path planning that employs SA.
The algorithm iteratively explores and probabilistically accepts new paths based
on a cooling schedule to optimize the route while avoiding local minima.

Algorithm 1. SA algorithm for path planning

1. Initialize Parameters
• Set initial temperature T, cooling rate \alpha, and stopping temperature T_min.
• Define max iterations per temperature.

2. Generate Initial Path
• Create an initial feasible path.
• Compute its cost.

3. Iterate Until Convergence
• WHILE T > T_min:

FOR iteration = 1 to max_iterations:
Modify the current path to create a new candidate.
Compute cost \Delta E = cost_{new} – cost_{current}.
IF \Delta E < 0, accept new path.
ELSE accept with probability P = exp(–\Delta E / T).
Reduce temperature: T = \alpha * T.

4. Return Optimized Path
• Output the best path with the lowest cost.
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2.1.4. Table search (TS) algorithm

TS methods are a classical class of methods for global path planning, espe-
cially in contexts that resemble graphs or grids. With each cell or node repre-
senting a place and the connections between nodes representing possible paths
or transitions, these techniques make use of a discretized representation of the
environment. These algorithms’ main goal is to find the best or almost best route
between a given starting node and a desired goal node, efficiently navigating
across the empty space and avoiding impediments or limitations.

TS techniques are strong because they can efficiently lead the exploration
process by using heuristics and data structures to direct the process in a systematic
manner [20]. They function by keeping track of a priority queue or a group of
nodes that need to be assessed and then ranking the investigation of those nodes
according to predetermined standards, like the cost of the path already taken or
an approximation of the remaining cost to reach the objective. The algorithm
can then definitively identify whether or not a viable path exists. This iterative
procedure continues until the goal node is reached or all feasible paths have
been exhausted. These algorithms are still relevant and frequently used in many
different sectors even though they are considered conventional because of their
efficiency, simplicity, and capacity to produce deterministic answers in well-
defined contexts.

2.2. Graph search (GS) algorithm

GS algorithms constitute a family of techniques employed to find paths or
navigate through graphs, which consist of nodes (vertices) interconnected by
edges. In path planning, these algorithms depict an environment as a graph, where
nodes represent locations or states, and edges delineate transitions between them.
The goal is to minimize a cost function, such as path length, energy usage, or
travel time, while determining an optimal or near-optimal path from a starting
node to a goal node [145]. Utilizing heuristics or specialized methods, these
algorithms systematically explore nodes, traverse edges, and monitor explored
and unexplored paths through data structures like queues or sets. The search
proceeds iteratively until the goal node is reached, or all potential paths have been
examined. Various strategies aid in eliminating redundant searches, prioritizing
promising routes, and navigating graph structures efficiently [146].

2.2.1. A* algorithm

The A* algorithm is a key path-planning technique commonly utilized in
autonomous robot navigation; however, it experiences reduced planning speeds
when close to environmental and communication constraints. To tackle this issue,
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Wang et al. proposed the EBS-A* method, which integrates expansion distance,
bidirectional search, and path smoothing to enhance navigation efficiency and en-
sure safe maneuvering through complex environments [50]. Chen et al. improved
A* with a visibility checking technique and sparse point distribution, optimizing
AUV path planning [51]. Yan et al. expanded A* sub nodes to accommodate
anisotropic current flow, decreasing search space and enhancing efficiency [52].
Wang and Pang utilized A* for tracing chemical plumes in aquatic settings, com-
bining it with a Markov decision process for identifying sources [34]. Li et al.
created a multi-directional A* approach to decrease search nodes while ensuring
optimality is preserved [53]. Min et al. proposed a dual-layer (global and local)
method for AUV path planning, resulting in smoother trajectories [54]. Vadapalli
and Mahapatra introduced a polytropic method grounded in hydrodynamics, en-
hancing planning precision by refining control algorithms [55]. Chunxi Cheng
and colleagues pointed out the computational difficulties of assessing the f func-
tion on extensive maps, underlining the necessity for additional optimization [56].
Improvements to A* generally center on optimizing heuristic assessments and
node development techniques to boost speed and effectiveness in intricate settings.
Algorithm 2, describes a structured approach to AUV path planning in which the
algorithm maintains an open list (nodes to be evaluated) and a closed list (evalu-
ated nodes), iteratively selecting the node with the lowest f-score (f = g + h) until
the goal is met or no path is found.

Algorithm 2. A* Algorithm for path planning

1. Initialize open_list (priority queue) and closed_list (empty set)
2. Create start_node with position (start_x, start_y) and set g = 0, h = heuristic (start, goal),

f = g + h
3. Add start_node to open_list
4. While open_list is not empty:

(a) Select node with the lowest f-score from open_list → current_node
(b) If current_node is the goal:

Reconstruct and return the path
(c) Move current_node from open_list to closed_list
(d) For each neighbor of current_node:

i. If neighbor is in closed_list, skip it
ii. Calculate tentative_g = current_node.g + cost(current_node, neighbor)
iii. If neighbor is not in open_list OR tentative_g < neighbor.g:

• Set neighbor.g = tentative_g
• Set neighbor.h = heuristic (neighbor, goal)
• Set neighbor.f = neighbor.g + neighbor.h
• Set neighbor.parent = current_node
• If neighbor is not in open_list, add it

5. If no path is found, return failure
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2.2.2. D* algorithm

D* (D-star) is an incremental path planning algorithm designed for dynamic
environments where edge or node traversal costs change. Unlike Dĳkstra’s al-
gorithm, which finds the shortest path in a fixed environment, D* adapts in
real-time by updating paths based on new environmental data. Initially, it per-
forms a Dĳkstra-like search using known information. As the agent navigates, it
detects changes like new environmental or communication constraints or altered
traversal costs, updates the graph, and efficiently re-plans the path from its current
location to the goal. D* uses heuristics to focus re-planning efforts on affected
graph segments, reducing computational overhead.

Algorithm 3, offers a structured method to AUV path planning in which the
D algorithm* dynamically updates paths by keeping an open list of nodes to eval-
uate and iteratively improving cost estimates, altering routes as the environment
changes until the goal is met or no path exists. The key advantage of D* lies
in its incremental nature, enabling efficient path re-planning without restarting
the entire process. If the heuristic is admissible (does not overestimate actual
costs), D* finds the optimal path given updated cost information. Additionally,
it requires less memory than some other dynamic path planning methods, utiliz-
ing a “state-value table” to store and update cost data efficiently. These features
make D* a powerful choice for real-time navigation in uncertain or evolving
environments.

Algorithm 3. D* Algorithm for path planning
1. Initialize open_list (priority queue) and insert goal_node with k = 0.
2. While open_list is not empty:

(a) Select node with the lowest k-value → current_node.
(b) Remove current_node from open_list.
(c) If current_node is the start_node, return the optimal path.
(d) For each neighbor of current_node:

i. Compute new cost g_new = g(current) + cost (current, neighbor).
ii. If g_new < g(neighbor):

• Update g(neighbor) and parent(neighbor).
• Compute new k-value: k = min (g_new, old k-value).
• Insert/update neighbor in open_list with new k-value.

3. If start_node is not reached, return failure.

2.3. Group intelligent optimization algorithms

Group intelligent optimization algorithms draw inspiration from the collective
actions of decentralized, self-organizing systems like ant colonies, flocks of birds,
and swarms of bees. These algorithms are extensively utilized in optimization
issues, like AUV path planning, where they determine the best or nearly the
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best paths while taking into account limitations environmental barriers, ocean
currents, and energy usage. They function via a population of potential solutions
that are progressively enhanced through collaboration and interaction among
individuals.

These algorithms effectively navigate search spaces by imitating natural be-
haviors such as pheromone trails, flocking, swarming, and foraging, successfully
managing intricate and non-convex underwater settings. Their flexibility enables
them to react to changing circumstances while preserving computational effi-
ciency. Nonetheless, they do not always ensure convergence to the global optimum
and necessitate precise parameter adjustment. Researchers frequently improve
these algorithms by integrating constraints tailored to AUV navigation, includ-
ing current influences, environmental and communication restrictions. Several
popular swarm intelligence optimization algorithms used for AUV path planning
consist of ACO, PSO, and ABC algorithms.

2.3.1. Artificial neural network (ANN) algorithm

ANN are commonly employed in AUV path planning by emulating brain
functions to enhance navigation and adapt to environmental constraints. Post-
training, an AUV employs ANN-driven control to analyze sensor information
and execute autonomous choices. Schiller and Tench utilized neural networks for
steering AUVs, improving their adaptability and reliability [57]. González et al.
created a neural architecture for tracking trajectories, merging a biologically in-
spired network with an adaptive neurocontroller for autonomous navigation [58].
Figure 4 is the architectural framework of an ANN, typically encompasses the
input layer, hidden layer and output layer.

Yana and Zhub introduced a genetically inspired neural network that prevents
collisions without needing pre-trained data, utilizing a dynamic neural landscape
enhanced with templates [59]. Li et al. presented a dynamic neural network that
modifies neuron activity instantaneously in response to environmental input [60].
Zhu et al. developed a brain dynamics-inspired method to enhance autonomous
navigation, incorporating a D-S inference rule for fusing sensor data to enhance
mapping precision [61]. Ni et al. created a bio-inspired neural network (BINN)
for real-time navigation, employing virtual targets to enhance path planning [62].
Ding et al. introduced a strategy for multi-AUV formation control, utilizing back-
stepping control and ANN for trajectory following [63].

Although ANN is effective in enhancing AUV navigation, the BINN method
encounters challenges, such as reduced efficiency stemming from insufficient
prior environmental knowledge. Additional studies are required to boost real-time
flexibility and refine AUV route planning in shifting and unfamiliar underwater
environments. Algorithm 4, offers a structured approach to ANNs in which the
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Figure 4: Layers of ANN algorithm [20]

model learns patterns by altering weights via forward propagation, computing
errors, and iteratively optimizing via backpropagation and gradient descent until
convergence or a stopping criterion is achieved.
Algorithm 4. ANN Algorithm for path planning

1. Initialize network with input, hidden, and output layers.
2. Randomly initialize weights and biases.
3. For each training epoch:

(a) For each training sample (input, target):
i. Forward Propagation:

• Compute activations for each layer using:
output = activation_function(W * input + b).

ii. Compute loss using the chosen loss function.
iii. Backpropagation:

• Compute gradients of loss w.r.t weights and biases.
• Update weights using gradient descent:

W = W – learning_rate * gradient.
4. Repeat until convergence or max epochs reached. Use trained ANN for predictions on new

data.

2.3.2. Dynamic space oddity (DSO) algorithm

The DSO method is a navigation strategy designed for rapid adaptation in
changing surroundings. It creates a velocity space that encompasses all potential
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AUV speeds at any moment and chooses the best speed according to a cost
function, taking into account elements like path length, energy use, and mission-
related goals. The DSO algorithm works exceptionally well in unpredictable
underwater settings featuring moving hindrances such as rocks, shipwrecks, and
marine constructions.

Maurya et al. presented the Modified DSO (MDSO) approach, combining
DSO with a potential field method for dynamic environmental changes [72]. Pe-
tres et al. utilized DSO for navigating AUVs in harbor settings, effectively steering
clear of both fixed and dynamic environmental constraints [73]. Hernández et al.
introduced a path-planning technique for 3D AUV navigation based on omnidi-
rectional DSO, utilizing a virtual force field strategy while factoring in energy
usage and communication limitations [74]. Pereira et al. integrated DSO with a
potential field approach for enhanced AUV path planning, showcasing its efficacy
in simulations as well as in practical experiments [75].

Even with its achievements, researchers are still investigating hybrid meth-
ods and adjustments to enhance DSO for particular underwater environments.
Integration with AUV control systems, various path-planning algorithms, and
environmental factors such as bathymetry and currents further improve its versa-
tility and effectiveness.

2.3.3. Ant colony optimization (ACO) algorithm

The ACO method, proposed by Dorigo et al., is a swarm intelligence approach
aimed at addressing NP-hard optimization challenges [64]. Motivated by the
way ants communicate and find the best routes using pheromones, ACO allows
artificial agents to work together in exploring and enhancing pathways according
to the intensity of pheromones, which grows over time on the most effective
paths [12,65]. In their research on AUV path planning, Wang and Xiong created
an ACO-based method that employs a workspace grid model to improve visibility-
driven navigation [66]. Ma et al. introduced an enhanced firework ACO that
dynamically boosts pheromone deposition, maintaining the integrity of solution
quality [67]. Furthermore, He et al. combined ACO with PSO to improve AUV
motion control in difficult underwater settings, adjusting the pheromone matrix
each time the algorithm attains a stationary state [69,70]. This refined ACO-PSO
hybrid approach was enhanced for changing environments, boosting real-time
path optimization [71].

Figure 5 shows the principles of ant travel. Ants travel along various paths to
their food source, releasing pheromones along the way. Other ants, including the
same ant, then follow the pheromone trail. Pheromone decay is a time-dependent
function; therefore, the concentration of pheromones is highest along the shortest
path. Most of the ants follow the most frequently traveled path. Although ACO



62 B.J. TALUKDAR, B.B. PATI, B. DAS

Figure 5: Mechanics of ACO

has benefits in effectively finding paths without constraints, it experiences slow
convergence. Nonetheless, utilizing distributed computing and feedback loops can
improve search efficiency. Additional studies are required to enhance ACO for
intricate AUV navigation, providing quicker and more dependable route planning.
Algorithm 5, offers a structured approach to ACO.

Algorithm 5. ACO Algorithm for path planning
1. Initialize parameters (number of ants, pheromone levels, evaporation rate, etc.)
2. Initialize pheromone trails on all paths
3. Repeat until the stopping condition is met:

(a) For each ant:
i. Construct a solution by probabilistically choosing paths based on pheromone

levels and heuristic values
ii. Evaluate the solution

(b) Update pheromones:
i. Evaporate pheromones on all paths
ii. Reinforce pheromones on paths used by the best solutions

4. Return the best solution found

2.3.4. Random walk deformable (RWD) algorithm

The RWD algorithm serves as a path-planning method intended for robots that
possess intricate shapes or flexible structures, rendering it especially effective for
maneuvering through tight or crowded spaces. In AUV path planning, the RWD
algorithm assists vehicles in navigating through shipwrecks, underwater ravines,
or caves by representing the AUV as a flexible entity able to change its form within
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set boundaries. The algorithm navigates the configuration space, encompassing
all potential shapes and locations, through random walks, dynamically modifying
the AUV’s shape to discover viable paths.

A major benefit of RWD is its capacity to traverse complex environments
that traditional rigid-body path-planning algorithms find difficult to manage. By
adding deformability, it allows AUVs to navigate narrow areas that rigid objects
cannot reach. While the RWD algorithm has not been thoroughly examined for
AUV use, associated studies have investigated concepts in deformable path plan-
ning. Petillot et al. suggested a technique based on deformable targets, whereas
Ögren and Leonard presented a dynamic window approach that accounts for ve-
hicle shape [76, 77]. Moving constraints, first presented by Fiorini and Shiller,
may improve deformable path planning [78]. Additional relevant methods in-
volve elastic bands, stochastic roadmaps for flexible objects, motion planning for
jointed robots, RRTs for flexible forms, serpentine robot motion planning, and
path distortion techniques [79–83].

Although RWD has not been extensively studied regarding AUV naviga-
tion, adding deformability to path-planning techniques might greatly enhance
AUV agility in tightly restricted and dynamic underwater settings. Figure 6, de-

Figure 6: RWD algorithm
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picts a RWD method, in which numerous particles begin at an initial point and
move in random directions at each step. These routes deform dynamically over
time, giving rise to diffusion or stochastic movement patterns. Future studies
may improve these methods to boost real-time flexibility and effectiveness for
deformable AUVs.

2.3.5. Genetic algorithm (GA)

GA are optimization methods based on natural selection, repeatedly advanc-
ing solutions via selection, crossover, and mutation. In AUV path planning, GA
begins with a varied collection of possible paths and improves them to deter-
mine the best route while taking into account vehicle limitations and the aquatic
environment. By imitating natural evolution, GA effectively investigates search
spaces to identify high-quality solutions. Scientists have improved GA by altering
genetic operators, fitness assessment standards, and population selection methods
to boost stability and speed of convergence.

Zhang et al. proposed an adaptive genetic algorithm for path planning, utiliz-
ing five types of genetic operators to improve efficiency and stability [84]. Zhang
additionally created a hierarchical GA-based global path-planning approach that
minimizes memory needs while enhancing path viability [84]. Tao et al. enhanced
GA by implementing adaptive crossover and mutation strategies to hasten conver-
gence while maintaining collision-free navigation [85]. Hongli et al. incorporated
immune system concepts into GA, enhancing population diversity and refining
local search efficiency for AUV navigation in dynamic environments [86]. Tran et
al. utilized GA to enhance B-spline trajectories, guaranteeing smooth paths while
adhering to turning radius limitations [87]. Bresciani et al. introduced a Genetic
Path Planner (GPP) that integrates informed planning of path with GA to enhance
data collection and inspection coverage efficiency [88]. Cao et al. enhanced GA
with multilayer coding and a tangent angle operator to boost the efficiency of path
optimization [89].

As illustrated in Fig. 7, by starting with many options, GA can assist AUVs in
route planning and navigating complex environments. The primary benefit of GA
is its capability to identify optimal solutions without any prior understanding of
the best method. It is especially useful for AUV path planning in unchanging en-
vironments, but incorrect parameter adjustments may result in slow convergence
and less than optimal outcomes. Future enhancements might center on hybrid GA
methods to significantly boost efficiency in changing underwater environments.
Algorithm 6, outlines a Genetic Algorithm for path planning in which a devel-
oping population of potential solutions is selected, cross overed, and mutated to
iteratively enhance path quality based on fitness evaluation until an optimal or
near-optimal solution is discovered.
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Figure 7: Flowchart of genetic algorithm

Algorithm 6. Genetic Algorithm
1. Initialize Population: Generate an initial population of candidate solutions.
2. Evaluate Fitness: Compute the fitness of each individual in the population.
3. Repeat Until Termination Condition is Met:

(a) Selection: Select parent individuals based on fitness (e.g., roulette wheel, tournament
selection).

(b) Crossover: Apply crossover (recombination) to produce offspring.
(c) Mutation: Introduce random mutations to offspring.
(d) Evaluate Fitness: Compute the fitness of new offspring.
(e) Survivor Selection: Replace individuals in the population with offspring (based on

fitness).
4. Return Best Solution Found.

2.3.6. Q-learning algorithm

Q-learning, as described by Sutton and Barto, is a reinforcement learning
(RL) method that utilizes trial-and-error learning to enhance long-term re-
wards [90, 97]. Figure 8 shows the state, reward and action employed in a Q-
learning algorithm. In AUV route planning, Q-learning facilitates independent
navigation by assessing the present state, choosing actions, and modifying be-
havior in response to obtained reward signals. Figure 8 depicts this process,
where AUVs continuously enhance their strategies to improve path selection and
maneuverability in complex environments.

Chen et al. developed an improved Q-learning approach, NCQL, that incor-
porates neural networks to enhance convergence rate and motion planning effec-
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Figure 8: Q-learning algorithm

tiveness [91]. Shen et al. introduced a risk-averse RL method, showing decreased
idle time in AUV activities [92]. Wang et al. utilized online RL for optimiz-
ing multi-AUV trajectory planning in icy conditions, attaining performance like
benchmark techniques [93]. Cui et al. created a controller for adaptive trajectory
tracking utilizing neural network-based reinforcement learning to manage exter-
nal disturbances and nonlinear behaviors in AUV movement [94]. Zhang et al.
used DDPG with adjustable constraints to improve path tracking [95]. Yan et
al. employed RL-based localization to forecast the positions of AUV and sensor
nodes, utilizing online value iteration for optimal positioning [96]. Ahmadzadeh
et al. investigated policy learning driven by RL for recovering from thruster fail-
ures, utilizing multi-objective RL to reconcile competing objectives [98]. Yan
et al. suggested RL-based simultaneous localization that doesn’t rely on time
synchronization problems in AUVs [99].

Although it has great potential, RL encounters difficulties in practical AUV
applications because of extensive state spaces and restricted real-time testing. The
intricacy of ocean ecosystems and unforeseen challenges necessitate comprehen-
sive training for effective policy development. Future developments in RL-based
AUV navigation ought to emphasize enhancing training efficiency and real-time
adaptability for resilient autonomous underwater activities.

2.3.7. Deep reinforcement learning (DRL) algorithm

DRL combines deep learning with reinforcement learning, enabling au-
tonomous systems to operate in intricate, nonlinear, and multidimensional set-
tings. DRL has been extensively utilized for obstacle evasion in unmanned
surface vehicles and is currently under investigation for AUV route plan-
ning [45, 100–103].

Cao et al. applied DRL for controlling AUV posture, employing Deep Deter-
ministic Policy Gradient (DDPG) to train an AUV agent for managing movement
in three degrees of freedom [101]. Wu et al. created a DRL framework for
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sensor-motor management, allowing AUVs to navigate visually without exact lo-
calization [104]. Xu et al. introduced a Soft Actor-Critic (SAC) method triggered
by events for avoiding collisions, utilizing sonar information to create secure
pathways [105]. Havenstrøm et al. utilized DRL to achieve autonomous path fol-
lowing and collision avoidance by managing AUV fins through a reinforcement
learning-based agent [107].

Xu et al. tackled the issue of multi-AUV cooperative decision-making by
employing an actor-critic framework alongside a Coding-Convolutional Network
to analyze raw sensor data in conditions of low visibility [108]. The AUTORL
framework boosts AUV path planning by automating the search for neural net-
work architectures, leading to better convergence speeds and navigation effective-
ness [109]. Chu et al. suggested a path planning strategy to underactuated AUVs
that utilized a Double Deep Q Network (DDQN), employing a hybrid reward
function to improve real-time navigation in ocean currents [31].

Figure 9: DRL Algorithm

Although it has great potential, DRL is infrequently utilized for AUV path
planning because of its sample inefficiency and the challenges in fine-tuning
neural network parameters. Figure 9, illustrates the layout of a DRL system. The
Agent is made up of a Deep NN (DNN) that accepts the State as input, processes
it through various layers, and returns an Action/Policy [110]. The agent interacts
with the environment, gets observable states, and is rewarded for its activities,
which aids in learning and optimizing future judgments. Subsequent studies ought
to concentrate on enhancing data efficiency and refining learning frameworks for
real-time AUV navigation.
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3. Local path planning algorithms for AUV

Local path planning algorithms for AUVs are essential in enabling safe and
efficient navigation for complex underwater environments. These algorithms con-
tinuously analyze real-time sensor data to generate collision-free paths within the
immediate vicinity of the vehicle. The main approaches encompass potential
field algorithms, sampling-based techniques, and optimization-based strategies.
Potential field algorithms depict the environment as a virtual force field, with en-
vironmental constraints creating repulsive forces and goals producing attractive
forces to direct the AUV along the resulting vector. Sampling-based algorithms,
like RRT and its variations (e.g., RRT*, Informed RRT*), effectively map out
the configuration space to establish viable routes. Optimization-focused method-
ologies, such as Model Predictive Control (MPC) and trajectory optimization
techniques, that aims at generating smooth and dynamically feasible paths by
minimizing a cost function that takes into account factors like energy consump-
tion, safety margins, and mission goals. These algorithms face specific challenges
in the underwater realm, such as restricted sensor range, acoustic interference, and
dynamic water currents [128,133]. Recent advancements have been concentrated
on the amalgamation of uncertainty quantification, multi-objective optimization,
and techniques based on machine learning to improve resilience and adaptability.
Researchers are also investigating the fusion of global path planning strategies
with local algorithms to achieve more cohesive and forward-thinking naviga-
tion behaviors. The continuous advancement of these algorithms aims to enhance
AUV autonomy, enabling the execution of more intricate missions in increasingly
demanding underwater conditions.

3.1. Analysis of local path planning algorithms

Table 2: AUV local path planning algorithms in underwater environment

Algorithm Year /
References Proposed method Remarks

APF

2024 / [111] Improved APF-AC algo-
rithm

Reduces path length and iteration time,
validated on AUV platform

2022 / [112] APF algorithm
Aims to enhance safety, avoid environ-
mental constraints, and reduce traffic
congestion

2022 / [27] Predictive APF algorithm Reduces energy consumption and path
length
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Table 2 [cont.]

Algorithm Year /
References Proposed method Remarks

APF

2021 / [113] APF algorithm Novel APF algorithm with augmented
reality for local minimum avoidance

2021 / [114] APF integrated into bidi-
rectional RRT

Combines global and local planning for
dynamic underwater environments ef-
fectively

2020 / [115] APF algorithm Proposed waypoint tracking with colli-
sion avoidance

RRT

2023 / [118] Cylinder-based heuristic
RRT

improves AUV path efficiency and mo-
bility significantly

2022 / [116] Improved RRT*
algorithm

Focus on kinematics, steering, envi-
ronmental and communication con-
straints, and articulated vehicle struc-
tures

2022 / [117] Improved RRT algorithm AUV target search in 3D environment

2022 / [2] Improved AAF-RRT
algorithm

Improved search ability and narrow
passage traversal

2022 / [119] Improved heuristic
Bi-RRT algorithm

Seamless and adaptive navigation with
efficient maneuvering in dynamic en-
vironments

2020 / [47] Improved RRT
Improved algorithm enhances search
speed, smoothness, and feasibility in
simulations

ANN

2017 / [120] Glasius Bio-inspired Neu-
ral Network (GBNN)

Proposed method ensures efficient cov-
erage without overlaps or collisions

2019 / [62] GBNN AUV covers workspace, escapes dead-
locks, and has low overlapping rate

2017 / [121] Dynamic BINN
Paper introduces target attractor con-
cept for neural network information
transfer efficiency

2014 / [122] ANN Path planning in a 3D environment

2020 / [123] ANN Paper presents neural collision avoid-
ance system for AUV

2020 / [61] BINN Effective in distributing AUVs and re-
ducing sailing distance

2014 / [124] BINN
Ensures efficient navigation in un-
known dynamic environments through
advanced optimization
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Table 2 [cont.]

Algorithm Year /
References Proposed method Remarks

ANN

2020 / [126] Improved ACO algorithm
Overcomes local extremum, poor qual-
ity, and low accuracy in traditional
ACO

2023 / [127] Improved ACO Algorithm ensures safe navigation,
shortest path, and fewest turning times

2019 / [125] Voronoi-based ACO Facilitate searching solutions
2018 / [68] ACO Efficient AUV path planning

GA

2022 / [129] GA Proposed method finds smoother,
faster routes

2021 / [130] Improved GA Proving faster convergence rate

2020 / [2] GA Overcomes local optimal solutions,
saves time and costs effectively

2017 / [132] Hybrid-GA
Optimal path balances cruising dis-
tance and upstream-current avoidance
for gliders

2005 / [131] Improved adaptive GA
Enhances stability, convergence, and
real-time capability for AUV path plan-
ning

RL

2023 / [135] HER-DDPG algorithm End-to-end AUV local motion plan-
ning

2023 / [105] DQN-QPSO algorithm Enhances navigation efficiency while
reducing energy consumption

2022 / [96] Hybrid DDPG AUV adaptive path planning and con-
trol

2020 / [134]
Q-learning based tuna
swarm optimization algo-
rithm (QLTSO)

Outperforms other optimization algo-
rithms with 100% planning success
rate

2018 / [93] RL algorithm Optimal AUV trajectories in con-
strained space

DRL

2022 / [136] DRL
Implements event-triggered mecha-
nisms to assess environmental condi-
tions and ensure safe navigation

2022 / [96] DRL Demonstrates robustness under ocean
currents, delays, and sensing errors

2020 / [137] DRL Enhances AUV path following effi-
ciency
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4. Global path planning methods for AUV

The environment provides a clear pathway, devoid of obstructions and exter-
nal interference, for the AUV to navigate. Moreover, global path planning serves
as an optimization technique that allows the AUV to determine the most efficient
path from its starting point to its intended destination, disregarding any potential
hindrances along the way. The fundamental goal of global path planning is to
determine the best route from the starting point to the target area within the given
environment, taking into account any constraint, constraints, and overall spatial
layout. This approach has proven effective in enabling the AUV to consistently
locate the shortest viable path. In their 2004 study, Hong-jian and colleagues
introduced two methods for global path planning: GA and A* algorithms. They
investigated several issues related to the GA method, including the system of
coding, which uses digit grid controls and different chromosomes length, the
technique for generating the initial sample, the fitness evaluation function, the
evolution strategy, and the use of advanced genetic operators. Unlike ground or
airborne robotic systems, AUVs have limited life of their batteries, making it
difficult to recharge them quickly for subsequent operations. Consequently, it is
crucial that AUV path planning prioritizes energy efficiency to maximize the
vehicle’s operational duration. Recognizing this constraint, [138] investigated
grid-based path planning strategies for AUVs operating in environments with
minimal current fields to minimize power consumption. This study introduced
an edge-search technique to address a fundamental limitation of grid-based path
planners, which typically only consider paths connecting adjacent grid nodes,
overlooking potentially more efficient paths. Simulations demonstrated that the
edge-search algorithm could identify comparable paths to the conventional eight-
direction approach but with significantly reduced cost. Their approach employed
quadtrees to model the two-dimensional horizontal plane, enabling efficient stor-
age and compression of environmental data. This model then informed the im-
plementation of an adaptive ant colony algorithm capable of Identifying routes
that ensure a safe margin from environmental and communication constraints,
thereby improving path utility. Sun and Zhang introduced a global path planning
system built specifically for AUV path planning in varied marine situations [139].
Their algorithm evaluated potential solutions based on energy consumption and
travel distance criteria. Simulations demonstrated the effectiveness of the method
in identifying efficient two-dimensional horizontal plane paths that struck a bal-
ance between computational efficiency and path quality. This section focuses on
global path planning strategies for AUVs navigating within predefined areas while
avoiding stationary barriers. In the absence of known barriers, the method aims
to prioritize clear and unobstructed pathways, while reducing route length and
consumption of energy at its present pace.
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4.1. Analysis of global path planning algorithms

Table 3 outlines advantages and disadvantages of path planning strategies for
AUV navigation, which includes safe navigation by avoiding collisions. Com-
pared to various path planning techniques of AUV, A* algorithm stands out as
the simplest heuristic search method. technique as it functions without the need
for pre-processing. Nevertheless, when executed in a massively parallel setup, a
considerable number of nodes need to be evaluated, leading to inefficient search-
ing. The genetic algorithm employs the principle of survival of the fittest to carry
out multiple evolutionary processes. Since it requires adjusting more parame-
ters and processing larger datasets, the convergence rate tends to be slower. The
evolutionary algorithm surpasses the A* algorithm due to its enhanced global

Table 3: AUV global path planning algorithms in underwater environment

Algorithm Year /
References Proposed method Remarks

APF

2022 / [48] Combine APF Enhances the ability to adjust

2022 / [27] Combination of APF and
Virtual Method Finite time technique

2022 / [42] Improved A* Algorithm Less time used for path searching and
planning

2021 / [115] Neglecting effect of cur-
rents based APF Current to get shortest path

2015 / [31] Modified APF Preventing collisions with surrounding
environmental constraints

2015 / [31] Improved APF Succeed in determining a minimum
point at the local level

2013 / [30] Multipoint Potential Field Simple, direct, and relevant in real time
2012 / [52] Used polytropic approach Better effectiveness

RRT

2022 / [47] Improved RRT –
2020 / [35] – Obtain a feasible path

2020 / [141] Used cost function Improve search efficiency by avoiding
zigzag routes and refining existing ones

2017 / [44] Liveness-RRT Increases the rate of growth
2017 / [40] Smooth RRT Improve the search ability
2015 / [116] RRT* Typically, the path is less than optimal

2005 / [140] Incorporate the formation
of child nodes

Resolve high-dimensional space reso-
lution
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Table 3 [cont.]

Algorithm Year /
References Proposed method Remarks

ANN

2020 / [101] Include improve
recurrent

2020 / [134] Combine Dynamic Neural Network extensive neuronal activity
spread

2019 / [60] GBINN Point to point path approach neural
Network

2019 / [143] ANN Less calculation

2017 / [62] Lateral inhibitory effects
being added No training process is necessary

2012 / [142] Used dynamic Neural
Network Computation complexity

2011/ [59] BINN Capability of nonlinear mapping

2011 / [58] BINN Basic Learning Method

1989 / [57] Combine potential field
NN Enhancing the awareness and safety

ACO

2020 / [67] Enhanced firework-ant
colony hybrid algorithm

Provides helpful direction and boost
optimization performance

2020 / [68] Used updated phero-
mones Improved search quality

2009 / [66] Used workspace grid
model Generate smooth path

GA

2020 / [91] Improved GA Fast convergence and high stability for
improved efficiency and performance

2020 / [2] Improved Adaptive
genetic technique

Enhanced clarity, stability, and quick
global convergence

RL

2022 / [37] Combine with the control-
led content

Change the state, improve the perfor-
mance

2022 / [37] Combine with the control-
led content

Change the state, improve the perfor-
mance

2014 / [92] Reoriented the object Strong capacity for learning

2019 / [34] Using adaptive trajectory Maximize long term reward

2009 / [144] Included self-learning
agent

Navigating safely without prior knowl-
edge of constraints
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Table 3 [cont.]

Algorithm Year /
References Proposed method Remarks

DRL

2022 / [105] Composed CCN Strong robustness, high stability

2021 / [107] Used DRL controller Manually design reward

2020 / [106] Deterministic Policy Gra-
dient Large sense range

2019 / [60] Asynchronous advantage
actor critic (A3C)

Superior ability to generalize minimize
size

2017 / [40] Deterministic Policy Gradient mathematical model used

search capability and efficiency in identifying near-optimal solutions. DE algo-
rithms share similarities with GA, incorporating genetic operators and selective
crossover mutation. Research suggests that the DE algorithm is more reliable
than the genetic algorithm for path planning. ACO and PSO are bio-inspired al-
gorithms that mimic collective behaviors observed in nature, enabling faster adap-
tation to dynamic environments. The ACO and PSO algorithms represent bionic
strategies that imitate the collective behavior found in biological systems. Col-
laboration among organisms facilitates quicker adaptation to their surroundings.
The ACO algorithm relies on a positive feedback mechanism that motivates ants
to navigate towards regions with high pheromone concentrations. The initially
established pheromone distribution ought to be more substantial, which prolongs
the search and decelerates convergence. Elevated pheromone concentrations re-
sult in quicker convergence rates during the later phases. In contrast to ACO
algorithms, PSO algorithms leverage knowledge exchanged within groups, en-
abling faster early convergence. Conversely, PSO can significantly reduce search
time because it involves fewer variables and memory operations. However, it is
susceptible to stagnation at local optimum positions due to insufficient dynamic
control over particle velocity.

AUVs employ CCPP algorithms to devise and implement a trajectory that
comprehensively encompasses the entire area of interest, ensuring the absence of
any gaps or overlaps. The intricacy of the environment and the specifications of the
task dictate the selection between grid-based or graph-based CCPP algorithms.
Grid-based methodologies are straightforward; however, they are computation-
ally demanding when applied to extensive workspaces characterized by high-
resolution grids. Conversely, graph-based algorithms exhibit greater adaptability
to complex environments and irregular geometries. Optimization methodologies,
including GA, PSO, ACO, and WWO, have the capacity to ascertain the most
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efficient path. Nonetheless, in contrast to FMM, these methodologies necessitate
a fitness function specifically tailored to the path planning challenge. This re-
quirement may render certain algorithms that are more difficult to implement and
fine-tune effectively. CPP is an algorithm that designs routes linking all specified
points within a given area. CPP is distinguished from FMM in that it does not en-
gage in point-to-point path planning, thereby requiring a unique methodological
approach. AUVs that utilize RL demonstrate enhanced decision-making capabil-
ities and are capable of planning optimal routes without the necessity of prior
knowledge. RL illustrates exceptional adaptability and flexibility within chal-
lenging and unpredictable environmental conditions. The representation of states
in real-world scenarios necessitates specialized features. The suboptimal perfor-
mance of AUV path planning in high-dimensional contexts can be attributed to
the phenomenon known as “dimensionality disaster.”

This research utilized a systematic methodology to scrutinize the existing
body of literature on AUVs, with the objective of comprehending the research
methodologies employed by scholars and identifying the most used techniques
for deriving conclusions.

5. Conclusions and future scope

This paper reviews recent research on planning pathways for autonomous
vehicles (AUVs) locally and internationally, considering static and moving im-
pediments. This paper discusses prominent techniques for determining optimal
solutions, including path planning for 2-D and 3-D environments. The algorithm
information is presented in a tabular format. The effective planning of paths is
of paramount importance for underwater vehicles. This review delineates path
planning into two categories in terms of traditional, graph based and group in-
telligent approach: global and local approaches. The article outlines the benefits
and drawbacks of each algorithm, as well as potential upgrades for better perfor-
mance. The A* algorithm is widely used for discovering paths in graphs and grids.
GA and PSO are optimization techniques that can provide optimal solutions to
unexpected problems. Differential evolution, a stochastic optimization technique,
can be used to find a function’s global minimum. The “ant colony optimization”
algorithm, modeled after ant foraging strategies, aims to find the shortest path to
a food source. Nature-inspired algorithms, such as flower pollination and water
wave optimization, can help solve global optimization problems. Coverage route
design includes creating a path that covers a certain area. Choosing the appropri-
ate algorithm depends on the application’s needs and the environment. The A*
method may be suitable for grid-based climates. For increasingly difficult prob-
lems, a genetic algorithm or particle swarm optimization may be better options.



76 B.J. TALUKDAR, B.B. PATI, B. DAS

RL algorithms allow for experience-based learning and adaptation to diverse set-
tings. This technique has applications in engineering design, financial modeling,
and image processing. The success of an optimization algorithm depends on the
problem and parameters employed. More study is needed to better understand the
algorithm’s strengths and shortcomings and improve its performance for various
optimization tasks. There is no “one size fits all” solution to the route planning
challenge. Algorithm selection depends on environmental conditions, environ-
mental and communication constraints, and accuracy requirements. To choose the
best algorithm for a specific application, researchers and practitioners must weigh
the benefits and drawbacks of each option. Finally, the review paper provides a
detailed overview of local path planning algorithms for autonomous vehicles.
Additional research is needed to create algorithms capable of efficiently manag-
ing complex and dynamic aquatic environments. This review paper provides a
valuable reference for researchers and professionals specializing in autonomous
vehicle path planning.
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