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A new chaotic hyperjerk system with a half-line
of equilibrium points, its dynamic analysis,

multistability, circuit simulation and
anti-synchronization via backstepping control

Sundarapandian VAIDYANATHANo , Fareh HANNACHIo ,
Mohamad Afendee MOHAMEDo , Aceng SAMBASo ,

Chittineni ARUNAo and Repudi RAMESH

In this work, we present a new four-dimensional chaotic hyperjerk system with a half-line of
equilibrium points. In the chaos literature, it is well-known that chaotic systems with an infinite
number of equilibrium points exhibit hidden attractors. Thus, we deduce in this research work
that the new chaotic hyperjerk system has hidden attractors. We next study the new chaotic
hyperjerk system for a dynamic analysis using bifurcation plots and Lyapunov Exponents (LE)
diagrams. We exhibit that the new hyperjerk system has a special property of multistability with
coexisting attractors. Using Multisim version 14.2, we carry out an electronic circuit simulation
for the proposed 4-D chaotic hyperjerk system with a half-line of equilibrium points. Finally,
as an application in control engineering, we apply backstepping control for achieving anti-
synchronization of a pair of new chaotic hyperjerk systems taken as master-slave systems, which
has important applications in communication systems.
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1. Introduction

Chaotic dynamical systems with their complex dynamics have several ap-
plications in areas such as robotics [1, 2], oscillators [3, 4], memristors [5, 6],
fuzzy systems [7, 8], communication systems [9, 10], etc. Chaos theory also has
applications in mechanical systems such as jerk systems [11, 12] and hyperjerk
systems [13–16], etc.

A hyperjerk differential equation of fourth order has the general form

d4𝑝

d𝑡4
= 𝐹

(
𝑝(𝑡), d 𝑝

d𝑡
,

d2𝑝

d𝑡2
,

d3𝑝

d𝑡3

)
. (1)

If 𝑝(𝑡) denotes the displacement of a body, then the first two derivatives
d 𝑝
d𝑡

and
d2𝑝

d𝑡2
represent the velocity and acceleration of the body. The third order

derivative
d3𝑝

d𝑡3
is called the jerk, while the fourth order derivative

d4𝑝

d𝑡4
is called

the hyperjerk.
In system form, the hyperjerk differential equation (1) can be expressed as

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = 𝑤,
¤𝑤 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑤).

(2)

In the chaos literature, there is significant interest in the modelling and sim-
ulation of chaotic systems with an infinite number of equilibrium points [17].
Such chaotic systems are known to possess hidden chaotic attractors, which have
important applications in science and engineering [18–20].

Recently, Sambas et al. [15] reported a new chaotic hyperjerk system with
a half-line of equilibrium points. By modifying the dynamics of the Sambas
hyperjerk system [15], we obtain a new hyperjerk system with more complexity
than the Sambas hyperjerk system [15].

We carry out a detailed bifurcation analysis of the new chaotic hyperjerk
system with a half-line of equilibrium points. Bifurcation analysis of nonlinear
dynamical systems brings out important and intrinsic qualitative properties of the
systems [21,22]. We also design an electronic circuit of the new chaotic hyperjerk
system with a half-line of equilibrium points. Electronic circuit designs of chaotic
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systems aid in applications of the chaotic systems to real-world applications in
science and engineering [23, 24].

As a control application, we invoke backstepping control technique [27]
for achieving complete anti-synchronization between a pair of new chaotic hy-
perjerk systems taken as the master and slave systems. We remark that anti-
synchronization (AS) of chaotic systems is a phenomenon in which the state
vectors of the synchronized systems have the same amplitude but opposite signs
as those of the driving system. Thus, for anti-synchronization of chaotic sys-
tems, the sums of the respective signals of the master and slave systems are
expected to converge to zero asymptotically with time [25, 26]. Backstepping
control method is a popular control strategy for asymptotically stabilizing or
synchronizing chaotic dynamical systems [27]. The main advantage of the back-
stepping control approach is that it follows a systematic procedure in order to
obtain the design of the stabilizing controller for driving the synchronization
error to zero [28–30].

2. Mathematical modelling of the new hyperjerk system with a half-line
of equilibrium points

In [15], Sambas et al. (2024) derived a new 3-D chaotic hyperjerk system
with the dynamics 

¤𝑥 = 𝑦,
¤𝑦 = 𝑧,
¤𝑧 = 𝑤,
¤𝑤 = −𝑥 − |𝑥 | − 𝑎𝑦 − 𝑏𝑤 − 𝑥𝑧.

(3)

We set 𝑋 = (𝑥, 𝑦, 𝑧, 𝑤) to denote the state of the Sambas system (3).
We suppose that 𝑎 and 𝑏 are positive constants in the Sambas system (3).
Sambas et al. [15] showed that the system (3) is chaotic when 𝑎 = 4 and 𝑏 = 2.
For the initial state (0.1, 0.2, 0.1, 0.2) and (𝑎, 𝑏) = (4, 2), the Lyapunov

exponents (LE) of the 4-D Sambas system (3) are determined for 𝑇 = 1𝐸4
seconds in MATLAB as follows:

𝐿1 = 0.1265, 𝐿2 = 0, 𝐿3 = −0.7330, 𝐿4 = −13939. (4)

The equilibrium points of the Sambas hyperjerk system (3) are found by
solving the equations:

𝑦 = 0, (5a)
𝑧 = 0, (5b)
𝑤 = 0, (5c)
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−𝑥 − |𝑥 | − 𝑎𝑦 − 𝑏𝑤 − 𝑥𝑧 = 0. (5d)

From (5a), (5b) and (5c), we see that 𝑦 = 𝑧 = 𝑤 = 0.
Hence, (5d) simplifies as 𝑥 + |𝑥 | = 0.
Thus, the Sambas hyperjerk system (3) consists of the equilibrium points

given by the set

𝑆 = {(𝑥, 𝑦, 𝑧, 𝑤) : 𝑥 + |𝑥 | = 0, 𝑦 = 0, 𝑧 = 0, 𝑤 = 0} . (6)

When 𝑥 ­ 0, |𝑥 | = 𝑥 and the equation 𝑥 + |𝑥 | = 0 has the unique solution
𝑥 = 0.

When 𝑥 < 0, |𝑥 | = −𝑥 and the equation 𝑥 + |𝑥 | = 0 is readily satisfied.
Hence, we can simplify the equilibrium set 𝑆 for the Sambas hyperjerk sys-

tem (3) as
𝑆 = {(𝑥, 𝑦, 𝑧, 𝑤) : 𝑥 ¬ 0, 𝑦 = 0, 𝑧 = 0, 𝑤 = 0} (7)

which is the half-line consisting of the non-positive 𝑥-axis in R4.
In this research work, we obtain a new chaotic hyperjerk system by introducing

two quadratic nonlinearities in the hyperjerk dynamics (3).
Thus, we propose the following hyperjerk dynamics

¤𝑥 = 𝑦 ,
¤𝑦 = 𝑧 ,
¤𝑧 = 𝑤 ,
¤𝑤 = −𝑥 − |𝑥 | − 𝑎𝑦 − 𝑏𝑤 − 𝑥𝑧 + 𝑐𝑧2 + 𝑝𝑦𝑧,

(8)

where 𝑋 = (𝑥, 𝑦, 𝑧, 𝑤) is the state and 𝑎, 𝑏, 𝑐, 𝑝 are positive parameters.
In this research work, we shall show that the new hyperjerk system (8) is

chaotic for the values

𝑎 = 4, 𝑏 = 2, 𝑐 = 0.1, 𝑝 = 0.2. (9)

For the initial state (0.1, 0.2, 0.1, 0.2) and (𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2), the
Lyapunov exponents (LE) of the new 4-D hyperjerk system (8) are determined
for 𝑇 = 1𝐸4 seconds in MATLAB as follows:

𝐿1 = 0.2035, 𝐿2 = 0, 𝐿3 = −0.7445, 𝐿4 = −1.4255. (10)

The equilibrium points of the new hyperjerk system (8) are found by solving
the equations:

𝑦 = 0, (11a)
𝑧 = 0, (11b)
𝑤 = 0, (11c)



A NEW CHAOTIC JERK SYSTEM WITH A HALF-LINE OF EQUILIBRIUM POINTS . . . 127

−𝑥 − |𝑥 | − 𝑎𝑦 − 𝑏𝑤 − 𝑥𝑧 + 𝑐𝑧2 + 𝑝𝑦𝑧 = 0. (11d)

From (11a), (11b) and (11c), we see that 𝑦 = 𝑧 = 𝑤 = 0.
Hence, (11d) simplifies as 𝑥 + |𝑥 | = 0.
Thus, the new hyperjerk system (8) consists of the equilibrium points given

by the set

𝑆 = {(𝑥, 𝑦, 𝑧, 𝑤) : 𝑥 + |𝑥 | = 0, 𝑦 = 0, 𝑧 = 0, 𝑤 = 0} . (12)

When 𝑥 ­ 0, |𝑥 | = 𝑥 and the equation 𝑥 + |𝑥 | = 0 has the unique solution
𝑥 = 0.

When 𝑥 < 0, |𝑥 | = −𝑥 and the equation 𝑥 + |𝑥 | = 0 is readily satisfied.
Hence, we can simplify the equilibrium set 𝑆 for the new hyperjerk sys-

tem (8) as
𝑆 = {(𝑥, 𝑦, 𝑧, 𝑤) : 𝑥 ¬ 0, 𝑦 = 0, 𝑧 = 0, 𝑤 = 0} (13)

which is the half-line consisting of the non-positive 𝑥-axis in R4.
Comparing the equations (4) and (10), we make the deduction that the maximal

Lyapunov exponent (MLE) of the new hyperjerk system is 𝐿1 = 0.2035 which
is greater than the MLE of the Sambas hyperjerk system (1) obtained as 𝐿1 =

0.1265. Thus, the new hyperjerk system (8) exhibits more complexity than the
Sambas hyperjerk system (3).

Figures 1–4 show the 2-D phase plots of the new hyperjerk system (8) in
(𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑤) and (𝑥, 𝑤) planes, respectively.

Figure 1: 2-D plot of the new hyperjerk system (8) for 𝑋 (0) = (0.1, 0.2, 0.1, 0.2) and
(𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2) in (𝑥, 𝑦) plane
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Figure 2: 2-D plot of the new hyperjerk system (8) for 𝑋 (0) = (0.1, 0.2, 0.1, 0.2) and
(𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2) in (𝑦, 𝑧) plane

Figure 3: 2-D plot of the new hyperjerk system (8) for 𝑋 (0) = (0.1, 0.2, 0.1, 0.2) and
(𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2) in (𝑧, 𝑤) plane
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Figure 4: 2-D plot of the new hyperjerk system (8) for 𝑋 (0) = (0.1, 0.2, 0.1, 0.2) and
(𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2) in (𝑥, 𝑧) plane

3. Bifurcation analysis of the New Hyperjerk System with a half-line
of equilibrium points

In this section, we investigate numerically the dynamical behavior of the new
hyperjerk system (8) with a half-line of equilibrium points using the LE spectrum
and bifurcation diagrams.

3.1. Varying the parameter a

Figure 5 shows the Lyapunov exponents (LE) spectrum and the bifurcation
diagram of the new 4-D chaotic hyperjerk system (8) with respect to parameter 𝑎.

We fix the values the parameters: 𝑏, 𝑐, 𝑝 as: (𝑏, 𝑐, 𝑝) = (2, 0.1, 0.2).
We can identify the dynamic behavior of the new hyperjerk system (8) when

the parameter 𝑎 varies in the range [3.96, 5] as follows:
Let 𝑎 ∈ [3.96, 5]. We define:
𝐴 = [3.96, 4.29) ∪ (4.29, 4.55) ∪ (4.56, 4.71) ∪ (4.77, 4.873),
𝐵 = [4.55, 4.56] ∪ [4.71, 4.77] ∪ [4.873, 5] ∪ {4.29}.
When 𝑎 ∈ 𝐴, we can see from Figure 5 that the new hyperjerk system (8) has

only one positive Lyapunov exponent (𝐿1 > 0) and one zero Lyapunov exponent
(𝐿2 = 0) and two negative Lyapunov exponents (𝐿3,4 < 0). Thus, the hyperjerk
system (8) is chaotic and generates a chaotic attractor in this range of parameter 𝑎.
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The LE values of the hyperjerk system (8) when 𝑎 = 4.05 are:

𝐿1 = 0.1284, 𝐿2 = 0, 𝐿3 = −0.6929, 𝐿4 = −1.4370. (14)

The LE values of the hyperjerk system (8) when 𝑎 = 4.25 are:

𝐿1 = 0.1319, 𝐿2 = 0, 𝐿3 = −0.6510, 𝐿4 = −1.4820. (15)

The LE values of the hyperjerk system (8) when 𝑎 = 4.61 are:

𝐿1 = 0.04029, 𝐿2 = 0, 𝐿3 = −0.5663, 𝐿4 = −1.4080. (16)

When 𝑎 ∈ 𝐵, we can see from Figure 5 that the system (8) has only one zero
Lyapunov exponent (𝐿1 = 0) and three negative Lyapunov exponents (𝐿2,3,4 < 0).

Thus, for values of 𝑎 ∈ 𝐵, the hyperjerk system (8) is periodic and generates
a periodic attractor.

The LE values of the hyperjerk system (8) when 𝑎 = 4.29 are:

𝐿1 = 0, 𝐿2 = −0.04562, 𝐿3 = −0.4740, 𝐿4 = −1.4830. (17)

The LE values of the hyperjerk system (8) when 𝑎 = 4.75 are:

𝐿1 = 0, 𝐿2 = −0.04562, 𝐿3 = −0.4740, 𝐿4 = −1.4830. (18)

The LE values of the hyperjerk system (8) when 𝑎 = 5 are:

𝐿1 = 0, 𝐿2 = −0.03708, 𝐿3 = −0.4960, 𝐿4 = −1.470. (19)

(a) Bifurcation plot (b) LE spectrum

Figure 5: Bifurcation diagram and LE Spectrum for the hyperjerk system (8) when 𝑎 varies in
[3.96, 5] and (𝑏, 𝑐, 𝑝) = (2, 0.1, 0.2)
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3.2. Varying the parameter b

Figure 6 shows the Lyapunov exponents (LE) spectrum and the bifurcation
diagram of the new 4-D chaotic hyperjerk system (8) with respect to parameter 𝑏.

(a) Bifurcation plot (b) LE spectrum

Figure 6: Bifurcation diagram and LE Spectrum for the hyperjerk system (8) when 𝑏 varies in
[1.8, 2.5] and (𝑎, 𝑐, 𝑝) = (4, 0.1, 0.2)

We fix the values the parameters: 𝑎, 𝑐, 𝑝 as: (𝑎, 𝑐, 𝑝) = (4, 0.1, 0.2).
We vary the parameter 𝑏 in the range [1.8, 2.5].
We can see from Fig. 6 that the hyperjerk system (8) has at least one positive

Lyapunov exponent (𝐿1 > 0). Thus, the hyperjerk system (8) is chaotic and
generates a chaotic attractor in this range of parameter 𝑏.

The LE values of the hyperjerk system (8) when 𝑏 = 1.9 are:

𝐿1 = 0.1548, 𝐿2 = 0, 𝐿3 = −0.67, 𝐿4 = −1.385. (20)

The LE values of the hyperjerk system (8) when 𝑏 = 2.05 are:

𝐿1 = 0.1363, 𝐿2 = 0, 𝐿3 = −0.7377, 𝐿4 = −1.4480. (21)

The LE values of the hyperjerk system (8) when 𝑏 = 2.32 are:

𝐿1 = 0.1299, 𝐿2 = 0, 𝐿3 = −0.7397, 𝐿4 = −1.7110. (22)

3.3. Varying the parameter c

Figure 7 shows the Lyapunov exponents spectrum and the bifurcation diagram
of the new 4-D chaotic hyperjerk system (8) with respect to parameter 𝑐.

We fix the values the parameters: 𝑎, 𝑏, 𝑝 as: (𝑎, 𝑏, 𝑝) = (4, 2, 0.2).
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(a) Bifurcation plot (b) LE spectrum

Figure 7: Bifurcation diagram and LE Spectrum for the hyperjerk system (8) when 𝑐 varies in
[0, 0.12] and (𝑎, 𝑏, 𝑝) = (4, 2.0.2)

We vary the parameter 𝑐 in the range [0, 0.12].
We can see from Figure 7 that the hyperjerk system (8) has at least one

positive Lyapunov exponent (𝐿1 > 0). Thus, the hyperjerk system (8) is chaotic
and generates a chaotic attractor in this range of parameter 𝑐.

The LE values of the hyperjerk system (8) when 𝑐 = 0.06 are:

𝐿1 = 0.1313, 𝐿2 = 0, 𝐿3 = −0.7215, 𝐿4 = −1.41. (23)

The LE values of the hyperjerk system (8) when 𝑐 = 0.09 are:

𝐿1 = 0.1275, 𝐿2 = 0, 𝐿3 = −0.7, 𝐿4 = −1.4280. (24)

The LE values of the hyperjerk system (8) when 𝑐 = 0.12 are:

𝐿1 = 0.1448, 𝐿2 = 0, 𝐿3 = −0.7147, 𝐿4 = −1.4320. (25)

3.4. Varying the parameter p

Figure 8 shows the Lyapunov exponents spectrum and the bifurcation diagram
of the new 4-D chaotic hyperjerk system (8) with respect to parameter 𝑝.

We fix the values the parameters: 𝑎, 𝑏, 𝑐 as: (𝑎, 𝑏, 𝑐) = (4, 2, 0.1).We vary the
parameter 𝑝 in the range [0, 0.24]. we can see from Figure 8 that the hyperjerk
system (8) has at least one positive Lyapunov exponent (𝐿1 > 0).
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(a) Bifurcation plot (b) LE spectrum

Figure 8: Bifurcation diagram and LE Spectrum for the hyperjerk system (8) when 𝑝 varies in
[0, 0.24] and (𝑎, 𝑏, 𝑐) = (4, 2.0.1)

Thus, the hyperjerk system (8) is chaotic and generate a chaotic attractor in
this range of parameter 𝑝.

The LE values of the hyperjerk system (8) when 𝑝 = 0.04 are:

𝐿1 = 0.1484, 𝐿2 = 0, 𝐿3 = −0.7170, 𝐿4 = −1.4340. (26)

The LE values of the hyperjerk system (8) when 𝑝 = 0.13 are:

𝐿1 = 0.1375, 𝐿2 = 0, 𝐿3 = −0.6932, 𝐿4 = −1.4450. (27)

The LE values of the hyperjerk system (8) when = 0.24 are:

𝐿1 = 0.1419, 𝐿2 = 0, 𝐿3 = −0.7157, 𝐿4 = −1.4260. (28)

4. Multistability in the new chaotic hyperjerk system

To enhance the examination of coexistence attractors and other system char-
acteristics, introducing a disturbance to the initial conditions is essential, while
maintaining constant system parameters. Figures 9 and 10 show the dynamic
behavior of the hyperjerk system (8) with coexistence of attractors for different
initial conditions and same values of system parameters.
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(a) (𝑧, 𝑤) plot (b) (𝑥, 𝑤) plot

Figure 9: Coexistence of two chaotic attractors for the hyperjerk system (8) with different initial
values where 𝑎 = 4, 𝑏 = 2, 𝑐 = 0.1, 𝑞 = 0.2: (a-b) The initial states are chosen as 𝑋0 =

(0.1, 0.2, 0.1, 0.2) (blue orbit) and 𝑋1 = (0.1, 0.2, 0.1, 0.5) (red orbit)

(a) (𝑦, 𝑤) plot (b) (𝑥, 𝑧) plot

Figure 10: Coexistence of two periodic attractors for the hyperjerk system (8) with different
initial values where 𝑎 = 5, 𝑏 = 2, 𝑐 = 0.1, 𝑞 = 0.2: (a-b) The initial states are chosen as
𝑋0 = (0.1, 0.2, 0.1, 0.2) (blue orbit) and 𝑋1 = (0.1, 0.2, 0.1, 0.5) (red orbit).

5. Circuit simulation of the new chaotic hyperjerk system

In this section, the new 4D chaotic hyperjerk system (8) is realized by the NI
Multisim 14.2 platform. The electronic circuit design of the 4D hyperjerk chaotic
circuit (29) is shown in Figure 11 in which TLO82CD is selected as OPAMP and
the multipliers are of type AD633.
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Figure 11: Circuit design of the new chaotic 4D hyperjerk system (29)

Using Kirchhoff’s electrical circuit laws, we derive the circuit model for the
new chaotic 4D hyperjerk system (8) as follows:

¤𝑥 = 1
𝑅1𝐶1

𝑦, ¤𝑦 = 1
𝑅2𝐶2

𝑧, ¤𝑧 = 1
𝑅3𝐶3

𝑤,

¤𝑤 = − 1
𝑅4𝐶4

𝑥 − 1
𝑅5𝐶4

|𝑥 | − 1
𝑅6𝐶4

𝑦 − 1
𝑅7𝐶4

𝑤 − 1
10𝑅8𝐶4

𝑥𝑧

+ 1
10𝑅9𝐶4

𝑧2 + 1
10𝑅10𝐶4

𝑦𝑧.

(29)



136 S. VAIDYANATHAN, F. HANNACHI, M.A. MOHAMED, A. SAMBAS, C. ARUNA, R. RAMESH

Here 𝑥, 𝑦, 𝑧, 𝑤 are the voltages across the capacitors, 𝐶1, 𝐶2, 𝐶3, 𝐶3, respec-
tively. The values of components in the circuit are selected as follow:

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 𝑅5 = 𝑅9 = 400 kΩ, 𝑅7 = 200𝑘Ω, 𝑅8 = 40 kΩ, (30)
𝑅6 = 𝑅11 = 𝑅12 = 𝑅13 = 𝑅14 = 𝑅15 = 100 kΩ, (31)
𝑅16 = 𝑅17 = 𝑅18 = 𝑅19 = 𝑅20 = 𝑅21 = 100 kΩ, (32)

𝐶1 = 𝐶2 = 𝐶3 = 1 nF. (33)

Multisim outputs of the hyperjerk circuit (29) via oscilloscope XSC1 are
presented in Figure 12.

(a) (𝑥, 𝑦)-plot (b) (𝑦, 𝑧)-plot

(c) (𝑧, 𝑤)-plot (d) (𝑥, 𝑧)-plot

Figure 12: MultiSim outputs of the new hyperjerk circuit (29) via oscilloscope XSC1
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Multisim outputs of the hyperjerk circuit (29) via Tektronix oscilloscope are
presented in Figure 13.

(a) (𝑥, 𝑦)-plot (b) (𝑦, 𝑧)-plot

(c) (𝑧, 𝑤)-plot (d) (𝑥, 𝑧)-plot

Figure 13: MultiSim outputs of the new hyperjerk circuit (29) via Tektronix oscilloscope

6. Anti-synchronization of the new chaotic hyperjerk systems
via backstepping control

In this section, we invoke backstepping control technique [27] for achieving
complete anti-synchronization between a pair of new chaotic hyperjerk systems
taken as the master and slave systems. We remark that anti-synchronization (AS)
of chaotic systems is a phenomenon in which the state vectors of the synchro-
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nized systems have the same amplitude but opposite signs as those of the driving
system. Thus, for anti-synchronization of chaotic systems, the sums of the re-
spective signals of the master and slave systems are expected to converge to zero
asymptotically with time [25, 26].

The master hyperjerk system is taken as the new chaotic hyperjerk system
with a half-line of equilibrium points given by

¤𝑥1 = 𝑦1 ,

¤𝑦1 = 𝑧1 ,

¤𝑧1 = 𝑤1 ,

¤𝑤1 = −𝑥1 − |𝑥1 | − 𝑎𝑦1 − 𝑏𝑤1 − 𝑥1𝑧1 + 𝑐𝑧21 + 𝑝𝑦1𝑧1 .

(34)

We denote the state of the 4-D master hyperjerk system (34) as 𝑋 =

(𝑥1, 𝑦1, 𝑧1, 𝑤1).
The slave hyperjerk system is taken as the new controlled chaotic hyperjerk

system 
¤𝑥2 = 𝑦2 ,

¤𝑦2 = 𝑧2 ,

¤𝑧2 = 𝑤2 ,

¤𝑤2 = −𝑥2 − |𝑥2 | − 𝑎𝑦2 − 𝑏𝑤2 − 𝑥2𝑧2 + 𝑐𝑧22 + 𝑝𝑦2𝑧2 +𝑄(𝑡).

(35)

We denote the state of the 4-D slave hyperjerk system (35) as𝑌 = (𝑥2, 𝑦2, 𝑧2, 𝑤2).
Also, 𝑄 is the active backstepping control which is to be determined using

backstepping control theory.
The anti-synchronization chaos error between the master and slave hyperjerk

systems is defined as follows: 
𝑒𝑥 = 𝑥2 + 𝑥1 ,

𝑒𝑦 = 𝑦2 + 𝑦1 ,

𝑒𝑧 = 𝑧2 + 𝑧1 ,
𝑒𝑤 = 𝑤2 + 𝑤1 .

(36)

The anti-synchronization error dynamics is calculated as follows:

¤𝑒𝑥 = 𝑒𝑦 ,
¤𝑒𝑦 = 𝑒𝑧 ,
¤𝑒𝑧 = 𝑒𝑤 ,
¤𝑒𝑤 = −𝑒𝑥 − 𝑎𝑒𝑦 − 𝑏𝑒𝑤 − |𝑥2 | − |𝑥1 | − 𝑥1𝑧1 − 𝑥2𝑧2

+ 𝑐

(
𝑧21 + 𝑧

2
2

)
+ 𝑝(𝑦1𝑧1 + 𝑦2𝑧2) +𝑄(𝑡).

(37)
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We state and prove the main control result of this section.

Theorem 1. The active backstepping control law stated by

𝑄(𝑡) = −4𝑒𝑥 − (10 − 𝑎)𝑒𝑦 − 9𝑒𝑧 − (4 − 𝑏)𝑒𝑤 + |𝑥1 | + |𝑥2 |

+ 𝑥1𝑧1 + 𝑥2𝑧2 − 𝑐
(
𝑧21 + 𝑧

2
2

)
− 𝑝(𝑦1𝑧1 + 𝑦2𝑧2) − 𝐾𝜂4 , (38)

where 𝐾 > 0 and 𝜂4 = 3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤, achieves global anti-synchronization
between the trajectories of the 4D chaotic hyperjerk systems (34) and (35) for all
values of 𝑋 (0), 𝑌 (0) ∈ R4.

Proof. For the control design, we start with the Lyapunov function

𝑉1(𝜂𝑥) =
1
2
𝜂2

1 , (39)

where
𝜂1 = 𝑒𝑥 . (40)

Differentiating 𝑉1 with respect to 𝑡 along the error system (37), we get
¤𝑉1 = 𝜂1 ¤𝜂1 = −𝜂2

1 + 𝜂1(𝑒𝑥 + 𝑒𝑦). (41)

We define
𝜂2 = 𝑒𝑥 + 𝑒𝑦 (42)

Using (42), we simplify (39) as
¤𝑉1 = −𝜂2

1 + 𝜂1𝜂2 . (43)

We proceed next with defining the Lyapunov function

𝑉2(𝜂1, 𝜂2) = 𝑉1(𝜂1) +
1
2
𝜂2

2 =
1
2
𝜂2

1 +
1
2
𝜂2

2 (44)

Differentiating 𝑉2 with respect to 𝑡 along the error system (37), we get
¤𝑉2 = −𝜂2

𝑥 − 𝜂2
𝑦 + 𝜂𝑦 (2𝑒𝑥 + 2𝑒𝑦 + 𝑒𝑧) (45)

We define
𝜂3 = 2𝑒𝑥 + 2𝑒𝑦 + 𝑒𝑧 (46)

Using (46), we simplify (45) as
¤𝑉2 = −𝜂2

1 − 𝜂
2
2 + 𝜂2𝜂3 . (47)

Next, we define the Lyapunov function

𝑉3(𝜂1, 𝜂2, 𝜂3) = 𝑉2(𝜂𝑥 , 𝜂𝑦) +
1
2
𝜂2

3 =
1
2
(𝜂2

1 + 𝜂
2
2 + 𝜂

2
3). (48)
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Differentiating 𝑉3 with respect to 𝑡 along the error system (37), we get
¤𝑉3 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 + 𝜂3(3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤) (49)

We define
𝜂4 = 3𝑒𝑥 + 5𝑒𝑦 + 3𝑒𝑧 + 𝑒𝑤 (50)

Using (50), we simplify (49) as
¤𝑉3 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 + 𝜂4𝜂4 (51)

Finally, we define the quadratic Lyapunov function

𝑉 (𝜂1, 𝜂2, 𝜂3, 𝜂4) = 𝑉3(𝜂1, 𝜂2, 𝜂3) +
1
2
𝑒2

4 =
1
2
𝑒2

1 +
1
2
𝑒2

2 +
1
2
𝑒2

3 +
1
2
𝑒2

4 (52)

Differentiating 𝑉 with respect to 𝑡, we get
¤𝑉 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 − 𝜂

2
4 + 𝜂4𝑍, (53)

where
𝑍 = 𝜂3 + 𝜂4 + ¤𝜂4 . (54)

Simplifying the expression in (54), we get

𝑍 = 4𝑒𝑥 + (10 − 𝑎)𝑒𝑦 + 9𝑒𝑧 + (4 − 𝑏)𝑒𝑤 − |𝑥1 | − |𝑥2 | − 𝑥1𝑧1

− 𝑥2𝑧2 + 𝑐
(
𝑧21 + 𝑧2

)
+ 𝑝(𝑦1𝑧1 + 𝑦2𝑧2) +𝑄(𝑡). . (55)

Substituting 𝑄 from Eq. (38) into (55), we get

𝑍 = −𝐾𝜂4 . (56)

Using (56) and (53), we get
¤𝑉 = −𝜂2

1 − 𝜂
2
2 − 𝜂

2
3 − (1 + 𝐾)𝜂2

4 . (57)

From (57), ¤𝑉 is negative definite on R4.
Consequently, by Lyapunov stability theory, (𝑒𝑥 (𝑡), 𝑒𝑦 (𝑡), 𝑒𝑧 (𝑡), 𝑒𝑤 (𝑡)) → 0

as 𝑡 → ∞ for all values of the initial conditions 𝑋 (0), 𝑌 (0) ∈ R4.
This completes the proof.
For computer simulations, we take the parameter values as in the chaotic case,

viz. (𝑎, 𝑏, 𝑐, 𝑝) = (4, 2, 0.1, 0.2).
We choose the feedback gain 𝐾 as 𝐾 = 25.
We take the initial state of the master system (34) as 𝑋 (0) = (3.1, 2.4, 4.8, 5.6)
We take the initial state of the slave system (35) as 𝑌 (0) = (5.9, 1.3, 6.4, 7.2).
Figure 14 shows the asymptotic convergence of the anti-synchronization er-

ror 𝑒𝑥 (𝑡), 𝑒𝑦 (𝑡), 𝑒𝑧 (𝑡) and 𝑒𝑤 (𝑡) between the master system (34) and the slave
system (35).
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Figure 14: Time-plot of the anti-synchronization errors between the master system (34)
and the slave system (35)

7. Conclusions

In this research work, we presented a new 4-D chaotic hyperjerk system with
a half-line of equilibrium points. In the chaos literature, it is well-known that
chaotic systems with an infinite number of equilibrium points exhibit hidden
attractors. Thus, we deduced that the new hyperjerk system exhibits hidden
chaotic attractors. We presented a detailed study of the new chaotic hyperjerk
system for a dynamic analysis using bifurcation plots and Lyapunov Exponents
(LE) diagrams. We showed that the new hyperjerk system has a special property of
multistability with coexisting attractors. Using Multisim version 14.2, we carried
out an electronic circuit simulation for the proposed 4-Dl chaotic hyperjerk system
with a half-line of equilibrium points, which will be very useful for practical
engineering applications. Finally, as an application in control engineering, we
applied active backstepping control for achieving anti-synchronization of a pair of
new chaotic hyperjerk systems taken as master-slave systems, which has important
applications in communication systems.
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