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Abstract. The paper presents the processing and analysis of the recorded trolleybus data using the LINQ (Language Integrated Query) software 
technology. The trolleybus data acquisition system collects a huge amount of electromechanical data in real time during vehicle operation. 
These data are used for the analysis in post-processing mode. In this paper, data processing was performed to assess the technical condition 
of trolleybus batteries. Selected standard query operators of the LINQ technology were implemented in the Windows Presentation Foundation
(WPF) application to process the data and to determine the charge and energy stored in the battery. The LINQ technology proved to be useful for
analyzing large amounts of data recorded from trolleybuses.
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1. INTRODUCTION
Data acquisition systems in modern trolleybuses record sev-
eral dozen parameters in real time according to multi-objective
planning of electric bus systems in cities with trolleybus infras-
tructure networks [1]. From the energy efficiency point of view
of an electric vehicle (EV), the essential data package recorded
from a trolleybus equipped with a battery contains the following
parameters:
• Time – full date/time pattern;
• Vehicle ID – usually an integer number;
• Input drive energy [kWh];
• Energy recovered from drive [kWh];
• Input vehicle energy [kWh];
• Energy recovered from vehicle [kWh];
• Battery mode – vehicle fed from battery (bool variable);
• Catenary mode – vehicle fed from catenary (bool variable);
• Distance travelled [km];
• Internal and external temperature
• Velocity [km/h];
• Latitude and Longitude;
• On/Off passenger space heating;
• Battery charge status (SOC) [%];
• Catenary voltage [V] and catenary current [A];
• Battery voltage [V] and battery current [A];
• Min and Max battery temperature.
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The way of data sampling depends on the energy management 
system installed in the electric vehicle [2]. Two methods are 
typically used to sample data from electric vehicles. In the first 
method, a constant distance step is used, while the second one 
makes use of a constant time step when the vehicle is stopped 
and a varying speed-dependent time step when the vehicle is in 
motion.

  The amount of recorded data per hour or per day depends 
on several factors, including data resolution (analogue signals), 
data sampling, and data recording format (binary or text). For 
the recorded data listed in the first paragraph of this section and 
the variable time step, the amount of data is equal to about 10 
MB per day while the text format is considered. The data used 
in this work for processing and analysis were obtained from a 
company providing public transport services in northern Poland. 
The data, arranged in tables, are saved in files with a specific 
signature and archived on dedicated servers, thus creating the 
database resources.

  Data processing can be performed using several dedicated 
software programmes. The Structured Query Language (SQL)
is commonly used for this purpose. It is a relatively simple 
language, designed specifically for accessing, processing, and 
modifying information in relational databases. SQL (invented 
in 1974) is still a universal language of data, used in practically 
all technologies that process data and create complex reports.

Other programming tools for processing and analysis of data-
base resources were developed as well. One such programming

 tool is the Language Integrated Query (LINQ). Com pared to 
SQL, LINQ is  simpler, more  productive, and  higher- level 
[3–5]. However,  there  are no papers  describing  in  detail  the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. e154144, 2025 1

https://orcid.org/0000-0002-5265-6189
https://orcid.org/0000-0001-9240-4309
https://orcid.org/0000-0003-1373-0961
https://orcid.org/0000-0001-9710-1913
https://orcid.org/0000-0003-1803-3647
https://orcid.org/0000-0003-1616-1944
https://orcid.org/0000-0002-9713-6902
https://orcid.org/0000-0002-5485-025X
mailto:andrzej.wilk@pg.edu.pl


A. Wilk et al.

application of LINQ technology in the processing and analysis
of traction data from an electric vehicle.

Section 2 briefly presents the LINQ technology and the types
of query operators used to process records from the trolleybus
data table. In Section 3, selected data regarding one-day trolley-
bus operation are shown and discussed, while Section 4 presents
selected query expressions to perform filtering, ordering, group-
ing, and selecting operations on trolleybus data sources. These
queries are intended to provide results that describe the current
health of the traction battery.

The novelty of this work is demonstrating the suitability of
LINQ technology for formulating a query interface for process-
ing database tables including trolleybus-recorded data with a
minimum of programming code.

2. BIG DATA APPLICATIONS IN BATTERY MANAGEMENT
SYSTEMS

Many case studies of Big Data (BD) applications in battery man-
agement systems (BMS), including intelligent BMS systems and
complex battery modeling, have been already published. Bat-
tery life estimation is usually determined using different battery
degradation models. These models can be classified into three
main groups as described in [6–8]: 1) Model-based approach
(MBA), 2) Data-driven approach (DDA), and 3) Hybrid ap-
proach (HA).

Model-based approaches are developed taking into account
electrochemical phenomena and they use a combination of alge-
braic and/or differential equations or empirical equations. The
following techniques are used in MBA: equivalent circuit mod-
els [9, 10], electrochemical models [11], and empirical mod-
els [12].

Data-driven approaches are developed taking into account a
lot of data gathered in the laboratory through large-scale test-
ing under various aging conditions. The DDA approach (usu-
ally known as black-box models) uses statistical theories [13]
or machine learning techniques [14] to develop a model from
measured data.

Hybrid approaches are developed based on a combination of
MBA and DDA models [15, 16]. The advantage of this combi-
nation is better performance and accuracy.

Various concepts for data analysis by the EV battery manage-
ment system (BMS) are presented and tested [17–19]. The most
advanced concepts are based on a layered structure of BMS: data
sources layer, data acquisition layer, and data analytics layer.

The data sources are usually Big Data collections stored in
databases. These sources include structured data such as tradi-
tional databases (SQL, mySQL, MongoDB, etc.) as document-
based databases, semi-structured data such as BMS monitoring
logs, and unstructured data.

The data acquisition layer is responsible for collecting data
from several sensors and measurement systems of EVs and trans-
mitting them using several communication protocols, taking into
account the data format, size, and sampling.

The core task of data analytics is data processing and anal-
ysis. The data analytics layer includes batch processing using
various Big Data analytics frameworks. Analytics frameworks

considered for implementation in BMS are:
• Apache Hadoop [20] – an open-source framework for dis-

tributed processing and Big Data storage built on Hadoop
Distributed File System.

• Apache MapReduce [21] – a distributed execution frame-
work that simplifies data processing on large clusters by
breaking tasks into parallel processing steps (invented by
Google). It implements Map (input, filter, and sort datasets)
and Reduce (perform summary operation) approach.

• Apache Spark [22] – a fast, open-source data-processing
framework for machine learning and AI applications, sup-
ported by the largest open-source community in big data.
Spark can be a standalone solution or run with Hadoop. It is
used for real-time data processing.

The frameworks mentioned above have great potential in ana-
lyzing EV data, but there are further challenges to be addressed
both now and in the future:
• Expensive and complicated hardware and software infras-

tructure implementing the functions of the mentioned lay-
ered model – Big Data BMS using cloud-based infrastruc-
ture.

• BMS data protection to ensure user data privacy using en-
cryption and provide cybersecurity.

• System reliability in the event of missing or incorrect data
and unreliability in some conditions.

• Open-source Big Data for BMSs is necessary for users, de-
velopers, and researchers to effectively work on improving
BMS to minimize battery degradation.

LINQ technology can be implemented in each framework im-
plementing intelligent and accurate BMS.

3. LINQ TECHNOLOGY – CAPABILITIES
A query in LINQ technology is an expression that retrieves
data from a data source. All LINQ query operations include a
sequence of three distinct actions [23]:
• Obtaining the data source;
• Creating the query;
• Executing the query.

The data source is a set of tables formulated as: XML docu-
ments, SQL databases, .NET collections, and any other format
when a LINQ provider is available. The query specifies what re-
sults to retrieve from the data tables or database sources. Query
execution means that the data source is read, and the operation
is performed once in a more productive way. Table 1 classifies
selected standard query operator methods implemented in LINQ
technology according to their method of execution.

Some of these operators (aggregation, conversion, grouping,
and selection) were used in this work to process and analyze
the trolleybus data. LINQ technology facilitates the extension
of the functionality of standard queries, which can be done by
developing LINQ extension methods. In this work, some LINQ
extension methods were developed to determine the time in-
tervals of battery charging states and the amount of charge or
energy delivered to the battery. All LINQ queries were devel-
oped in the Windows Foundation Presentation application using
C# language.
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Table 1
Standard query operator methods of LINQ technology

Operator type Operator name

Aggregation Aggregate, Average, Count, Max, Min, Sum

Conversion ToArray, ToDictionary, ToList, ToLookup,
ToSequence

Equality EqualAll

Generation Empty, Range, Repeat

Grouping GroupBy, GroupJoin, Join

Serialization OrderBy, ThenBy, Reverse

Division Skip, SkipWhile, Take, TakeWhen

Constraint Where

Selection Select, SelectMany

Fixing Concat, Distinct, Except, Intersect, Union

4. SELECTED WAVEFORMS – ONE-DAY TROLLEYBUS
OPERATION

The presentation of waveforms for a one-day trolleybus op-
eration is justified due to the quasi-repeatable timetable. This
section presents selected waveforms recorded by the data ac-
quisition system of trolleybus number 3088 in the period from
2016 to 2022.

The analyzed trolleybus is equipped with lithium-ion mod-
ules with cell configuration 12S2P. The traction battery consists
of two parallel-connected blocks, each with a 168S2P config-
uration. The nominal voltage and the nominal capacity of the
battery are 613 V and 62 Ah, respectively, while the cut-off volt-
age and the charge voltage at 100% SOC are 420 V and 689 V,
respectively.

Due to the large number of waveforms obtained, they were
grouped, and only selected data (representative of all recorded
data) are presented here in the following order:
• Input drive energy, regenerative drive energy, input vehi-

cle energy, and regenerative vehicle energy recorded on
2016/07/01 – Fig. 1.

Fig. 1. Waveforms of selected trolleybus per day data: input drive en-
ergy (red), input vehicle energy (purple), regenerative vehicle energy

(blue), regenerative drive energy (green)

• Battery mode of operation, catenary mode of operation,
distance travelled by the vehicle, and velocity recorded on
2016/07/01 – Fig. 2. The battery and catenary modes are bi-
nary values, but for clarity, the catenary mode was assigned
the value of 110, while the battery mode was assigned the
value of 90.

• Battery status, battery voltage, and battery current recorded
on 2016/07/01 – Fig. 3.

Fig. 2. Waveforms of selected trolleybus per day data: battery mode of
operation (green), catenary mode of operation (red), distance travelled

by the vehicle (blue), velocity (green)

Fig. 3. Waveforms of selected trolleybus per day data: battery status,
battery voltage, and buttery current

Comments and notes regarding these waveforms are as fol-
lows:
• The energy consumed by this trolleybus per day from the

catenary is about 400 kWh.
• The energy returned to the grid by this vehicle is about

50 kWh per day.
• The distance travelled by this vehicle is about 235 km.
• The maximum speed is about 50 km/h.
• The vehicle drive system is energized alternately from the

catenary system (“Catenary mode” – charge mode) and the
battery (“Battery mode” – discharge mode). The number of
charging/discharging cycles per day in most cases is between
10 and 20. The discharge rate depends upon several factors
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such as trolleybus load, temperature gradient, surface incli-
nation, terrain, vehicle speed, and also tire pressure [24].

• In the motoring operating mode of the drive system, the
battery currents have negative values (energy is taken from
the battery) and the extremum value is about −180 A.

• The battery voltage drops significantly from 670 V to 600 V
in the battery mode of operation.

5. LINQ QUERY EXPRESSIONS FOR DATA PROCESSING
There are several methods to assess the technical condition of
a traction battery [25–27]. The optimal operation of a traction
battery managed by an energy storage management system is
usually predictive and based on the knowledge SOC of the bat-
tery [28, 29].

In this work, the technical condition of the batteries is assessed
based on the analysis of many years of data recorded every day of
trolleybus operation – historical data. The main goal, however,
is to test the usability of the LINQ technology in processing
traction data from a trolleybus.

Taking into account the well-known fact that the dynamics of
the battery charging state depend on the loss of capacity, the au-
thors decided to specifically analyze the “Catenary mode” states
of trolleybus operation. In this mode, the battery is charged with
a current depending on the SOC value of the traction battery. It
was assumed that the dynamics of the state of charge depend on
the loss of battery capacity.

The procedure for processing the trolleybus database using
LINQ is as follows:
• Opening a one-day data file and writing data to the memory

collection.
• Running the appropriate LINQ query for the memory collec-

tion to obtain a group of collections representing the data for
the catenary mode only. Each collection has battery charg-
ing states (current flows into the battery) and non-charging
states (current equal to zero).

• Running the appropriate LINQ query for each item of the
collection to select data for the charging state only (positive
current flowing into the battery).

• Performing the calculations to determine a set of parameters
describing the amount of charge and energy delivered to the
battery. In this work two criteria were taken into account for
the determination of the delivered charge and energy:

– SOC criterion – SOC ∈ ⟨SOC1, SOC2⟩.
– Voltage criterion – 𝑈batt ∈ ⟨𝑈1, 𝑈2⟩.

• In the SOC criterion, the charge and energy are determined
in the SOC range between SOC1 and SOC2, while in the
Voltage criterion, they are determined in the 𝑈batt range
between 𝑈1 and 𝑈2.

• Saving the parameters as metadata to compare them with
the same parameters determined in the next procedure.

Windows Presentation Foundation software was developed in
the Microsoft Visual Studio Environment to implement the
above procedure.

In this work, the same operating temperature of the traction
battery was not considered in the SOC criterion and the voltage
criterion. The analyzed trolleybus is equipped with a battery

cooling system. The set of sensors measures the temperature
at several points of the traction battery. However, the tempera-
ture acquisition to the database concerns only extreme values
– minimum and maximum. The preferred working temperature
range for Lithium-Ion batteries, according to studies on their
thermal efficiency, is between 25◦C and 40◦C [30,31]. The tem-
perature waveforms shown in Fig. 4 and Fig. 6 show that the
maximum temperature exceeds 40◦C, but this value, as already
mentioned, does not apply to all battery cells. Accurate eval-
uation of the lithium-ion battery temperature is critical for the
battery management system to prevent the battery from over-
heating [32].

5.1. Opening data files and writing them to memory
collection

The table with the recorded one-day trolleybus data has one
field (column) to identify each record uniquely. This column is
time and is referred to as a primary key. On the other hand,
the one-day trolleybus data may have weak relationships with
subsequent one-day data – no foreign key to relate the records. In
this situation, the authors propose to implement batch processing
of data files, which means that one-day data files regarding
the same trolleybus are automatically and sequentially opened,
processed, analyzed, and closed.

The data saved in the memory collection is of List<T> type
which supports the generic IEnumerable<T> interface. This
means that the collection is a set of data that can have different
types (numbers, strings, boolean, images, etc.). This also means
that it can be queried with LINQ. In this work, such list collection
is named as inputDataList.

5.2. Processing data to obtain the group of collections
representing data for the catenary mode only

As the first step of this processing, the arrays of times time-
sOn[ ] and timesOff [ ] are selected from the “Catenary mode”
binary data included in the inputDataList. The timesOn[ ] ar-
ray contains the start times, while the timesOff [ ] array the end
times of the catenary. There is no query in the standard LINQ
query library to obtain directly the timesOn[ ] and timesOff [ ]
arrays for the catenary mode. However, LINQ technology al-
lows the development of extended LINQ user methods. It is a
new feature that was added in C# 3.0 which allows the user to
add new methods (functions) to the existing types without cre-
ating a new derived type, recompiling, or otherwise modifying
the original type. The extension method named CatenaryInter-
vals( ) for the arrays timesOn[ ] and timesOff [ ] has been devel-
oped by the authors and query to this method is presented in
Listing 1.

Listing 1.
List<TimeOnOff> catenaryOnOff

= inputDataList.CatenaryIntervals( );

The variable catenaryOnOff contains the arrays timesOn[]
and timesOff []. Once the catenary time intervals are known,
a query can be defined to obtain the group of catenary mode
collections as shown in Listing 2.
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Listing 2.
var listCatenaryMode = inputDataList

.Where(item => ((item.Time >= timeOn[i] && item.Time
<= timeOff[i]));

The result of this query is a data collection that meets the
condition of data acquisition in catenary mode. A group of such
collections is shown in Fig. 4 where the following waveforms
are presented:
• Battery status (SOC) as percentage value [%] – left Y-axis;
• Battery voltage [V] – right Y-axis;
• Battery current [A] – left Y-axis;
• Minimum battery temperature [◦C] – left Y-axis;
• Maximum battery temperature [◦C] – left Y-axis.

Fig. 4. Waveforms of selected group collections in catenary mode:
battery status, battery voltage, battery current, minimum battery tem-

perature, maximum battery temperature

A time window corresponding to a single collection taken
from this group is shown in Fig. 5. When the catenary mode is
active (turn-on), the system checks the state of battery charge
(SOC). If the SOC value is lower than 100%, the system starts
the charging process. In this process, the battery current is quasi-
constant and has a value of approximately 60 A until the SOC
reaches a value of approximately 90%.

Fig. 5. Time window corresponding to a single collection taken from
the group of collections representing catenary mode only

Then the battery current decreases quasi-linearly (from 60 A
to 35 A) until the SOC value is close to 100%. When the SOC is
very close to 100%, the charging process is stopped. The battery
voltage increases quasi-linearly in this process. Typically, the
charging state time is shorter than the catenary mode time.

To calculate the charge and energy delivered to the battery
during the charging process, only the data collected in the cate-
nary mode with the condition that the battery current is greater
than zero is required.

5.3. Processing data to obtain the group of collections
representing data for the catenary mode and battery
current greater than zero

In this step, the listCatenaryMode collection calculated in sub-
section 𝐵 is queried at the condition that the battery current
is greater than zero. An appropriate LINQ query is shown in
Listing 3.

Listing 3.
var listChargingStates = listCatenaryMode

.Where(item => item.BatteryCurrent > 0);

The result of this query is a group of data collections that meet
the condition of data acquisition in catenary mode at the battery
current greater than zero – battery charging state. The waveforms
of such collections are shown in Fig. 6. These include: battery
status (SOC), battery voltage, battery current, minimum battery
temperature, and maximum battery temperature. This group is
named “GroupCatenaryCharge”.

Fig. 6. Waveforms of selected collections in “GroupCatenaryCharge”:
battery status, battery voltage, battery current, minimum battery tem-

perature, maximum battery temperature

The time windows for two different single collections taken
from “GroupCatenaryCharge” are shown in Fig. 7 and Fig. 8.
The difference between the waveforms presented in these two
figures is the initial SOC value during the charging process,
which is about 50% in Fig. 7 and about 44% in Fig. 8. The
charging time in the second case is longer.
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Fig. 7. Time window corresponding to a single collection taken from
the group of collections representing catenary mode and charging state

at an initial SOC value of 50%

Fig. 8. Time window corresponding to a single collection taken from
the group of collections representing catenary mode and charging state

at an initial SOC value of 44%

5.4. Charge and energy delivered to the battery during
the charging process

The charge 𝑄 and the energy 𝑊 delivered to the battery have
been determined for each collection from the “GroupCate-
naryCharge”. This was done by numerical integration of the
following formulas:

𝑄(𝑘) =
𝑡2 (𝑘 )∫

𝑡1 (𝑘 )

𝐼batt (𝑘) d𝑡, (1)

𝑊 (𝑘) =
𝑡2 (𝑘 )∫

𝑡1 (𝑘 )

𝐼batt (𝑘)𝑈batt (𝑘) d𝑡, (2)

where 𝐼batt (𝑘) and 𝑈batt (𝑘) are the battery current and battery
voltage of the 𝑘-th collection, respectively; 𝑡1 (𝑘) and 𝑡2 (𝑘) are
the initial time and the final time of the charging process of the
𝑘-th collection, respectively.

The trapezoidal formula taking into account a variable time
step was implemented. It could be done by a relatively easy
algorithm or a LINQ query using aggregate operators.

The amount of charge 𝑄 and energy 𝑊 , the initial and fi-
nal battery state (percentage value), the initial and final battery
voltage, and also the date/time data are saved in an appropriate
metadata file related to the analyzed vehicle.

6. COMPARING CHARGE AND ENERGY DELIVERED
TO THE BATTERY BASED ON HISTORICAL DATA

This ection presents charge 𝑄 and energy 𝑊 delivered to the
battery of trolleybus number 3088 recorded in the period from
2016 to 2022. This comparison was made for both, the SOC
criterion and the voltage criterion.

6.1. SOC criterion
In the SOC criterion, for each case in the historical data, the
initial SOC battery was chosen to be SOC1 = 71%, and the final
value was assumed as SOC2 = 100%. The current SOC value
was calculated by the vehicle energy management system. The
results of 𝑄 and 𝑊 calculations are presented in Fig. 9 and
Fig. 10, respectively.

Fig. 9. Charge delivered to the battery at SOC criterion:
SOC ∈ ⟨71%, 100%⟩

Fig. 10. Energy delivered to the battery at SOC criterion:
SOC ∈ ⟨71%, 100%⟩

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. e154144, 2025



Processing and analysis of trolleybus traction data using LINQ technology

The presented results show that as the operating time of the
traction battery increases, the amount of charge and energy de-
livered to the battery in the charging process decreases while
maintaining the same initial and final SOC of the battery.

6.2. Voltage criterion

In the voltage criterion, for each case in the historical data, the
initial battery voltage was chosen to be 𝑈1 = 643 V, and the
final value was assumed as 𝑈2 = 680 V. The results of 𝑄 and
𝑊 calculations for the voltage criterion are presented in Fig. 11
and Fig. 12, respectively.

Fig. 11. Charge delivered to the battery at Voltage criterion:
𝑈batt ∈ ⟨643 V, 680 V⟩

Fig. 12. Energy delivered to the battery at Voltage criterion:
𝑈batt ∈ ⟨643 V, 680 V⟩

As for the SOC criterion, the presented results show that as
the operating time of the traction battery increases, the amount
of charge and energy delivered to the battery in the charging
process decreases while maintaining the same initial and final
voltage of the battery.

The next tasks that the authors intend to study include:
• Developing/Refining a computer program for batch process-

ing using LINQ on thousands of historical data stored in
database tables.

• Analyzing important battery parameters with statistical anal-
ysis tools.

• Determining prediction of traction battery parameter values.
To reduce stress on the traction battery and thus further extend
battery life, a hybrid energy storage system can be implemented
by integrating supercapacitors [33]. Supercapacitors allow to
decrease the load on the battery during sudden power demands
and short-term power requirements, which increases energy ef-
ficiency.

7. FACTORS AFFECTING BATTERY DEGRADATION

Battery degradation operating in trolleybus is the result of vari-
ous electrochemical processes occurring inside the battery.

The following degradation mechanisms are observed at the
Li-ion battery anode [34]:
• Solid electrolyte interphase/interface (SEI) decomposition

and growth [35];
• Blinder decomposition [36];
• Lithium plating [37];
• Corrosion of anode collector;
• Electrode particle cracking (EPC).

The following degradation mechanisms are observed at the Li-
ion battery cathode [34]:
• Blinder decomposition;
• Solid permeable interface (SPI) growth;
• Corrosion of cathode collector;
• Electrode particle cracking;
• Structure disordering.

These degradation mechanisms cause undesirable phenomena
in the Li-ion battery such as [38]:
• Loss of lithium inventory (LLI);
• Loss of active cathode and anode materials;
• Loss of electrolyte.

The result of these undesirable phenomena is a reduction of
the battery capacity and, consequently, a deterioration of the
battery state of health (SoH) and remaining useful life (RUL).
Several factors influence the mechanism of battery degradation.
The most important working conditions that affect the anode
domain are [34]:
• High SOC – affects: SEI decomposition/growth; blinder de-

composition.
• Low SOC – affects: corrosion of current collector.
• High temperature – affects: SEI decomposition/growth;

blinder decomposition; electrode particle cracking.
• Low temperature – affects: lithium platting.
• Time – affects: SEI decomposition/growth.
• Current load – affects: SEI decomposition/growth; corrosion

of current collector.
• High charging rate – affects: lithium platting.

The most important working conditions that affect the cathode
domain are [34]:
• High SOC – affects: blinder decomposition; solid permeable

interface growth.
• Low SOC – affects: corrosion of current collector; transition

metal dissolution.
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• High temperature – affects: blinder decomposition; solid
permeable interface growth.

• Current load – affects: corrosion of current collector; elec-
trode particle cracking; structure disordering.

The maximum SOC value of batteries in the tested trolleybuses
was 100%. The maximum SOC value recommended by the
Li-ion battery manufacturer is about 80%. Hence, this factor
had a significant impact on battery degradation in the tested
trolleybuses. It should be noted, however, that after reaching
SOC = 100%, the trolleybus immediately switched to battery
mode of operation, which caused the SOC value to decrease.
The state of SOC = 100% was always very short.

The minimum SOC value in the tested trolleybuses never
dropped below 30%. Therefore, this factor had no impact on the
battery degradation process.

The traction test battery has several temperature sensors
mounted inside the battery housing. Only the minimum (𝑇min)
and maximum (𝑇max) temperatures from this set of sensors are
recorded by the data acquisition system of the trolleybus BMS.
In the summertime (when the outside temperature was around
30◦C) the average values recorded by the battery sensors were
𝑇min ≈ 40◦C, 𝑇max ≈ 55◦C. It means that battery cells were not
operated at the same temperature. The degradation rate or ca-
pacity loss of the battery operated above 45◦C is significant [39],
hence we can assume that in the summertime the battery cell
temperature had a significant impact on battery degradation in
tested trolleybuses.

In the wintertime (when the outside temperature was around
0◦C) the average values recorded by the battery sensors were
𝑇min ≈ 24◦C, 𝑇max ≈ 33◦C. This temperature has no significant
effect on battery degradation.

The charging current value at the catenary mode of opera-
tion was about 60 A. The nominal capacity of the battery is
C = 62 Ah, hence charging current rate is 1C. At the charging
current rate of 1C battery end of life (EOL) is about 3000 charg-
ing/discharging cycles [40]. Any value of charging current rate
has an impact on the SoH and RUL of the battery, but at 1C rate,
it can be assumed that it is not the main factor.

The maximum discharge current (battery mode of trolleybus
operation) has been limited to 180 A. It means 3C discharging
the current rate. This factor had a significant impact on battery
degradation.

8. ASSESSMENT OF BATTERY SOH

The graphs presented in Fig. 9 and Fig. 10 indicate battery
degradation because all values of the charge or energy supplied
to the battery are obtained with the same SOC range criterion.
A simplified formula for calculating the state of health (SoH)
from the charge capacity of the battery is given by (3)

SoHCharge = 
(
1 − 𝐶
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100%, (3)

where 𝐶rated – rated capacity, 𝐶actual – actual capacity.

If the actual capacity is not known, it can be estimated using
a simplified formula (4)

SoHCharge = 
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where Δ𝐶initial – initial charge increase, Δ𝐶actual – actual charge
increase at the same SOC range criterion.

Using results from Fig. 9 and simplified formula (4) SoHCharge
equals 65%.

A simplified formula for calculating battery SoH from the
energy is given by (5)

SoHEnergy = 
(
1 − 𝑊
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where 𝑊rated – rated battery energy, 𝑊actual – actual energy.
If the actual energy is not known, it can be estimated using a

simplified formula (6)

SoHEnergy = 
(
1 − Δ
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100%, (6)

whereΔ𝑊initial – initial energy increase,Δ𝑊actual – actual energy
increase at the same SOC range criterion.

Using results from Fig. 10 and simplified formula (6)
SoHEnergy equals 65%.

Similar values of SoH are obtained at the voltage range crite-
rion.

Analyses are currently underway to determine the remaining
useful life (RUL) of the tested batteries.

9. CONCLUSIONS

The following conclusions were formulated based on the pro-
cessing and analysis of the data obtained from the trolleybus
data acquisition system:
• The size of the trolleybus per one-day data generated by the

DAQ system is approximately equal to 10 kB when the data
is stored in the text format as a database table.

• The database tables have weak relationships with each other.
The unique primary key is time.

• LINQ technology proved to be very useful for data process-
ing and analysis. An extended LINQ method is needed to
query the time intervals of catenary mode.

• Queries formulated for trolleybus database tables work ef-
ficiently and are characterized by a relatively small amount
of code.

• Battery mode and catenary mode of trolleybus operation are
easily detected by LINQ queries. The battery charging states
are grouped into collections composing a dedicated group.

• Each collection from this group can be separately analyzed
to determine the charge and energy delivered to the battery
taking into account the SOC range or the voltage range
during the charging process.

• A comparative analysis of charge and energy delivered to
the battery has shown that under the same conditions, the

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 4, p. e154144, 2025
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dynamics of the battery charging process change as the op-
erating time increases. It is possible to predict the technical
condition of the battery based on historical data.
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