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Abstract. This paper considers an operating machine with deteriorating performance over time. Initially, functioning at 100% of its nominal
capacity, the machine fails after a stochastic period, reducing its capacity to a proportion of the nominal level. In this degraded capacity state, three
maintenance and repair policy options are available for evaluation. By modelling the system as a discrete-time Markov chain and analyzing the
probability transition matrix between the system states, the costs associated with the loss of production, part replacement, and ongoing operation
in each state can be quantified. The objective function representing the average cost per unit time of production is calculated to determine the
optimal maintenance policy. Different policies are modelled by the Markov chain and the average cost of each policy is obtained. The results
demonstrate the applicability of the proposed methodology to evaluating different policies.
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1. INTRODUCTION
In general, maintenance and repair include performing planned
and unplanned activities to maintain or return the system to
an acceptable operational condition. The goal of an optimal
maintenance and repair policy is to provide reliability and safe
performance at the lowest cost [1]. In today’s industries, given
the automation of equipment and the fact that parts of machin-
ery, including shafts, bearings, bushings, belts, etc., are subject
to wear and tear, the failure of any of these components will
stop the machine and production line. Therefore, to ensure the
reliability of equipment and reduce downtime costs, the im-
plementation of an optimal maintenance and repair policy is
essential so that inadequate and incorrect maintenance and re-
pair will be extremely costly, not only because of failure to meet
equipment repair needs but also because of missed opportu-
nities. Maintenance and repair processes are essential because
they account for a massive portion of production costs, ranging
from 15% to 60%, depending on the industry [2]. Due to the
significant impact of random factors, such as sudden machinery
failure, in production systems, determining the optimal main-
tenance and repair policies is critical. One of the critical goals
of maintenance and repair policies is to minimize unplanned
machine downtime and, as a result, bring it under control and
increase machine productivity [3].
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2. LITERATURE REVIEW

In recent years, many studies have been conducted to optimize
maintenance and repair systems. By reviewing articles published
in recent years, we can conclude that various solution methods
are used to solve optimization problems. The most important of
these are as follows:
• Operational research models;
• Stochastic models;
• Markov models;
• Analytical models;
• Simulation models;
• Bayesian networks;
• Fuzzy models;
• Multiobjective models.
Qiu et al. [4] proposed a model for determining the optimal

maintenance and repair policies for shipbuilding systems. Using
mathematical modelling, this model considers potential orders,
production fluctuations, and interdependency between machin-
ery, which directly affect failure and, thus, maintenance and re-
pair costs. The optimal maintenance and repair policy is obtained
by minimizing the maintenance and repair costs. Fallahnezhad et
al. [5] presented a statistical reliability model-based preventive
maintenance method using Bayesian inference. In this study, the
goal of Bayesian inference is to obtain the inspection point. By
combining Bayesian inference and statistical-reliability model-
based preventive maintenance methods, they sought to provide
more accurate and practical preventive maintenance methods.
Allal et al. [6] presented a simulation-optimization approach
for optimizing wind turbine maintenance and repair planning to
minimize costs and maximize equipment availability. The pro-
posed model employs an ant colony algorithm to optimize the
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routing of maintenance and repair activities. Diallo et al. [7]
proposed a model to determine the optimal maintenance and
repair policies for multicomponent systems. A mathematical
model with two objective functions was developed to optimize
the tradeoff between the total maintenance cost and the sys-
tem reliability based on the preferences of the decision-makers.
Ghorbani et al. [8] proposed a model to determine the optimal
maintenance and repair program for an operating multicompo-
nent system with scheduled downtime and rest periods. The
objectives of the proposed model are to minimize total cost
and maximize equipment reliability by using a stochastic pro-
gramming approach. Fallahnezhad et al. [9] presented a Markov
model for a single two-state machine replacement problem, aim-
ing to determine a threshold for optimal decision-making based
on selecting whether to replace the machine, repair the machine,
or continue production. Andersen et al. [10] presented an inte-
grated model for the time- and condition-based maintenance of
a multicomponent system to optimize the part replacement time.
All system components exhibit ageing and deterioration proper-
ties and follow a multivariate gamma distribution. In this study,
the CBM and TBM models are described as Markov decision
processes, and dynamic programming is used to solve the final
model and determine the optimal policy. Jin et al. [11] proposed
a model for determining the optimal preventive maintenance
period for a multistate deteriorating machine. Because the tran-
sition rate between machine states is unknown, reversible linear
integral equations are used to calculate the transition matrix of
the states. Finally, using the semi-Markov decision model and
proposed algorithm, the optimal preventive maintenance period
can be obtained. Tajiani et al. [12] developed an optimal mainte-
nance policy simulation method for a single-component system
by considering two types of failure: failure due to equipment
wear and failure due to random events such as weather condi-
tions and overload. Li et al. [13] presented an optimization model
for scheduled and condition-based maintenance and repairs in-
tending to minimize costs, and they designed an optimization
algorithm based on Monte Carlo simulations to solve the model.
Finally, an opportunistic maintenance strategy for CNC gear-
grinding machines was developed. Ziolkowski et al. [14] pro-
posed a mathematical model for the process of operating avi-
ation fuel-supplying vehicles before flight. The phase space of
the process was mapped by a seven-state directed graph of the
operation process, and Markov chains and processes were used
to calculate the technical readiness index. Oszczypala et al. [15]
applied a stochastic method to a wide spectrum of technical
objects. The three-state semi-Markov model was implemented
for reliability analyses, and the Laplace transform was used to
determine the reliability function, the failure probability density
function, the failure intensity, and the expected time to failure.
Knopik et al. [16] developed the semi-Markov model for age-
replacements of technical objects. The model considered in this
paper includes two types of repairs: perfect and minimal repairs.
The asymptotic availability coefficient and profit per time unit
are considered criteria for the quality of system operation. Jabash
et al. [17] proposed a Markov fuzzy real-time demand-side man-
ager to reduce the operating cost of the smart grid system and
maintain a supply-demand balance in an uncertain environment.

By reviewing articles published in the field of maintenance
and repair optimization, especially those that used Markov chain
relationships for optimization, we found that the system state was
considered continuous in all models, and continuous Markov
process relationships were used to solve and optimize the prob-
lem. However, in this research, in addition to considering the
erosive failure state, which is the absorbing state, the sudden
failure state, which is also an absorbing state, is included for
the machine as well. Since in reality, the number of states that
can be moved for a machine is limited, unlike most research
conducted in recent years that used continuous Markov model
relations, in this article, discrete Markov model relations were
used to determine the optimal policy. In contrast, in the real
world, system states are discrete, and an absorbing state exists.
Therefore, in this study, by considering a machine with five
states, two of which are absorbing, and using discrete Markov
chain relationships, the optimal maintenance and repair policy
is determined such that the objective function, which is the av-
erage cost of the production process, is minimized. In addition,
different repair and maintenance policies are modelled using an
absorbing Markov chain, and the average cost of each policy
is determined to allow us to compare the performance of dif-
ferent policies. In other words, by using the equations of the
absorbing Markov chain and the transition probability matrix,
the parameters of the objective function are determined. Then,
the objective function of the problem, which is the minimiza-
tion of the average cost of the production process, is calculated,
and the optimal policy is selected. It should be noted that we
have applied three contributions to develop the model. First, we
modelled the operation process of the machine as an absorbing
Markov chain not addressed before by this Markov modelling.
Another contribution is to convert the absorbing Markov chain
to an integrated Markov chain by an assumption of omitting
the absorbing states to determine the limiting probabilities of
each transient state. The third contribution is to develop the cost
objective function that has two parts. The first part is the failure
cost of the machine that should be obtained in time units. Thus,
it is divided on time to failure that is obtained using equations
of absorbing Markov chain and the second part is the operation
cost of the machine that is obtained by multiplying the limiting
probability of each state with the cost of each state.

When there are no absorbing states, the transition among all
states is possible with a certain probability. Absorbing states
should be considered in Markov models of maintenance prob-
lems because failure states are absorbing states, and the lifetime
of the machine will end. The proposed method is based on the
equations of the absorbing Markov chain and failure states are
considered for the system in which if a machine enters one of
these states, a new machine must be replaced. The condition
of the machine is periodically and systematically reviewed and
evaluated. These assessments are conducted using the Markov
chain model, which analyzes transitions between different states
of the machine (from reliable performance to failure). Addition-
ally, since the machine performance directly affects the produc-
tion, the amount of production decreases with its deterioration
or ageing. Thus, the physical condition of the machine can also
be interpreted through the number of produced goods.
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The characteristic of memorylessness in state transitions sig-
nificantly simplifies the objective function, and this assump-
tion may ignore gradual changes in the system’s state. How-
ever, many types of equipment used in industries, considering
their mechanisms and components, do not experience gradual
changes in state and transition from one state to another after
a while. Due to difficulties in obtaining necessary data, expert
estimates can be used as substitutes for real data. Also, these
data can be estimated from historical data on machine failures
and repair costs.

3. PROBLEM STATEMENT
The main purpose of this article is to optimize and determine the
optimal maintenance and repair policy for industrial equipment,
especially critical equipment in the steel industry. Some of the
critical equipment of the steel industry, such as cooling towers,
reformer tubes, clarifiers, etc. have erosive properties, and after
starting up and with the failure of some of its minor parts, the
performance and capacity of the equipment is reduced. With
this low capacity, it is possible to continue the operation of the
equipment. In this study, the Markov chain relationships were
used to determine the optimal maintenance and repair policy
for the equipment. To make the model more realistic, absorbing
states were added to the model. The problem considered in this
study involves an operating machine with deteriorating proper-
ties that can experience two types of failure: deterioration and
sudden failure.

First, the machine is in a good state with 100% capacity; it
deteriorates over time and enters a medium state, or the operating
capacity of the machine can be reduced, which is called a bad
state. In this case, it is possible to increase the capacity of
the machine to a medium state by imperfect maintenance or to
increase the capacity of the machine to the initial state (100%
capacity), which is called a good state by perfect replacement.

The machine condition is periodically and systematically re-
viewed and evaluated.

The machine is in one of the following five states:
State 1: Operating in a good state (100% capacity).
State 2: Operating in a medium state.
State 3: Operating in a bad state.
State 4: Sudden failure.
State 5: Deteriorating failure and machine stoppage.
The machine state is obtained by inspection at the end of each

stage.
Initially, the machine starts operating in State 1 (100% rated

capacity or good state. With specific probabilities, the machine
enters State 3 or 4 or remains within its current state. If the
machine enters State 3, the following three policies are possible:

Policy 1: The production process is continued in a bad state.
Policy 2: When imperfect replacement is applied, the machine

enters State 2 or the medium state.
Policy 3: Apply perfect replacement and the machine enters

State 1 or a good state.
The main objective of this study is to determine and select

the optimal policy when the machine enters State 3 such that the
average cost of the production process is minimized.

If Policy 1 is selected and a decision is made to continue
machine operation with specific probabilities, the machine can
enter State 4 or 5 or remain in its current state. In this case, if
the machine has not entered one of the failure states (sudden or
deteriorating), it continues operating in a bad state.

1 3 5

4

Fig. 1. State diagram of Policy 1

When the machine enters State 4 or State 5, there is no possi-
bility of returning to other states. These are the absorbing states
of the system in which the current machine is replaced with a
new one.

If Policy 2 is selected and the decision for imperfect replace-
ment is made, then with the incurred cost of machine downtime
and imperfect maintenance, the machine enters State 2 and starts
operating in good state. Subsequently, with specific probabili-
ties, the machine enters State 3 or 4 or remains in its current
state.

1 3

4

2

Fig. 2. State diagram of Policy 2

If Policy 3 is selected and a perfect replacement decision is
made, the machine enters State 1 and starts operating at 100%
capacity considering the replacement cost.

1 3

4

Fig. 3. State diagram of Policy 3

By considering the system state transition probability matrix,
machine downtime, lost production cost, and maintenance cost,
we can determine the objective function of this study, namely,
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to minimize the average cost of the production process. The
average production and maintenance costs of each policy are
determined, and the policy with the minimum average cost is
selected.

4. PROBLEM PARAMETERS

The notations used in this paper are as follows:
Pij – Transition probability of the system from state i to

state j
Ci – Expected operating cost in state i
F(C) – The objective function that is the average cost of the

production process
T – Time to failure vector
𝜋i – Limiting probability of state i
Fij – Probability of absorption from transient state i to ab-

sorbing state j
Pi – Transition probability matrix of system states at pol-

icy i
Cir – cost of imperfect replacement
hir – Downtime due to imperfect replacement
Cpr – cost of perfect replacement
hpr – Downtime due to perfect replacement
Cp – the cost per hour of lost production
Q – Transition probability matrix among the transient

states
R – Elements related to the rows of transient states and

columns of absorbing states
S – Probability of transition between the transient states

of the system if the absorbing states are removed
M – the number of transient states of the system
N – the fundamental matrix for P, which denotes the ex-

pected number of states before being absorbed

5. PROBLEM FORMULATION

If Policy 1 is selected, matrix P, Q, N, T, R, F, S and 𝜋 are
expressed as follows:

P =


P11 P13 P14 0
0 P33 P34 P35

0 0 1 0
0 0 0 1


, (1)

Q =

[
P11 P13

0 P33

]
, (2)

N =
[
I−Q

]−1
, (3)

T = N∗1, (4)

R =

[
P14 0
P34 P35

]
, (5)

F = N∗R, (6)

S =

[
P11 +P14 P13

P34 +P35 P33

]
. (7)

When the system enters one of the failure states, then the perfect
maintenance is implemented on the machine, and it returns to
the new machine (State 1) thus transition probability to State 1
is P11 +P14.

Limiting probability of each state is obtained using equilib-
rium equations as follows:

𝜋 ∗S = 𝜋, (8)
M∑︁
i=1

𝜋i = 1. (9)

In this case, the objective function of the problem is expressed
as follows:

F(C) = Total failure cost
Time to failure

+ expected operation cost

=
C4F4 +C5F5

T1
+C1𝜋1 +C3𝜋3 . (10)

In the above equation, T1 is the time of failure, F4 is the prob-
ability of absorption to absorbing State 4, F5 is the probability
of absorption to absorbing State 5, 𝜋1 is limiting the probability
of State 1, and 𝜋3 is the limiting probability of State 3.

If Policy 2 is selected, then three transient states and one
absorbing state are obtained, thus matrix P is determined as
follows:

P =


P11 0 P13 P14

0 P22 P23 P24

0 1 0 0
0 0 0 1


. (11)

Other matrices are obtained as follows:

Q =


P11 0 P13

0 P22 P23

0 1 0

 , (12)

N =
[
I−Q

]−1
, (13)

T = N∗1, (14)

R =


P14

P24

0

 , (15)

F = N∗R, (16)

S =


P11 +P14 0 P13

P24 P22 P23

0 1 0

 (17)
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In this case, the objective function of the problem is expressed
as follows:

F(C) =
(hir ×Cp) +Cir +C4F4

T1
+C1𝜋1 +C2𝜋2 +C3𝜋3 . (18)

In the above equation, T1 is the time of failure, F4 is the prob-
ability of absorption to absorbing State 4, 𝜋1 is the limiting
probability of State 1, 𝜋2 is the limiting probability of State 2,
and 𝜋3 is the limiting probability of State 3.

If Policy 3 is selected, then two transient states and one ab-
sorbing state are obtained thus matrix P is determined as follows:

P =


P11 P13 P14

1 0 0
0 0 1

 . (19)

Other matrices are obtained as follows:

Q =

[
P11 P13

1 0

]
, (20)

R =

[
𝑃14

0

]
, (21)

S =

[
P11 +P14 P13

1 0

]
. (22)

In this case, the objective function of the problem is expressed
as follows:

F(C) =
(hpr ×Cp) +Cpr +C4F4

T1
+C1𝜋1 +C3𝜋3 . (23)

In the above equation, T1 is the time of failure, F4 is the proba-
bility of absorption to the absorbing State 4, 𝜋1 is the limiting
probability of State 1, and 𝜋3 is the limiting probability of State 3.

6. CASE STUDY
In the steel industry, some vital equipment, such as cooling tow-
ers, reformer tubes, clarifiers, etc. have erosive properties, and at
first, they start operating at 100% capacity. After starting up and
with the failure of some of its minor parts, the performance and
capacity of the equipment are reduced, but it does not lead to the
total failure of the equipment, and with this low capacity, it is
possible to continue the operation of the equipment. Therefore,
using Markov chain relations, the optimal maintenance and re-
pair policy for such equipment is determined. A cooling tower,
which is one of the vital components of the steel industry, con-
sists of two fans, after the failure of the first fan, the capacity and
performance of the equipment are reduced to 50% of its nominal
capacity. In this case, it is possible to increase the performance
of the equipment to 80% by performing imperfect maintenance
or to 100% of the nominal capacity by perfect replacement of
the equipment. The objective function of the problem, which is
the minimization of the average cost of the production process,
is calculated for all types of existing policies, and the optimal
policy is determined based on minimum cost.

It should be mentioned that considering 80% and 50% ca-
pacity is for some specific machines such as cooling towers,
tube reformers, clarifiers, etc. which are used in the steel indus-
try and have erosive properties and initially start operating at
100% capacity and with the failure of one of its minor parts, the
performance and capacity of the equipment is reduced to 80%.

The parameters of this machine are expressed as follows:

C =

[
C1 = 1000, C2 = 2000, C3 = 2200,

C4 = 3000b, C5 = 3500

]
,

Cp = 300,

P1 =


0.8 0.1 0.1 0
0 0.7 0.1 0.2
0 0 1 0
0 0 0 1


.

When the machine state transits down from the good state to
the bad state, then by applying an imperfect maintenance action
with the cost of Cir = 500 and considering hir = 10 hours of
production stoppage, the performance of the machine improves,
and the machine enters the medium state; thus, the probability
transition matrix of the system states is as follows:

P2 =


0.8 0 0.1 0.1
0 0.8 0 0.1
0 1 0 0
0 0 0 1


.

When the machine state transits from a good state to a bad
state, then, by applying a perfect replacement and with the cost
of Cpr = 1000 and considering hpr = 40 hours of production
stoppage, the performance of the machine improves, and the
machine enters a good state; thus, the probability transition
matrix of the system states is as follows:

P3 =


0.8 0.1 0.1
1 0 0
0 0 1

 .
According to the above discussion, the machine began operating
at State 1 (100 percent capacity). The average production process
cost is calculated for each of the three policies. Then, the optimal
policy is selected.

Table 1
Values of the objective functions for different policies C3 = 2200

Policy

Objective
function F(C)

1 1775.2

2 2160.9

3 2562.5
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According to the results, it is clear that by selecting Policy 1,
the average production process cost is equal to 1775.2, which is
lower than that of the other two policies; thus, the optimal main-
tenance and repair policy is to continue the machine operation
at a bad state.

If the expected operating cost in State 3 increases to 5000, the
cost functions are calculated as follows:

Table 2
Values of the objective functions for different policies C3 = 5000

Policy

Objective
function F(C)

1 2475.2

2 2440.9

3 2814.5

According to the results, it is clear that by selecting Policy 2,
the average production process cost is 2440.9, which is lower
than that of the other two policies; thus, the optimal maintenance
and repair policy is imperfect maintenance.

If the expected operating cost in State 3 increases to 45 000,
the cost functions are calculated as follows:

Table 3
Values of the objective functions for different policies C3 = 45000

Policy

Objective
function F(C)

1 12475.2

2 6440.9

3 6414.5

According to the results, it is clear that by selecting Policy 3,
the average production process cost is 6414.5, which is less than
that of the other two policies; thus, the optimal maintenance and
repair policy is a perfect replacement.

At the end of this section, a sensitivity analysis and determi-
nation of the optimal policy based on different values of cost
parameter c3 is conducted. The average cost plot for different
policies is denoted in Fig. 4. In this figure, the blue line rep-
resents the average cost of continuing the production process,
orange represents the average cost of applying an imperfect
maintenance policy, and gray represents the average cost of ap-
plying a perfect replacement policy. According to the figure,
when C3 is lower than 4.768, it is better to continue the produc-
tion process, when C3 is between 4.768 and 42.400 it is better to
apply an imperfect maintenance action on the production pro-
cess, and when C3 is more than 42.400, it is better to apply a
perfect replacement action on the production process.

According to the numerical analysis, it is concluded that every
maintenance and repair policy can be modelled using an absorb-

20 000

15 000

10 000

5000

0

A
va

ra
ge
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o

st

C3

Policy 1

Policy 2

Policy 3

Fig. 4. Average cost of policies with different values of cost parameter
C3

ing Markov chain. The transition probabilities can be calculated
using expert opinions or past information. Using the calculated
probabilities, the cost of each policy can be determined to select
the optimal decision.

7. CONCLUSIONS

Since the components of machinery are worn out and the failure
of any of these parts stops the machine or the production line,
and because maintenance and repair costs account for a sig-
nificant portion of production costs, implementing an optimal
maintenance and repair policy is essential for ensuring equip-
ment reliability and reducing downtime costs. This study aimed
to use discrete Markov chain relationships, a system-state tran-
sition probability matrix and all system costs to calculate the ob-
jective function, which minimizes the cost of average production
processes and accordingly determines the optimal maintenance
and repair policy. At the end of this article, a numerical example
in which a machine starts operating at 100% of its rated capacity
is given. After some time, and with a certain probability, it is
positioned at its decreased capacity. Here, there are three main-
tenance and repair policies. In future research, assumptions such
as considering several machines instead of a single machine and
the effect of failure of a single machine on the performance of
other machines can be added to the problem. The optimal main-
tenance and repair policy can then be calculated under different
conditions. In addition to cost minimization, machine reliability
maximization can be considered in the problem. The optimal
maintenance and repair policy can then be determined for the
multi-objective optimization problem.
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