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A novel magnetite ore refined sorting method based 
on magnetic induction and CNN-SK-BiLSTM network

Introduction

In modern industry, iron plays an indispensable role as a  vital pillar material (Wang 
et al. 2023). However, Magnetite ore, one of the primary raw materials of iron, is a valuable 
non-renewable resource (Sahu et al 2022). Therefore, it is particularly urgent to improve the 
effective use of magnetite ore. The refined sorting of magnetite ore is no longer limited to the 
simple distinction between good and waste ore but is accurately sorted into several grades 
according to industrial needs. It not only helps to improve the quality of magnetite ore but 
also reduces the production of tailings, which contributes to the rational use of resources and 
the protection of the environment.
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Nowadays, there exist three mainstream ore sorting methods based on optical sensors, 
X-ray sensors, and high-resolution cameras (Luo et al. 2022). The optical sensors are 
based on the properties of the ore to be reflected, absorbed, or transmitted in the spectral 
range for sorting. Reflectance spectroscopy has been successfully used to sort ores by 
some researchers (Fuentes et al. 2021; Nie et al. 2023; Wang et al. 2023; Xie et al. 2023). 
However, this detection method is only suitable for sorting between different ores, and it is 
not easy to detect the content of ore components. Its classification method distinguishes the 
detected spectral features of the ore by comparing them with the known spectral features. 
Hence, this method is not applicable to the refined sorting of magnetite ores. X-ray sensors 
can see through the ore and measure its chemical composition and density. Researchers 
have classified ores using X-ray transmission with satisfactory results (Henley et al. 2022; 
Kern et al. 2022; Zhang et al. 2024). However, this detection method is easily affected by 
other components or impurities in the ore, and in the fine sorting of magnetite ore, it needs to 
be combined with a variety of sensors or technologies to improve the accuracy and efficiency 
and is limited by the high cost of equipment and high radiation hazard, so this method is 
also not applicable to the sorting of magnetite ore. High-resolution cameras can capture  
high-resolution images of ores, and computer vision technology is used to analyze and identify 
the images and classify the ores based on their shape, texture, and other characteristics. 
By using computer vision, researchers have successfully achieved good results in ore sorting 
(Baraboshkin et al. 2020; Liu et al. 2021; Shatwell et al. 2023). This detection method can 
only identify the surface color, texture, and other features of the ore and cannot measure its 
composition.

Additionally, the deep learning classification algorithm based on high-definition ore 
images requires enormous data storage resources, which is not conducive to the deployment 
of the ore sorting site. Therefore, this method is not suitable for the refined sorting of 
magnetite ore. In summary, refined sorting of magnetite ores is limited by common ore 
sorting methods. As can be seen, the above ore sorting methods have limitations in the 
refined sorting of magnetite ores. Therefore, this paper proposes a new detection method for 
magnetite ore, taking into account the characteristics of internal magnetism of magnetite 
ore; the Hall sensor is used to collect its magnetic induction signal as it passes through an 
external magnetic field and generate a time-series data set. This allows the quantification 
of the magnetite content in the ore and provides training samples for deep-learning 
classification.

In recent times, deep learning techniques have been employed extensively across a range 
of industries due to their efficacy in feature extraction and classification. In the field of 
industrial manufacturing, some researchers employ deep neural networks to extract features 
from vibration signals, with the objective of diagnosing mechanical faults and providing 
the basis for intelligent equipment (Keshun et al. 2024a, b, 2025). In the field of agriculture, 
researchers have employed deep networks in tree planting and reforestation projects (Vinod 
et al. 2024), thereby providing a foundation for the advancement of smart agriculture. In the 
medical area, researchers have created time series datasets from electrocardiograms (ECGs) 
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(Cho et al. 2024) and electroencephalograms (EEGs) (Jafari et al. 2023; Wang et al. 2023) 
and fed them into deep neural networks in order to obtain meaningful diagnostic results.  
In the transport field, researchers have applied deep learning to the detection of foreign objects 
on roads (Chen et al. 2024) and the study of automatic driving (Chen et al. 2022), achieving 
positive outcomes and providing theoretical support for intelligent transport. This paper 
proposes a new classification algorithm for magnetite ore. A deep learning convolutional 
neural network (CNN) with an LSTM and a  selective kernel (SK) attention mechanism 
(CNN-SK-BiLSTM) is constructed based on a constructed time series dataset. Specifically, 
CNN is used to extract the spatial features of the time series signals. In contrast, LSTM is 
used to capture the temporal features of the time sequence, and the SK attention mechanism 
enhances the feature extraction capability of the model. The proposed model successfully 
realizes the refined four classes of magnetite ore from a mine in Liaoning Province, China, 
and achieves a high accuracy rate of 99.44% in the experiment.

The rest of this paper is organized as follows. Section 1 introduces the methodology, 
including the detection method and classification algorithm. Section 2 presents the results 
and discussion. Finally, conclusions and outlook are given in the last Section.

1. Methodology

As illustrated in Figure 1, the magnetite ore refining sorting method, which is based 
on magnetic induction and a deep learning network, primarily comprises two components: 

Fig. 1. The schematic diagram of refined sorting methodology,  
including the detection method and classification algorithm

Rys. 1. Schemat ideowy udoskonalonej metodologii sortowania  
z uwzględnieniem metody detekcji i algorytmu klasyfikacji
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a detection method and a classification algorithm. The detection method comprises three 
steps: 

1)  generation of the magnetic induction signal of the ore through the exciter,
2)  acquisition of the magnetic induction signal of the ore through the Hall sensor,
3)  preprocessing of the magnetic induction signal to form a time series data set. 
In contrast, the classification algorithm is a deep network comprising three components: 

the CNN module, the SK module, and the BiLSTM module. A substantial number of ore 
signals are employed to train and validate this model.

1.1. Refined sorting platform for magnetite ore

Figure 2 depicts a  schematic representation of a  magnetite ore sorting platform. The 
process comprises three principal stages. Initially, a magnetic induction signal is generated 
when the ore traverses an external magnetic field generated by permanent magnets. This 
signal is then detected by Hall sensors and conveyed to a  computer, which subsequently 
applies a classification algorithm to categorize the signal. Finally, the computer transmits 
the classification signals to a pneumatic injection unit, which injects different classes of ore 
into distinct locations.

As illustrated in Figure 3, the magnetite ore is transported on a conveyor belt. An external 
magnetic field exciter, comprising neodymium-iron-boron (NdFeB) permanent magnets, is 
situated beneath the conveyor belt to generate a localized magnetic field. Hall sensors have 
also been installed in this region to capture the magnetic induction signals produced by the 
ore as it traverses the magnetic field area. These signals are then conveyed to a computer for 
further processing.

Fig. 2. Schematic diagram of the fine sorting process of magnetite ore, including the magnetic ore detection 
process, the sorting process and the pneumatic actuation process

Rys. 2. Schemat ideowy procesu drobnego sortowania rudy magnetytu z uwzględnieniem procesu  
magnetycznej detekcji rudy, procesu sortowania oraz procesu uruchamiania pneumatycznego
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1.2. Detection method based on magnetic induction

1.2.1. Raw data acquisition

The magnetite ores utilized in this study were sourced from a mine in Liaoning Province, 
China. The magnetite ores, which ranged in size from 10 to 40 mm, were selected at random 
for testing. The greater the quantity of iron tetraoxide (Fe3O4) present within the ore, the 
more pronounced the magnetic induction signal produced upon traversing an external 
magnetic field generated by a permanent magnet. The ore samples were classified into four 
categories, designated as Classes 1 to 4, based on their Fe tetraoxide (Fe3O4) content and 
the strength of the magnetic induction signal. During the experiment, the time allocated for 
each ore to traverse the experimental acquisition platform was fixed at one second, while the 
sampling rate of the data acquisition card was set at 5 kHz. Consequently, each signal sample 
comprised 5,000 data points. The speed of the conveyor belt was set to 0.1 m/s. Furthermore, 
the data acquisition software on the operational computer generates the acquired magnetic 
induction signal waveforms in real time. The raw data for all ore samples was successfully 
acquired through the repetition of the experiment. The waveforms of the collected source 
data for the four types of ores are illustrated in Figure 4. 

Fig. 3. Ore magnetic induction signal acquisition experiment platform,  
including external magnetic field exciter, Hall sensor, computer

Rys. 3. Platforma do eksperymentów akwizycji sygnału indukcji magnetycznej rudy,  
zawierająca zewnętrzny wzbudnik pola magnetycznego, czujnik Halla i komputer
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1.2.2. Data preprocessing

During the course of the experiment, magnetic induction waveforms are generated by the 
ore samples as they traverse the external magnetic field. Figure 5 illustrates the waveforms 
of ore classes 1–4 in boxes A, B, C, and D, which exhibit distinct distributions. Furthermore, 
negligible signals are discernible in each source data set, as illustrated by E and F in the 
figure. To enhance the training process and optimize the utilization of computational 

 
a)                                                      b) 

 
c)                                                       d) 

Fig. 4. Raw time-series signals 
a–d are magnetic induction signals from classes 1–4 magnetite ores

Rys. 4. Surowe sygnały szeregów czasowych 
a–d są sygnałami indukcji magnetycznej z rud magnetytu klas 1–4

 
Fig. 5. Magnetic induction waveforms of four classes of ore samples

Rys. 5. Przebiegi indukcji magnetycznej czterech klas próbek rudy
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resources, invalid data were excluded, and only the 3,000 data points that contained pertinent 
feature signals were retained. In order to enhance the precision of the training process, 
the data underwent normalization without any alteration to its distribution, and was then 
mapped onto the interval [0,1]. The resulting signals are illustrated in Figure 6a–d. A total 
of 1,250 raw data signals were processed individually, with any unsuitable data resulting 
from experimental operations removed. This process yielded 1,200 samples, which were 
then combined to form the dataset, comprising 300 samples for each class and divided into 
training, validation, and testing sets in the ratio of 0.7:0.15:0.15. 

1.3. Classification algorithm based on CNN-SK-BiLSTM network

The magnetic induction signal of ore exhibits irregularity and non-repeatability, 
rendering its features challenging to extract. To address this, a CNN network is utilized to 
extract the spatial features of the signals, while an LSTM network is employed to extract 
the temporal features (Xu et al. 2023). Additionally, an SK mechanism was introduced to 
enhance the model’s ability to extract multi-scale features (Li et al. 2019), leading to the 
proposal of a CNN-SK-BiLSTM model.

As illustrated in Figure 7, the CNN network is a wide kernel convolutional neural network 
(Zhang et al. 2017) increasing the efficiency of fault diagnosis. Deep learning models can 
improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear 

 
a)                                                   b) 

 
c)                                                 d) 

Fig. 6. Preprocessed time-series signals 
a–d are magnetic induction signals from classes 1–4 magnetite ores

Rys. 6. Wstępnie przetworzone sygnały szeregów czasowych 
a–d to sygnały indukcji magnetycznej z rud magnetytu klas 1–4
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Fig. 7. Structure of the proposed model, including CNN module, SK attention module,  
BiLSTM module, and Classification module

Rys. 7. Struktura proponowanego modelu z uwzględnieniem modułu CNN, modułu uwagi SK,  
modułu BiLSTM i modułu klasyfikacji

Table 1.	 CNN-SK-BILSTM Model

Tabela 1.	 Model CNN-SK-BILSTM

CNN Module

conv2d([32,1], 16) 
ReluLayer

SK Attention Module

conv2d ([3,1], 64)
ReluLayer

conv2d([5,1], 64) 
ReluLayer

conv2d([7,1], 64)
ReluLayer

additionLayer(3)

globalAveragePooling2dLayer

fullyConnectedLayer(16)

fullyConnectedLayer(64) fullyConnectedLayer(64) fullyConnectedLayer(64)

sigmoidLayer

multiplicationLayer multiplicationLayer multiplicationLayer

additionLayer(3)

BiLSTM Module

flattenLayer

bilstmLayer(32 )

bilstmLayer(16)

Classification Module

fullyConnectedLayer(4)
softmaxLayer

classificationLayer
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mapping ability. This paper proposes a novel method named Deep Convolutional Neural 
Networks with Wide First-layer Kernels (WDCNN, which mitigates the impact of certain 
high-frequency signals and enhances the model’s generalizability. The attention mechanism 
is then divided into three steps (Jia et al. 2024): 

1.	 Segmentation: This step performs multi-scale feature extraction on the signal by 
three convolutional kernels with different sizes, specifically 3×1, 5×1, and 7×1, 
respectively. 

2.	 Fusion: This step first fuses the multi-features into one-dimensional vectors by global 
average pooling and then converts the features into Z×1×1 (Z < C) vectors by a fully 
connected layer. 

3.	 Selection: In this phase, the features are initially reduced to C×1×1 vectors and then 
merged through the use of three fully connected layers. 

Subsequently, the attention weights at varying scales are derived through a sigmoid 
layer and integrated with the original features of each branch. The BiLSTM module 
represents a bidirectional LSTM with exemplary feature extraction capabilities for time 
series signals (Yi and Bian 2021). The final module is the classifier, which receives the 
feature input and completes the classification. The parameters of the entire network are 
presented in Table 1.

2. Results and discussion

2.1. Evaluation indexes

Since magnetite selection is a four- classification problem, an evaluation index commonly 
used in classification, including accuracy, precision, recall, and F1 score, was used to measure 
the effectiveness and robustness of our model from different perspectives (Carrington et al. 
2023).

	 TP TN
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ªª TP	 –	 (true positive) is correctly classified as positive samples, 
FP	 –	 (false positive) is misclassified as positive samples, 
TN	 –	 (true negative) is correctly classified as negative samples, 
FN	 –	 (false negative) is misclassified as negative samples.

2.2. Experimental results of the proposed model 

Figure 8 shows the accuracies of the 10 trials and the results show that all of the 
trainings achieved 100% accuracy, while the average accuracy of the tests was 98.45%, with 
a minimum of 97.22% and a maximum of 99.44%.

Table 2 shows the average accuracy, precision, recall and F1_Score value of the proposed 
CNN-SK – BiLSTM over 10 repeated runs, the average accuracy of all four categories 
exceeds 97% and exceeds 99 % for class 1 and 4, and the F1_Score value of all the detections 
exceeds 95%.

Table 2.	 Evaluation indexes for ten experiments of the proposed model

Tabela 2.	 Wskaźniki oceny dziesięciu eksperymentów proponowanego modelu

Class Accuracy Precision Recall F1_Score

1 99.00 99.54 96.31 97.85 

2 97.83 94.64 96.90 95.71 

3 97.89 95.76 95.91 95.77 

4 99.06 97.93 98.51 98.19 

 
Fig. 8. Results of 10 trials of the proposed model

Rys. 8. Wyniki 10 prób zaproponowanego modelu
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Figure 9 shows the confusion matrix for the highest and lowest accuracy results (99.44% 
and 97.22%), where figure a  is mainly the lower accuracy of class 2 with six samples 
misclassified as class 3, class 1 with two samples misclassified as class 2, class 3 with two 
samples misclassified as class 4, and class 4 with 100% accuracy in the test. Whereas in 
the most accurate test, classes 1 and 2 were both 100% accurate, only class 3 had 1 sample 
misclassified as class 2, and class 4 had 1 sample misclassified as class 1.

2.3. Comparative experiments with classical networks

To validate the superiority of the model proposed in this study, a  series of training 
exercises were conducted on a number of different models, including the CNN model (Zhang 
et al 2017), MSCNN model (Chen et al. 2021; Roy and Todorovic 2016), SE-CNN model 
(Wang et al. 2019), LSTM model (Yu et al. 2019), and CNN-LSTM model (Kim and Cho 
2019), along with CNN-SE-BiLSTM model (Rifaat et al. 2022; Hu et al. 2018). The evaluation 
metrics used for comparing the training results, as shown in Figure 10, encompass accuracy, 
precision, recall, and F1 score. 

Ten independent experiments were conducted for each model, and the mean value of the 
metrics was calculated. To obtain a more comprehensive pairing, the accuracy, precision, 
recall, and F1 score for each label were enumerated. The following table presents the results 
of the experiments conducted for each model.

From the data presented in Figure 10, a number of inferences can be drawn. 
1.	 The average accuracy of the hybrid CNN-LSTM model is 92.96%, which is superior 

to the independent CNN (92.31%) and BiLSTM (90.19%) models. Therefore, it is 
essential to implement a hybrid design for the model. 

Fig. 9. Confusion matrix of the classification for CNN-SK-BiLSTM 
a) highest accuracy = 99.44%, b) lowest accuracy = 97.22%

Rys. 9. Macierz zamieszania klasyfikacji dla CNN-SK-BiLSTM 
a) najwyższa dokładność = 99,44%, b) najniższa dokładność = 97,22%
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2.	 The accuracy of MSCNN (94.35%) is 2.04% higher than that of CNN (92.31%), 
and the average accuracy of SE-CNN (92.73%) is also higher than that of simple 
CNN (92.31%), indicating that the improvement of the model with multiscale and 
an increasing attention mechanism can contribute to enhancing the accuracy of the 
model. 

3.	 A comparison of the CNN-SE-BiLSTM model with the CNN-SK-BiLSTM model 
reveals that the latter exhibits superior performance, with an accuracy of 3.57% 
higher, a precision of 6.96% higher, a recall of 6.96% higher, and an F1 score that is 
7.05% higher. 

This suggests that the multiscale attention mechanism is more effective. In conclusion, 
this paper proposes the CNN-SK-BiLSTM hybrid model with a  multiscale attention 
mechanism as an effective algorithm for magnetite ore refined sorting.

The T-SNE algorithm (van der Maaten and Hinton 2008) is a non-linear technique for 
reducing high-dimensional data to low dimensions. It enables data visualization and can be 
employed to evaluate the success of neural network feature extraction. In Figure 11, different 
colored points represent different classes of magnetite. Points that are closer to the same 
class and further away from other classes indicate better classification. Figure 10a shows 
the visual analysis of the raw input data, which shows that the points of different classes 
are clustered together and difficult to classify. Figures 11b–h show the visual analysis of 
the final output features of each model based on the T-SNE algorithm. The original chaotic 
input features are classified to different degrees after feature extraction by each method. 
According to the comparison of Figure 11b–h, the various clusters’ boundaries under the 

Fig. 10. Performance comparison of CNN-SK-BiLSTM with other classic networks in our dataset

Rys. 10. Porównanie wydajności CNN-SK-BiLSTM z innymi klasycznymi sieciami w naszym zbiorze danych
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CNN-SE-BiLSTM method and the CNN-SK-BiLSTM method are more evident than the 
other methods. The CNN-SK-BiLSTM method has fewer error points close to the clusters 
of  different classes compared to CNN-SE-BiLSTM. Making it possible to conclude that 
CNN-SK-BiLSTM has the best classification results.

Conclusion

The refined sorting of magnetite resources is a crucial step in optimizing their utilization. 
However, the conventional ore sorting methods that have been employed have not been 
able to achieve this goal. In this paper, an innovative detection method is presented, which 
employs an external magnetic field to excite and collect the magnetic induction information 
of magnetite ores. This method is designed to exploit the natural magnetic properties of these 
ores. A deep learning model with a multi-scale attention mechanism, CNN-SK-BiLSTM, is 
proposed, combining the specific good feature extraction and classification capabilities of 
deep learning techniques. The model was successfully tested on magnetite ore from a mine 
in Liaoning Province, China, and the ore was refined into four categories. The proposed 
model achieved the highest accuracy of 99.44% in the experiments, as well as the desired 
precision, recall, and F1 score. Furthermore, comparative experiments were conducted 
between the proposed model and other popular models, the results of which demonstrated 

 
(a)                                  (b)                             (c)                             (d) 

   
(e)                                 (f)                              (g)                                 (h) 

Fig. 11. T-SNE analysis diagram 
a) Raw data, b) CNN, c) MSCNN, d) CNN-SE, e) LSTM, f) CNN-LSTM, 

g) CNN-SE-BiLSTM, h) CNN-SK-BiLSTM

Rys. 11. Schemat analizy T-SNE 
a) Surowe dane, b) CNN, c) MSCNN, d) CNN-SE, e) LSTM, f) CNN-LSTM, 

g) CNN-SE-BiLSTM, h) CNN-SK-BiLSTM
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that the performance of the proposed model was markedly superior to that of the other 
models. The findings presented in this paper provide a foundation for the advancement of 
engineering techniques for the sorting of magnetite ore, which is crucial for enhancing the 
utilization of resources.

Although the proposed method in this paper is effective in detecting magnetite ores 
and the depth model is adept at classification, two issues persist in the deployment of deep 
learning in engineering applications. The first is that the number of parameters and operations 
within the depth model is substantial, making it challenging to implement edge equipment in 
mining environments. The second is that the interpretability of the depth model is limited, 
which hinders the advancement of theoretical research in this field. Further progress will 
be made by continuing research in these two areas, which will provide additional valuable 
results for the field of mining engineering.

This work was supported in part by the Science and Technology Research Project GJJ2203618, 
2022, Department of Education of Jiangxi Province and the Special Project for Postgraduate 
Innovation of Jiangxi Province (YC2021-S577).
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A novel magnetite ore refined sorting method based 

on magnetic induction and CNN-SK-BiLSTM network

K e y w o r d s

ore sorting, magnetite induction, deep learning, attention

A b s t r a c t

Magnetite ore is a non-renewable resource that needs to be utilized effectively. Refined sorting 
of magnetite ore is not simply sorting it into good ore or waste ore but finely sorting it into different 
grades due to its magnetite content, which not only helps to improve its utilization but also reduces 
the energy consumption of the following process. However, traditional ore sorting methods based on 
optical sensors, X-ray sensors, and high-resolution cameras are challenging to achieve refined sorting 
for magnetite ores because of the limitations of their respective detection methods and classification 
algorithms. To this end, a  new detection method for magnetite content is proposed in this paper; 
the magnetic induction signal of magnetite ore when it passes through an external magnetic field is 
captured by Hall sensors and made into a quantifiable time-series dataset. Meanwhile, a deep learning 
classification algorithm CNN-SK-BiLSTM with a multi-scale attention mechanism is proposed, which 
successfully sorts magnetite ore from a mine in Liaoning Province, China, into four classes finely.  
The experimental results show that the accuracy of the model is up to 99.44%, and the precision, recall, 
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and F1 scores are acceptable. In addition, comparative experiments between the proposed model and 
other standard models were conducted. The results show that the performance of the proposed model 
is significantly better than the others. This paper provides ideas for the study of refined sorting of 
magnetite ore.

 
Nowatorska metoda sortowania rafinowanej rudy magnetytu 

oparta na indukcji magnetycznej i sieci CNN-SK-BiLSTM

S ł o w a  k l u c z o w e

sortowanie rud, indukcja magnetytu, głębokie uczenie się, uwaga

S t r e s z c z e n i e

Ruda magnetytu jest zasobem nieodnawialnym, który należy efektywnie wykorzystać. Rafino-
wane sortowanie rudy magnetytu nie polega po prostu na sortowaniu jej na dobrą rudę lub rudę 
odpadową, ale na dokładnym sortowaniu na różne gatunki ze względu na zawartość magnetytu, 
co nie tylko pomaga poprawić jej wykorzystanie, ale także zmniejsza zużycie energii w kolejnym 
procesie. Jednak tradycyjne metody sortowania rud oparte na czujnikach optycznych, czujnikach 
rentgenowskich i kamerach o wysokiej rozdzielczości stanowią wyzwanie w celu uzyskania udosko-
nalonego sortowania rud magnetytu ze względu na ograniczenia odpowiednich metod wykrywania 
i algorytmów klasyfikacji. W tym celu w artykule zaproponowano nową metodę wykrywania zawar-
tości magnetytu. Sygnał indukcji magnetycznej rudy magnetytu przechodzącej przez zewnętrzne 
pole magnetyczne jest wychwytywany przez czujniki Halla i przekształcany w wymierny zbiór da-
nych w formie szeregów czasowych. Tymczasem zaproponowano algorytm klasyfikacji głębokiego 
uczenia się CNN-SK-BiLSTM z wieloskalowym mechanizmem uwagi, który z powodzeniem sortuje 
rudę magnetytu z kopalni w prowincji Liaoning w Chinach na cztery klasy. Wyniki eksperymentów 
pokazują, że dokładność modelu sięga 99,44%, a precyzja, powtarzalność i wyniki F1 są akcepto-
walne. Dodatkowo przeprowadzono eksperymenty porównawcze zaproponowanego modelu z innymi 
modelami standardowymi. Wyniki pokazują, że wydajność proponowanego modelu jest znacznie 
lepsza od pozostałych. W artykule przedstawiono pomysły na badania rafinowanego sortowania rudy 
magnetytu.


