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Relationship of affect, memory and number intuition  
with human time perception 

Abstract: Time perception is a fundamental process for all animals. We are all familiar with discrepancies in how 
duration is perceived. This paper explores the following questions: How does the brain perceive time, and what are the 
sources of these discrepancies? We conducted four studies to examine the effects of affect and arousal on subjective time 
perception. Employing the Scalar Expectancy Theory model, our final study investigated the role of working memory 
overload. Additionally, we explored the potential influence of information theory features associated with the stimuli 
across all studies. Using Bayesian data analysis, we demonstrated that the widely recognized effects of valence, arousal, 
and their interaction induced by visual stimuli might be artifacts. Notably, a significant effect of valence was observed 
only in one study, associated with working memory overload. We also highlighted the potential roles of luminance and 
entropy of visual stimuli, but only in direct duration estimations. The sole persistent effect was related to the objective 
duration of stimulus exposure. All studies utilized affective visual stimuli. Our findings underscore the necessity for 
further investigation into human time perception on a millisecond to second scale, particularly concerning stimulus- 
related factors. Additionally, our results emphasize the importance of methodological considerations in studying human 
time perception.  
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INTRODUCTION 

Time is a fundamental phenomenon in our world. 
Many of us can recall watching an exciting movie or 
attending an engrossing lecture where time seemed to pass 
in half its actual duration. Conversely, a tedious lecture 
might feel interminable. This divergence between objec-
tive and subjective time has been a subject of scientific 
inquiry for decades (Danckert & Allman, 2005; Gilliand, 
Hofeld, & Eckstrand, 1946; Woodrow, 1951; Grondin, 
2010). Initially, researchers used the metaphor of an 
“internal clock” to describe our time perception mechan-
isms. However, as understanding deepened, more complex 
questions emerged regarding the nature of subjective time, 
such as the factors responsible for perceptual differences 
across species, and the implications of time perception in 
psychological dysfunctions (Pöppel, 1978; Eagleman, 

2008; Droit-Volet & Meck, 2007; Tramacere & Allen, 
2022; Thönes & Oberfeld, 2015; Berlin & Rolss, 2004). 

What insights does cognitive science offer about our 
perception of time? John Gibbon’s research on macaques 
introduced the most established cognitive model, the Scalar 
Expectancy Theory (SET), which has since been elaborated 
upon (Gibbon, 1977; Gibbon et al., 1984; Allan & Gibbon, 
1991; Block & Zakay, 1996; Droit-Volet & Wearden, 
2001). The visualization of this model, depicted in Figure 1, 
describes the first stage of time processing. In this model, 
a Pacemaker generates cyclic impulses that are transmitted 
to an Accumulator via an Attention Gate, which regulates 
the flow of information. The Accumulator counts these 
impulses. Initially, the Attention Gate might seem like 
a bottleneck in the system, but is it the sole factor 
influencing performance? This model suggests an under-
lying counting process integral to the mechanism. 
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Subsequent efforts led to the establishment of the 
Approximate Number System (ANS), detailed by Van de 
Rijt et al. (2003) and Dehaene (2011). The primary 
objective of this system was to delineate the essential 
processes underlying numerical operations. Brannon and 
Merritt (2011) provided evidence for this system’s 
fundamentality, demonstrating a shared numerical capacity 
between humans and non-human animals. Further studies 
by Agrillo, Piffer, and Adriano (2013), as well as Gilmore, 
McCarthy, and Spelke (2010), suggested that the ANS 
correlates with symbolic mathematical skills, minimally 
influenced by educational background. However, scientific 
consensus on these findings remains elusive (Park 
& Brannon, 2013; Piazza et al., 2013; Guillaume & Gavers, 
2016). Measuring the ANS presents challenges, as 
indicated by Dietrich, Huber, and Nuerk (2015) and 
Smets, Gebuis, and Reynvoet (2013). 

The methods for assessing Number Sense vary. For 
instance, non-symbolic assessments involve tasks where 
participants compare the magnitudes of two sets, such as 
dots (Halberda, Mazzocco, & Feigenson, 2008). Alterna-
tively, symbolic assessments require participants to choose 
between two numerical values displayed on-screen, 
determining which is greater or lesser (Sasanguie et al., 
2012). Comparative studies by Gilmore, Attridge, and 
Inglis (2011) and findings by DeWind et al. (2015) suggest 
that numerosity is perceived as a visual quantity and that 
numbers are understood in terms of magnitude. 

Further, a meta-analysis by Schneider et al. (2015), 
involving 45 articles with over 17,000 participants, 
demonstrated that magnitude processing is correlated with 
mathematical competencies. Another meta-analysis, re-
viewing 19 studies, indicated that the relationship between 
non-symbolic numerical magnitude and mathematics 
achievement weakens after age six (Fazio et al., 2014). 

Moreover, because of its low-level nature, it brings 
another issue. Hyde, with collaborators, showed that the 
development of numerical representation occurred before 
linguistics (Hyde et al., 2010) which can be treated as an 
argument in favor of how fundamental our Number Sense 
is. Meck and Church compared numerical and time 
representation of rats (Meck & Church, 1983) and showed 
no visible differences between those structures. Moreover, 
after the application of methamphetamine, the perfor-
mance of both mechanisms increased. It is stated that the 
time perception in the milliseconds-seconds range respon-
sible is the cortical region and specified Basali Ganglia 
(Meck, Penney, Pouthas, 2008). Authors additionally 
postulate that Dorsal Striatum may be a core timer based 
on its role in estimation and reproduction tasks. Most 
studies connecting temporal processing with the numerical 
system are made on animals. Leon and Shadlen (2003) 
showed activation of the Posterior Parietal Cortex when 
macaques estimated exposition time of two circles. There 
are also indicators that this region has neurons responsible 
for numerical processing (Walsh, 2003; Javadi et al., 
2014). 

Furthermore, the fundamental nature of Number 
Sense is highlighted by its development prior to linguistic 

abilities, as demonstrated by Hyde and colleagues, who 
found that numerical representation develops before 
linguistic skills (Hyde et al., 2010). This suggests the 
primacy of numerical cognition. Meck and Church (1983) 
explored the representation of numbers and time in rats, 
finding no significant differences between these cognitive 
structures. Interestingly, their performance in tasks im-
proved following the administration of methamphetamine. 
This points to a link between neurochemical processes and 
cognitive performance. 

Research by Meck, Penney, and Pouthas (2008) 
identifies the cortical areas and the Basal Ganglia as 
critical for time perception in the milliseconds to seconds 
range. They further hypothesize that the Dorsal Striatum 
plays a central role in timing, based on its involvement in 
estimation and reproduction tasks. Although most studies 
examining the connection between temporal and numerical 
processing have been conducted on animals, they offer 
valuable insights. For instance, Leon and Shadlen (2003) 
observed activation in the Posterior Parietal Cortex of 
macaques during tasks estimating the exposure time of two 
circles, suggesting this area’s involvement in both 
temporal and numerical processing. This is supported by 
findings that neurons within this region are implicated in 
numerical tasks (Walsh, 2003; Javadi et al., 2014). 

Numerous investigations have utilized the Scalar 
Expectancy Theory (SET) model to explore the influence 
of affective factors on time perception. Angrilli et al. 
(1997) demonstrated this by showing participants affective 
images from the International Affective Picture System 
(IAPS; Lang, Bradley, & Cuthbert, 2008), for durations of 
2, 4, or 6 seconds, while also collecting psychophysiolo-
gical measurements. Participants rated durations either on 
an analogue scale or by reproducing the stimulus duration. 
Findings indicated that duration reproduction was typically 
associated with greater underestimation compared to 
analogue evaluation. For stimuli with low arousal, 
negative images were perceived as shorter than positive 
ones; conversely, under high arousal conditions, this 
relationship reversed. 

This pattern was similarly observed with auditory 
stimuli by Noulhiane et al. (2007), where negative, high- 
arousal sounds were estimated to last longer than positive 

Fig 1. Visualization of the Scalar Expectancy Theory 
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sounds. Additionally, high-arousal sounds were generally 
perceived as longer than low-arousal ones. 

The impact of affect on time perception extends to 
facial expressions as well. Droit-Volet and colleagues 
(2004; Droit-Volet & Meck, 2007) found that exposure to 
human faces expressing various emotions (happiness, anger, 
fear, disgust, and sadness) led participants to overestimate 
the duration of exposure to angry and fearful faces. These 
findings were consistent across different exposure times 
ranging from 400 to 1600 milliseconds and were even 
observed in children (Gil, Niedenthal, & Droit-Volet, 2007). 

Subsequent research by Fayolle, Gil, and Droit-Volet 
(2015), and Droit-Volet and Berthon (2017), corroborated 
these observations, suggesting that high arousal scenarios 
accelerate the internal clock’s pacing. This emotion-based 
modulation of time perception was also demonstrated 
using indirect stimuli by Yamada and Kawabe (2011), who 
showed that negative affect could unconsciously increase 
the pace of the internal clock. 

Further, Thönes and colleagues (2018) found that 
participants consistently overestimated the duration of blue 
stimuli compared to red ones, pointing to the influence of 
fundamental stimulus properties on time perception. 
Recent meta-analyses by Cui et al. (2022) affirmed these 
effects, highlighting that negative stimuli are generally 
overestimated relative to positive ones, and that higher 
arousal correlates with greater temporal dilation. More-
over, they noted that the discrimination and estimation 
paradigms often yield larger discrepancies than reproduc-
tion paradigms, reinforcing the value of the estimation 
paradigm in research. 

The second component of the Scalar Expectancy 
Theory (SET) model involves memory. Pan and Luo 
(2012) proposed that perceived duration might be 
modulated by working memory. This concept has also 
been explored neuroscientifically; for example, Üstün and 
colleagues (2017) found a correlation between working 
memory, time perception, and peristriate cortical activity. 
Additionally, Lee and Yang (2019) observed that children 
with Attention Deficit Hyperactivity Disorder (ADHD) 
exhibited poorer time discrimination abilities than their 
peers, though differences became non-significant when 
controlling for working memory and intelligence. 

Similarly, Roy et al. (2012) demonstrated a potential 
link between time perception impairments and memory 
deficits in individuals with schizophrenia. The relationship 
between numerical cognition and working memory has 
also been investigated, particularly in educational contexts. 
Kroesbergen and Van Dijk (2015) noted that children with 
lower scores in Number Sense or visual-spatial working 
memory performed worse on mathematics tests. This 
finding was supported by Toll, Kroesbergen, and Van Luit 
(2016), who identified visual working memory and 
Number Sense as predictors of math achievement among 
670 children. However, van Bueren et al. (2022) suggested 
that these relationships are complex and necessitate further 
exploration. 

Advancements in numerical analysis and growth of 
computational power have opened new avenues for data 

analysis, including the use of deep learning for analyzing 
visual stimuli (Bajammal et al., 2020). Modern computa-
tional techniques can extract extensive information from 
high-quality stimuli, with information theory playing 
a crucial role in understanding signals like pictures or 
sounds. Early work by Thomas and Weaver (1975) 
proposed that temporal judgments could be the result of 
both information processing and an internal timer. Recent 
research by Bilgli and colleagues (2020) found that 
exposure to different lighting colors affected perceived 
time, highlighting an underexplored area of study. 

In terms of the relationship between information 
theory and memory, additional studies have provided 
insights. Qian et al. (2018) showed that saturation and 
brightness might influence the impact of depth on visual 
working memory. Moreover, Krahn (2018) suggested that 
memory could be affected by the color of the stimulus, 
indicating potential areas for future research. 

Based on the studies described above, the following 
research questions were formulated: 
1. Is there a relationship between human time perception 

and the affective nature of a stimulus as well as the 
arousal it is expected to induce? 

2. Do models of human time perception require extension 
to include additional individual traits such as memory 
or Approximate Number System? 

3. Are there physical characteristics of stimuli that play 
a key role in how people estimate time? 

The study hypothesizes that affective traits and 
related arousal will act as predictors of time perception 
distortions, though these effects are anticipated to be 
weaker than those reported in the existing literature. 
Furthermore, it is assumed that physical characteristics of 
stimuli such as entropy, luminance, and complexity will 
take a principal role in the model. Working memory 
overload is also considered a significant predictor as well 
as individual ANS efficiency. To address the proposed 
research questions and hypotheses, four experimental 
procedures were conducted. This approach was necessi-
tated by the inherent complexity of defining human time 
perception, which has led to the development of various 
research methodologies. Given the impossibility of verify-
ing the full spectrum of methodologies, the procedures 
described below were selected to align with the main-
stream research on the relationship between time percep-
tion and the affective components and arousal of visual 
stimuli presented in millisecond to second intervals. 

EXPERIMENT 1 

Participants 
In the first experiment, 80 students from the 

University of Social Sciences and Humanities participated, 
including 58 females. The average age of the participants 
was 21.55 years (SD = 3.64). Participants received 
compensation for their involvement. All had normal or 
corrected-to-normal vision. Ethical approval for the study 
was obtained from the Ethics Board at the University of 
Social Sciences and Humanities. 
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Design and Procedure 
The goal of the first experiment was to examine the 

known effects of the affective features of a stimulus and 
induced valence, as well as its physical characteristics, on 
participants’ time perception distortion. To achieve this 
goal, a classical procedure was employed where partici-
pants directly evaluated the duration of a visual stimulus 
using a slider. 

The experimental stimuli were displayed on a 23-inch 
monitor with a refresh rate of 60 Hz in the university 
laboratory. Participants were seated approximately 50 cm 
from the screen. The initial phase of the experiment 
employed the Panamath software (Halberda, Mazzocco, 
& Feigenson, 2008) to assess numerical cognition. In this 
task, participants were required to identify the larger set of 
dots, which alternated in color between yellow and blue. 
The mean score from this task was used as an indicator of 
the participants’ Number Sense. 

The subsequent phase focused on time perception and 
was conducted using the Python programming language 
with the PsychoPy library (Pierce, 2007). Initially, 
participants were shown a sample duration followed by 
a fixation point (“+”) and then a black box displayed for 
400 ms, followed by the same box displayed for 1600 ms. 
Information regarding the duration of visibility was 
provided prior to the appearance of the black boxes. 
A training phase ensued, where random neutral pictures 
were displayed for durations ranging from 400 ms to 
1600 ms across 14 trials (two for each duration). 
Responses were collected via a mouse-operated slider. 

The main phase of the experiment followed the 
training, wherein participants were exposed to highly 
affective images, either positive or negative, sourced from 
the IAPS database (Lang, Bradley, & Cuthbert, 1997). 
A complete list of the pictures used is included in the 
attachment. Visual representations of the procedural 
framework for this phase are provided in Figure 2. 
Throughout all experiments, information theory variables 
were extracted from the stimuli. We examined two of these 
variables: 

– Entropy – obtained from the histogram distribution 
of the 8-bit grey level intensity  

H ¼ �
X

p xð Þlog p xð Þð Þ

– Luminance – average pixel values of the grayscaled 
image 

Results 
The statistical analyses were conducted using multi- 

level Bayesian models implemented through the brms 
package (Bürkner, 2017) in R (version 4.2.0) (R Core 
Team, 2022). All models were fitted using the Markov 
Chain Monte Carlo (MCMC) method with four chains, each 
consisting of 7,000 iterations, with the first 3,000 iterations 
discarded as burn-in. Predictors were standardized, and the 
dependent variable, estimation error (objective duration 
minus subjective duration), was defined. Model selection 
was based on the expected log predictive density method 
(Vehtari, Gelman, & Gabry, 2017). 

The initial model, termed the null model, with 
additional random effects incorporating a free intercept 
for each participant was established. Subsequent analyses 
introduced Number Sense and the objective time as 
predictors, along with a random slope for objective time. 
This model indicated that Number Sense significantly 
predicted duration estimation error, with a mean effect size 
of M = -32.29 (95% CI [-49.76, -12.45]). Additionally, 
a negative relationship was observed between subjective 
and objective time, M = -141.86 (95% CI [-158.64, 
-125.42]). 

The third model incorporated valence, arousal, and 
their interaction, alongside random effects for objective 
time, valence, and arousal. The results showed valence as 
a positive predictor of duration estimation error, M = 8.31 
(95% CI [3.43, 13.24]), and both objective time, M = 
-141.02 (95% CI [-158.35, -123.93]), and Number Sense, 
M = -30.80 (95% CI [-49.49, -12.13]), were negative 
predictors. Contrary to previous studies, arousal did not 
significantly predict duration estimation error, M = -2.12 
(95% CI [-6.21, 2.03]), nor did the interaction between 
valence and arousal, M = -2.65 (95% CI [-6.51, 1.15]). 

In the final model, information theory variables were 
included. Based on elpd we see that it caused a slight 
improvement of the model, with the final R2 = 0.50 (95% 
CI[0.49, 0.51]). The first level residual variance is 
M = 40505.59 (95% CI [39402.25, 41664.97]). The 
second level residual variance is M = 15065.11 (95% CI 
[11001.91, 20741.76]). Finally, it turned out that Number 
Sense (M = -31.06 (95% CI[-49.98, -12.20]), valence 
(M = 8.41 (95% CI[3.47, 13.37]), entropy (M = 10.47 
(95% CI[4.78, 15.93]) and luminance (M = -8.14 (95% CI 
[-13.73, -2.41]) can be treated as predictors of duration 
estimation error. In the context of random slopes, we found 
that objective time characterize of high variance 
M = 5783.60 (95% CI [4173.16, 8020.99]). Smaller 
variance was found in the case of valence M = 146.41 
(95% CI [4.71, 377.14]) and arousal 24.21 (95% CI [0.03, 
173.45]). 

Fig 2. General framework for studies 1-3  
(time estimation from experiment 1) 
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EXPERIMENT 2 

Participants 
Fifty-five students of the University of Social 

Sciences and Humanities participated in the second 
experiment (34 female). Mean age of participants was 

24.20 (SD = 4.82). All of them were paid for their 
participation. All participants had a normal or corrected-to- 
normal vision. Study approval was granted by the 
University of the Ethics Board at the University of Social 
Sciences and Humanities. 

Table 1. Summary of models from experiment 1   

Model 1 Model 2 Model 3 Model 4 

Predictors 
Est. 

[95% CI] 
Est. 

[95% CI] 
Est. 

[95% CI] 
Est. 

[95% CI] 

Intercept 
-122.71 

[-149.82, -95.64] 
-122.31 

[-148.45, -95.77] 
-120.94 

[-148.55, -93.86] 
-122.17 

[-148.92, -95.70] 

Number Sense   
-31.29 

[-49.76, -12.45] 
-30.80 

[-49.49, -12.13] 
-31.06 

[-49.98, -12.20] 

Objective time   
-141.86 

[-158.64, -125.42] 
-141.02 

[-158.35, -123.93] 
-141.40 

[-158.11, -124.40] 

Valance     
8.31 

[3.43, 13.24] 
8.41 

[3.47, 13.37] 

Arousal     
-2.12 

[-6.21, 2.03] 
-0.98 

[-5.14, 3.20] 

Valence*Arousal     
-2.65 

[-6.51, 1.15] 
-2.57 

[-6.43, 1.29] 

Entropy       
10.37 

[4.78, 15.93] 

Luminance       
-8.14 

[-13.73, -2.41] 

ΔELPD 
[standard error] 

-2484.9 
[58.4] 

-14.4 
[7.0] 

-5.4 
[3.7] 

0.00 
[0.0] 

R2 0.17 0.496 0.499 0.50 

Fig 3. Posteriors of the final model for experiment no. 1 
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Design and procedure 
In the second study, we aimed to examine the same 

effects as in the first study, but this time we changed 
the method of evaluating the stimulus duration. Unlike the 
previous study, participants now had to reproduce the 
duration of the stimulus exposure by pressing the SPACE 
bar. This modification was implemented to determine if the 
results were independent of the method used for evaluation. 

Stimuli were presented on a monitor (23', 60 Hz) at 
the University lab. Participant’s Number Sense measure-
ment were conducted analogous to the first experiment. 

The second part of the study, where time perception 
was examined, was made in Python using the PsychoPy 
library (Pierce, 2007). After an instruction, participants 
saw sample duration. After the fixation point “+” a black 
box was visible for 400 ms. Next, the same black box was 
visible for 1600 ms. Before black boxes showed up, there 
was an information about how long pictures will be 
visible. After that, a training phase was made. In this phase 
random neutral pictures were shown for 400, 600, 800, 
1000, 1200, 1400 or 1600 ms. There were 14 training trials 
(twice for each duration). Participants answered by 
pressing the SPACE key. When the SPACE key were 
pressed, the cross “+” sign was visible. After training 
trials, the main phase of the second stage started. 
Participants were informed that pictures in this phase will 
be highly affective either positively or negatively. 
Affective stimulus was chosen from the IAPS database 
(Lang, Bradley, Cuthbert, 1997). A list of pictures used in 
this study is in attachment. Visualization of the second part 
is shown in the figure no. 2. 

Results 
Statistical analyses of multi-level Bayesian models 

using the brms package (Bürkner, 2017) in R (version 
4.2.0) (R Core Team, 2022) were made. All models were 
fitted using the Markov-Chain Monte Carlo method with 
four chains. Each chain has 7000 iterations, with the first 
3000 burned. Predictors were standardized, and an 
estimation error (objective duration – subjective duration) 
was established as a dependent variable. Model selection 
was made using the expected log predictive density method 
(Vehtari, Gelman, & Gabry, 2017). 

The initial model, termed the null model, included 
a free intercept. Subsequently, a random intercept for each 
participant was added. In the second model, Number Sense 
and objective time were introduced as predictors, with 
a random slope for objective time. The first level residual 
variance is M = 123510.07 (95% CI [119411.71, 
127713.32]). The second level residual variance is 
M = 65229.16 (95% CI [44829.59, 96565.56]). This 
model demonstrated that objective time was a significant 
negative predictor of subjective time, M = -163.52 (95% 
CI [-192.29, -134.48]). A random effect of the slope of 
objective time was M = 10726.74 (95% CI [7160.54, 
16371.20]). In this case, model has the lowest elpd with 
R² = 0.44 (95% CI [0.43, 0.46]). 

The third model included valence, arousal, and their 
interaction, alongside random effects for objective time, 
valence, and arousal. The results indicated that objective 
time remained a negative predictor of subjective time, 
M = -162.86 (95% CI [-191.24, -134.53]). 

Table 2. Summary of models from experiment 2   

Model 1 Model 2 Model 3 Model 4 

Predictors Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Intercept -222.58 
[-288.70, -153.79] 

-216.87 
[-285.52, -148.34] 

-215.62 
[-284.56, -148.03] 

-217.80 
[-283.99, -151.83] 

Number Sense   -21.56 
[-64.62, 22.54] 

-24.36 
[-65.60, 17.26] 

-24.97 
[-68.27, 17.35] 

Objective Time   -163.52 
[-192.29, -134.48] 

-162.86 
[-191.24, -134.53] 

-163.39 
[-191.28, -135.43] 

Valance     -7.83 
[-16.54, 1.07] 

-6.98 
[-15.98, 2.03] 

Arousal     -1.92 
[-10.78, 6.82] 

-1.37 
[-10.22, 7.32] 

Valence*Arousal     0.79 
[-7.34, 8.85] 

-1.17 
[-12.96, 10.66] 

Entropy       -3.27 
[-15.28, 8.77] 

Luminance       0.89 
[-7.15, 8.82] 

ΔELPD 
[standard error] 

-914.8 
[69.1] 

0.0 
[0.0] 

-2.7 
[2.7] 

-4.2 
[3.0] 

R2 

[95% CI] 
0.28 

[0.26, 0.29] 
0.44 

[0.43, 0.46] 
0.45 

[0.43, 0.46] 
0.45 

[0.43, 0.46] 
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In the final model, information theory variables were 
incorporated. The analysis revealed that only objective 
time was a significant predictor of time discrepancy, M = 
-163.39 (95% CI [-191.28, -135.43]). The final model R² 
was 0.45 (95% CI [0.43, 0.46]). 

EXPERIMENT 3 

Participants 
A total of 58 students of the University of Social 

Sciences and Humanities participated in the second 
experiment (38 female). Mean age of participants was 
21.81 (SD = 4.55). All of them were paid for their 
participation. All participants had a normal or corrected-to- 
normal vision. Study approval was granted by the 
University of the Ethics Board at the University of Social 
Sciences and Humanities. 

Design and procedure 
In the third study, we replicated one of the most 

common methodologies in cognitive time perception 
research. Time perception distortion was assessed by 
classifying the duration of a previous event into one of two 
categories: where the subjective duration was closer to 
either the minimal or maximal end of the scale. The goal of 
this study was similar to the previous one: to determine if 
the known effects are independent of the experimental 
methodology. 

The first part of the procedure, where we measured 
Number Sense, was analogous to the previous experiments. 
Differences arose in the second stage, where participants 
were shown samples of the shortest (400 ms) and longest 
(1600 ms) possible durations. Following this, a training 
phase was conducted. The task required participants to 
estimate the duration of a black box using two keyboard 
keys, representing the shortest and longest durations. 

Participants were asked to estimate whether the duration of 
the recent picture was closer to 400 ms or 1600 ms. The 
stimulus duration was randomly drawn from the set [400, 
600, 800, 1000, 1200, 1400, 1600 ms]. After 14 training 
trials, the main phase of the second stage began. Affective 
stimuli were selected from the IAPS database (Lang, 
Bradley, & Cuthbert, 1997). A list of pictures used in this 
study is provided in the attachment. Instructions explaining 
the task were given before each part of the procedure. 

Results 
Statistical analyses of multi-level Bayesian models 

using the brms package (Bürkner, 2017) in R (version 
4.2.0) (R Core Team, 2022) were made. All models were 
fitted using the Markov-Chain Monte Carlo method with 
four chains. Each chain has 7000 iterations, with the first 
3000 burned. A logit link function with bernoulli 
distribution over the parameters was used. A depended 
variable was evaluation if exposition time was closer to 
400 or 1600 milliseconds. Model selection was made using 
the expected log predictive density method (Vehtari, 
Gelman, & Gabry, 2017). 

In the first model, the null model was established. 
Then, random effects with a free intercept for each 
participant were added. In the second model, Number 
Sense and objective time were used as predictors. The 
second level residual variance was M = 0.02 (95% CI 
[<0.01, 0.05]). The model showed that Number Sense 
might predict duration estimation error. Higher score was 
associated with a M = 9.79% (95% CI [2.86%, 17.09%]) 
increase in the probability of correct classification. 
Additionally, there was a significant effect of objective 
time, which was associated with a M = 9.03% (95% CI 
[0.48%, 16.72%]) decrease in the probability of correct 
classification. A random effect of slope of objective time 
was M = 0.07 (95% CI [0.04, 0.13]). This model turned out 

Fig 4. Posteriors of the final model for experiment no. 2 
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to has the highest elpd, with R² of M = 0.02 (95% CI [0.02, 
0.04]). 

The third model included valence, arousal, and their 
interaction, along with random effects for these variables. 
Results showed that higher Number Sense was associated 
with M =  10.18% (95% CI [3.15%, 17.58%]) increase in 
the probability of correct classification. Similarly, objec-
tive exposition time was associated with M = 9.18% (95% 

CI [0.65%, 16.81%]) decrease in the probability of correct 
estimation. 

In the final model, information theory variables were 
included. The previous effects were maintained, but no 
significant effects were found for valence, arousal, 
entropy, or luminance. Higher score of Number Sense 
was associated with M = 10.19% (95% CI [3.20%, 
17.63%]) increase in the probability of correct estimation. 

Table 3. Summary of models from experiment 3   

Model 1 Model 2 Model 3 Model 4 

Predictors Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Intercept 1.07 
[1.00, 1.14] 

1.09 
[1.02, 1.15] 

1.09 
[1.02, 1.15] 

1.09 
[1.02, 1.15] 

Number Sense   0.09 
[0.03, 0.16] 

0.10 
[0.03, 0.16] 

0.10 
[0.03, 0.16] 

Objective Time   -0.09 
[-0.18, > -0.01] 

-0.10 
[-0.18, -0.01] 

-0.10 
[-0.19, -0.01] 

Valance     >-0.01 
[-0.05, 0.05] 

>-0,01 
[-0.06, 0.05] 

Arousal     <0.01 
[-0.06, 0.06] 

>-0,01 
[-0.05, 0.05] 

Valence*Arousal     -0.02 
[-0.03, 0.03] 

-0.02 
[-0.07, 0.03] 

Entropy       -0.03 
[-0.10, 0.05] 

Luminance       0.03 
[-0.04, 0.11] 

ΔELPD 
[standard error] 

-49.0 
[8.1] 

0.0 
[0.0] 

-4.9 
[0.09] 

-6.5 
[1.3] 

R2 0.01 0.03 0.03 0.03 

Fig 5. Posteriors of the final model for experiment no. 3 
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Objective exposition time was associated with M =  9.08% 
(95% CI [0.72%, 17.05%]) decrease in the probability of 
a correct answer. The final model had an R² of M = 0.03 
(95% CI [0.02, 0.04]). 

EXPERIMENT 4 

Participants 
The last study was conducted online. The worldwide 

COVID-19 pandemic situation forced this decision. Fifty- 
seven participants were recruited (28 female) using the 
Prolific system [www.prolific.co]. The mean age of 
participants was 25.93 (SD = 7.61). All participants were 
paid £9.00/hour. Additionally, they were restricted to 
a minimum of 80% approval rate, have a normal or 
corrected-to-normal vision, fluent English and participate 
in the study using a laptop or desktop. Study approval was 
granted by the University of the Ethics Board at the 
University of Social Sciences and Humanities. 

Design and procedure 
The final study aimed to address the core idea behind 

this paper. The method for examining subjective time 
distortion was identical to that in the first study, but this 
time, the procedure included additional variables intended 
to provide a deeper understanding of the SET model and 
evaluate potential extensions based on information-based 
features of stimuli. 

Participants were asked to sit comfortably about 
50 cm from the screen. Instructions were provided before 
each task. Prior to every stimulus (dots or pictures), 
participants saw a fixation point (“+”). The procedures 
were implemented using the PsychoJS library (Pierce, 
2007) and Pavlovia (https://pavlovia.org/). To increase the 
reliability of the experiment, participants underwent 
a calibration process before the first stage. They were 
asked to adjust the image size of a credit card to match 
a real one, ensuring that all participants viewed stimuli of 
the same size. 

The next part of the procedure for Experiment 4 was 
the measurement of Number Sense. To maintain consis-
tency with Studies 1-3, magnitude comparisons were 
chosen to measure this variable. Participants were shown 
blue and yellow dots, with the size and location of the dots 
drawn randomly. The possible ratios of the numbers of 
dots were 3/4, 4/5, 5/6, and 6/7. After the dots disappeared, 
participants saw a mask (random yellow and blue noise). 
Following ten training trials, participants underwent 200 
main trials. 

After this phase, the time estimation stage began. 
Participants saw examples of the shortest (400 ms) 
and longest (1600 ms) exposition durations, followed by 
14 training trials. In these trials, participants had to 
memorize a random string of 3-6 characters and estimate 
the duration for which a black box was visible. Answers 
were submitted using a slider. After this part, participants 
were asked to reproduce the random string. As affective 
stimuli, pictures from the NAPS database were used 
(Marchewka et al., 2014). The stimuli database was 

changed to provide a more reliable measurement for 
information theory variables. Both stages (Number Sense 
and time estimation) are shown in Figure 6. 

Additional variables used in this study was memory 
overload described by Levenshtein distance (eq. 1) 
between generated and reproduced random string of signs.  

lev a; bð Þ ¼

aj j

bj j

lev tail að Þ; tail bð Þð Þ

1þmin

lev tail að Þ; bð Þ

lev a; tail bð Þð Þ

lev tail að Þ; tail bð Þð Þ

8
<

:

8
>>>>>><

>>>>>>:

If bj j ¼ 0;

If aj j ¼ 0;

Ifa 0½ � ¼ b 0½ �

otherwise;

Eq 1. Levenshtein distance 

Moreover, pictures from the NAPS database (Mar-
chewka et al., 2014) have described variables which 
were included in the analysis complexity considered as 
a JPEG size.  

Results 
Analogically to the previous experiments, the statis-

tical analyses of multi-level Bayesian models using the 
brms package (Bürkner, 2017) in R (version 4.2.0) (R Core 
Team, 2022) were made. All models were fitted using the 
Markov-Chain Monte Carlo method with four chains. Each 
chain has 7000 iterations, with the first 3000 burned. 
Exactly like in study no. 1 and 2, predictors were 
standardized, and the dependent variable, estimation error 
(objective duration minus subjective duration), was defined. 
Model selection was made using the expected log predictive 
density method (Vehtari, Gelman, & Gabry, 2017). 

In the first model, the null model with only free 
intercept was established. Additionally, random effects with 
free intercept for every participant were added. In the 
second model, Number Sense and objective time were used 
as predictors. The model showed no evidence that Number 
Sense could be considered a predictor of duration estimation 
error. However, there was a significant effect of objective 
time, M = -190.87 (95% CI [-209.52, -172.14]). 

The third model included valence, arousal, and their 
interaction, along with random effects for valence, arousal, 
and their interaction. The effect of objective time remained 
significant, M = -191.57 (95% CI [-210.33, -172.47]). 
Furthermore, valence, arousal and valence:arousal inter-
action were not predictors of time estimation error. 

In the final model, information theory variables were 
included. The first level residual variance is M = 33503.64 
(95% CI [32421.60, 34640.65]). The second level residual 
variance is M = 14139.59 (95% CI [9735.77, 21068.52]). 
The results indicated that objective time was a significant 
negative predictor of time estimation error, M = -190.73 
(95% CI [-209.56, -171.43]). Additionally, the Levensh-
tein distance emerged as a significant negative predictor, 
M = -14.70 (95% CI [-18.57, -10.77]). The results showed 
no significant effects for valence, arousal, or their 
interaction. A random effect of the slope was found in 
case of objective time M = 4944.90 (95% CI [3352.41, 
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Table 4. Summary of models from experiment 4   

Model 1 Model 2 Model 3 Model 4 

Predictors Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Est. 
[95% CI] 

Intercept -135.89 
[-166.92, -105.28] 

-135.16 
[-166.22, -104.48] 

-133.05 
[-163.75, -100.25] 

-124.72 
[-157.00, -93.37] 

Number Sense   -15.96 
[-46.87, 14.70] 

-18.02 
[-49.37, 12.66] 

-18.89 
[-50.41, 13.18] 

Objective time   -190.87 
[-209.52, -172.14] 

-191.57 
[-210.33, -172.47] 

-190.73 
[-209.56, -171.43] 

Valence     5.16 
[-6.75, 16.77] 

4.76 
[-7.13, 17.12] 

Arousal     -7.67 
[-19.24, 4.16] 

-8.36 
[-20.19, 3.51] 

Valence x Arousal     2.77 
[-3.43, 8.97] 

2.65 
[-3.55¸ 8.92] 
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7370.22]), valence M = 256.64 (95% CI [5.15, 824.26]) 
and arousal M = 242.11 (95% CI [3.65, 809.97]). The final 
model had an R² of 0.62 (95% CI [0.61, 0.63]) with the 
highest elpd. 

CONCLUSION 

The presented research had two primary objectives. 
The first was to highlight the complexity of human time 
perception and the insufficient exploration of its potential 
foundations, often constrained by long-established models 
and research paradigms. The second objective was to 
emphasize the opportunities available to researchers due to 
the rapidly advancing technology sector, particularly 
through leveraging information from fields such as 
Computer Vision. 

All studies focused on time processing based on 
stimulus exposure in millisecond-to-second intervals. We 

grounded our research methodologies in well-established 
literature, ensuring the potential role of affect and valence 
induced by stimuli in each study (Angrilli et al., 1997; 
Noulhiane et al., 2007; Droit-Volet et al., 2004; Droit- 
Volet & Meck, 2007). Additionally, basic methods for 
measuring time exposure estimation were included. Due to 
the multitude of methods documented in the literature, it 
was impossible to examine the full spectrum, so we 
focused on the most well-researched and general methods, 
such as direct estimation using a slider, estimating stimulus 
exposure time by pressing a designated key for the 
duration the stimulus was visible on the screen, and 
classifying whether the stimulus was visible for closer to 
the minimum (400 ms) or the maximum (1600 ms) time. 
We also hypothesized that the performance of the 
Approximate Number System would be a significant 
predictor of time exposure estimation error. Finally, we 
extracted information-theoretic parameters from the sti-

Model 1 Model 2 Model 3 Model 4 

Entropy       0.64 
[-3.93, 5.24] 

Luminance       -3.47 
[-7.67, 0.79] 

Complexity       -3.71 
[-8.19, 0.70] 

Levenshtein Distance       -14.70 
[-18.57, -10.77] 

ΔELPD 
[standard error] 

-2920.1 
[60.3] 

-80.2 
[16.0] 

-26.9 
[8.5] 

0.0 
[0.0] 

R2 0.14 0.61 0.62 0.62   

Table 4 cont. 

Fig 6. Procedure for experiment no. 4 
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muli, such as entropy and brightness, representing the 
complexity of the exposed stimuli. 

In the first study, which closely followed the 
established paradigm of time perception research, partici-
pants estimated stimulus exposure time using a slider. The 
results partially aligned with known findings, showing an 
effect of valence. The more positive the picture, the longer 
it seemed to remain visible on the screen. Moreover, when 
considering the interaction of valence and arousal, for low- 
arousing stimuli, negative valence was associated with 
a shorter duration estimation compared to positive stimuli. 
For high-arousing stimuli, the effect was opposite. 
Additionally, our assumptions regarding the role of image 
complexity and brightness were confirmed. Entropy was 
a positive predictor of duration estimation, while lumi-
nance was a negative one. This means that the more 
information a picture contained, the higher the positive 
error in duration estimation, and the brighter the picture, 
the higher the negative duration estimation error. The most 
influential factor was the objective exposure time. The 
longer the picture was visible on the screen, the higher the 
underestimation of duration. Finally, participants’ Number 
Sense (mean score in the magnitude comparison task) 
emerged as a negative predictor of duration estimation 
error. This subtle effect suggests that individuals with 
higher Number Sense tend to underestimate the duration of 
affective stimuli. While counterintuitive, it may indicate 
that time perception is based on information processing. 

In the second study, the nature of stimulus exposure 
time estimation was altered. This time, participants 
responded by pressing a designated key for a duration as 
close as possible to the stimulus exposure time on the 
screen. This change resulted in Model 2, consisting solely 
of Number Sense and the objective stimulus duration as 
predictors, being the leading model. However, the elpd 
metric showed that differences between subsequent models 
were minimal, leading to a decision to further explore the 
role of potential predictors. Despite this, the only 
significant predictor was the objective stimulus exposure 
time. Known effects of valence, complexity, and bright-
ness disappeared. 

In the third study, a Temporal Bisection Task 
procedure was used, where participants classified stimulus 
exposure time as more similar to the shortest or longest 
possible time. The results were particularly interesting. 
Number Sense again emerged as a significant predictor. 
This time, the higher the participant’s Number Sense, the 
more likely they were to classify correctly. The effect of 
objective exposure time persisted—the longer the picture 
was visible, the less likely the correct classification. 
Similar to Study 2, Model 2, which is simpler than the 
final model, emerged as the best model based on the elpd 
metric. 

The final study included an additional element where 
working memory overload was measured, directly refer-
ring to the fundamental SET model. We also switched the 
stimulus database from IAPS (Lang, Bradley, & Cuthbert, 
1997) to NAPS (Marchewka et al., 2014) to achieve the 
highest possible picture quality. This was based on our 

focus on information theory variables, which naturally 
depend on signal quality. The final model showed 
consistent conclusions for objective time. The longer the 
picture was visible on the screen, the higher the under-
estimation. Moreover, we found an effect of memory 
overload. The higher the Levenshtein distance (indicating 
worse word reproduction—lower memory overload), the 
higher the underestimation of exposure time. No other 
factor was considered a possible predictor of time 
estimation error. 

In summary, the collected results appear chaotic and 
do not provide a direct answer to the research questions 
posed. However, they are valuable in considering the 
cognitive phenomenon of time perception in humans. As 
we see, when using basic methodologies, the effects 
described in the literature appear, but as soon as we 
introduce a modification unrelated to the exposure process 
but only to its evaluation, only the objective exposure time 
yields consistent results. This may suggest that the known 
effects in the literature are artifacts more related to the 
measurement characteristics than to the cognitive process 
being studied. Furthermore, this study demonstrates that 
bolder use of modern tools and incorporating variables 
from Computer Vision, Machine Learning, or even Large 
Language Models in the future can significantly enhance 
our understanding of how the human brain “sees” time. It 
is also worth mentioning that the classic SET model of 
time perception, based on the last study, seems over-
explored in terms of the affective and valence character-
istics of stimuli but underexplored in terms of the role of 
memory, which naturally emerges from its architecture. 
We cannot overlook that the studies were conducted 
during the COVID-19 pandemic, which caused significant 
organizational and methodological challenges. The last 
study was conducted online, which can be considered 
a drawback. This is a valid criticism because it complicates 
the comparison of conclusions drawn from the first three 
studies with the final one. Given the conclusion that the 
characteristics of the research procedure can generate 
artifacts, it is difficult to determine whether it is justified to 
compare the results of these studies with each other. 
However, this is inevitable in research on such a complex 
and delicate process, requiring collective efforts to verify 
the described results across a broader spectrum of 
experimental procedures on time perception and standar-
dizing research conditions (which could not be maintained 
due to the pandemic). 
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