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Abstract. In this contribution, a new novel approach based on the Atangana-Baleanu fractional in conjunction with the Laplacian approach 
is utilized to obtain an analytical solution of a fractional time relaxation viscoelastic model. The fractional time relaxation model is based 
on the upper convected Maxwell constitutive relaxation equation. Results for the existence and uniqueness of the solution are presented. 
Analytical expressions of the solutions are obtained for the underlying physical time relaxation viscoelastic model. Two test model problems 
with prescribed initial conditions are used to investigate the intricate behavior of the viscoelastic two-dimensional fluid. The influence of key 
parameters such as relaxation time, Reynolds number and the order of the fractional derivative on fluid flow characteristics is analyzed and
discussed.
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1. INTRODUCTION

Time relaxation viscoelastic models have been studied in liter-
ature for many important industrial applications. These pro-
cesses range from polymeric melting processes [1, 2], pulp
fibers [3] mineral processing [4], food processing [5], and bio-
physical processes [6, 7]. Also, viscoelastic flows are seen to
be generated in simple liquids by the vibration of nanostruc-
tures, see for instance [7], and references present therein.

Viscoelastic behaviour of flows has been studied in litera-
ture so far in varying contexts. For instance, Boyang in his
PhD dissertation [8] investigated the flow of polymeric vis-
coelastic fluid in three different geometries where it was ob-
served that fluid relaxation influences the onset of turbulence
in shear flows. For a review on the effect of viscoelastic fluid
flows and their applications, the reader is referred to the work
of Yuan et al. [9]. For a review and state-of-the-art research
on viscoelastic fluids in particle focusing and related particle
manipulation applications, the reader is referred to the work of
Chen [6]. Swimming of ciliated cells in a viscoelastic Giesekus
fluid is investigated in the work of Zhu et al. [10]. They ob-
serve a decay in the flow velocity of the fluid in the presence
of polymeric stresses. The main characteristic of their inves-
tigation was the behaviour of the Weissenberg number on the
polymeric swimmers using numerical simulation through the
finite element method. Having applications in health and dis-
eases, the review article by Sebastian and Dittrich [11], the mi-
crofluidics which are viscoelastic are used to mimic the blood
flow in the human body, is higly recommended. To understand
the practical application of viscoelastic fluids in porous media,
the reader is referred to the work of Haward et al, [12]. In
connection to the clinical experimentation and microfluidics to
study the behaviour of neutrophil genomics and proteomics,
the reader is referred to the work [13]. The flow of these com-
plex fluids is resolved by using several numerical algorithms
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in the literature; in this regard, the reader is referred to a com-
prehensive review article in [14] on the numerical methods
for viscoelastic fluid flows and flow characteristics in a two-
dimensional baffled cavity, see for instance[15].

Fractional approaches to investigate such models have been
applied in the literature so far and are mostly based on Caputo
fractional derivatives. Fractional Time Analysis is constantly
positioned to work on current mathematical models due to its
unique potential to identify peculiar action and memory effects
[16, 17, 18, 19, 20, 21, 22, 23, 24] which are the key com-
ponents of tangled peculiarities. By working together, pro-
fessionals like Caputo Riemann, Liouville, Ross and Miller,
Podlubny, and others were able to resolve the mathematical
basis for fragmented solicitation auxiliaries. Incomplete Post-
modern math conjecture was connected to real-world appli-
cations and included theories about chaos, electrodynamics,
signal processing, thermodynamics, financial perspectives, and
several other fields [25, 26, 27, 28, 29].

Recently, researchers have given more attention to fractional
derivatives, their applications and analysis [30]. Fractional
derivative on the multilayered Navier-Stokes condition to an-
alyze the nature of the flow, see for instance[31]. A study
presents a numerical method for solving non-homogeneous
two-dimensional fractional integro-differential equations using
the modified Atangana-Baleanu fractional derivative, employ-
ing operational matrices to convert the problem into an alge-
braic system, with examples demonstrating the method’s ef-
ficiency [32]. Another study presented a numerical method
for solving one- and two-dimensional Burgers’ equations in-
volving time fractional Atangana-Baleanu Caputo derivatives,
using Haar wavelet approximations and a quadrature rule for
the fractional derivative, with the results demonstrating its ef-
fectiveness, better performance than existing methods, and a
convergence rate of order two [33]. There are many other such
studies in literature that highlight the importance of fractional
derivatives, especially Atangana-Baleanu fractional derivative,
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in solving systems of PDEs. Interested reader can check out
[34, 35, 36].

This study uses a novel approach combining the Atangana-
Baleanu fractional and Laplacian approaches to solve a frac-
tional time relaxation viscoelastic model. Atangana Baleanu
fractional derivative was chosen out of all the different frac-
tional derivatives because it has been proven that Atangana
Baleanu derivative provides more accurate results compared
to the standard derivative with an exponential kernel, offering
a generalized approach for modeling. In a study conducted in
2018 [37], the real world applications of Atangana Baleanu
derivative were discussed, in specific, investigating various
modeling problems, including Newton’s law of cooling, popu-
lation growth, logistic equation, and the blood alcohol model.
And the analytical solutions are derived through the Laplace
transform, with results visualized through simulations for dif-
ferent fractional orders, which offer results with uncanny ac-
curacy.

The model used for this study is based on the upper con-
vected Maxwell constitutive relaxation equation. The study
investigates viscoelastic two-dimensional fluid behaviour, an-
alyzing key parameters and their impact on fluid flow charac-
teristics. The rest of the article is organised as follows: in Sec-
tion 2, the fractional time relaxation viscoelastic model is pre-
sented. The model is nondimensionalized and two test cases
are prescribed. In Section 3, some mathematical preliminar-
ies are stated. In Section 4, theoretical results for the existence
and uniqueness of the solution are shown. In Section 5, the pre-
sented model problem is solved for the two test cases and an-
alytical expressions of the solutions are obtained in each case.
Moreover, results are presented graphically for varying relax-
ation time, Reynolds number and the order of the fractional
derivative and solution characteristics are discussed. Finally,
conclusions are drawn in Section 6.

2. FRACTIONAL TIME RELAXATION VISCOELASTIC
MODEL

One of the widely appreciated models to describe viscoelas-
tic fluids is the upper convected Maxwell (UCM) model that
incorporates viscosity and relaxation time with the following
constitutive equation:

λ∇τ + τ =−2η d (v) , (1)

Where λ and η are the fluid characteristic relaxation time and
the fluid viscosity, respectively. The deformation strain tensor
d (v) in Eq. (1) is defined as

d (v) =
1
2

(
∇v+(∇v)T

)
. (2)

In Eq. (1), ∇τ is the upper convected derivative defined as

∇τ =
∂τ

∂ t
+ v ·∇τ − (∇v) · τ − τ · (∇v)T . (3)

Here, λ and η are assumed to be constant, whereas in gen-
eral, they may depend upon the local shear rate, pressure, and
temperature. The dynamics of viscoelastic fractional time re-
laxation flow are governed by the following partial differential

equation

ρ (Dα
t (v)+ v ·∇v)+∇p+∇ · τ = b, (4)

together with the mass conservation within the flow domain

∇ · v = 0. (5)

Consider a two-dimensional unsteady incompressible vis-
coelastic flow having velocity field v= (u,v) in the coordinates
(x,y). In the absence of body forces b, the continuity and mo-
mentum equations Eq. (5) and (4), respectively reads in the
component form as

∂u
∂x

+
∂u
∂y

= 0, (6)

Dα
t (u)+u

∂u
∂x

+ v
∂u
∂y

+λ

(
u2 ∂ 2u

∂x2 + v2 ∂ 2u
∂y2 +2uv

∂ 2u
∂x∂y

)
=

− 1
ρ

∂ p
∂x

+η

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (7)

and

Dα
t (v)+u

∂v
∂x

+ v
∂v
∂y

+λ

(
u2 ∂ 2v

∂x2 + v2 ∂ 2v
∂y2 +2uv

∂ 2v
∂x∂y

)
=

− 1
ρ

∂ p
∂y

+η

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
. (8)

To aid analysis and calculation, the following variables have
been introduced to Eq. (6)-(8) as dimensionless.

U =
u
u0

,V =
v
u0

,T =
tL
u0

,X =
x
L
,y=

y
L
, and P=

p
ρu2

0
,

(9)

Where L is the characteristic length of the flow domain con-
sidered and u0 is the assumed ambient velocity. Now, using
Eq. 9 in Eq. (6)-(8) leads to the following nondimensional set
of PDEs. Detailed calculations for the following results can be
observed in the Appendix section.

∂U
∂X

+
∂U
∂Y

= 0, (10)

Dα
T (U)+U

∂U
∂X

+V
∂U
∂Y

+R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
=− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (11)

and

Dα
T (V )+U

∂V
∂X

+V
∂V
∂Y

+R f

(
U2 ∂ 2V

∂X2 +V 2 ∂ 2V
∂Y 2 +2UV

∂ 2V
∂X∂Y

)
=−∂P

∂Y
+

1
Re

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
. (12)

In (11) and (12), the dimensionless parameters Re and R f rep-
resents Reynolds number, and fluid relaxation time respec-
tively, and are defined by

R f =
λu0

L
, and Re =

ρLu0

µ
. (13)
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The aim here is to seek the solution for the above set of PDEs
in Eq. (6)-(8) with the following two sets of initial conditions.

• Case 1 : U(X ,Y,0) = eX , V (X ,Y,0) = eY .
• Case 2 : U(X ,Y,0) = XY 2 − XY, V (X ,Y,0) = X2Y −

XY.

The analytical solution is sought by the application of the
Laplace transform together with the Atangna-Baleanu frac-
tional derivative. In the next section, we present the existence
and uniqueness results.

3. MATHEMATICAL PRELIMINARIES

To state the results and construction of their proofs let us define
the following mathematical preliminaries

A. Definitions
A.1. Atangana-Baleanu fractional derivative [30]
Let h ∈ H(0,1) and 0 < n < 1, the Atangana-Baleanu Frac-
tional Derivative in Caputo sense is defined as

Tn(h)(x) =
B(n)
1−n

∫ x

0
En

[
−n

1−n
(x− s)n

]
h′(s)ds. (14)

A.2. Atangana-Baleanu integral operator [30]
The Atangana-Baleanu integral operator of function f and or-
der n is given as

AB
a In

0 f (t) =
1−n
B(n)

f (t)+
n

B(α)Γ(n)

∫ t

a
f (y)(t − y)n−1dy.

A.3. Atangana-Baleanu integral operator(in Caputo-sense)
[30]
The Atangana-Baleanu integral operator (in the Caputo-sense)
of function f and order n is defined as

ABC
a In

t f (t) =
1−n
B(n)

f (t)+
n

B(n)Γ(n)

∫ t

0
f (y)(t − y)n−1dy.

A.4. Laplace change of Atangana-Baleanu derivative The
Laplace change of the Atangana-Baleanu derivative [38] of or-
der τ is given by

L
{ABCDτ f (t)

}
=

M(τ)

1− τ
· pτL { f (t)}− pτ−1 f (0)

pτ + τ

1−τ

.

4. EXISTENCE AND UNIQUENESS RESULTS

The relaxation time model in Eq. (11) and (12) is requested
with the application of the Atangana-Baleanu fractional time

derivative in the Caputo sense as

ABCDn
T (U) =−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +

V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

− ∂P
∂X

+
1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
,

ABCDn
T (V ) =−U

∂V
∂X

−V
∂V
∂Y

−R f

(
U2 ∂ 2V

∂X2 +V 2 ∂ 2V
∂Y 2 +

2UV
∂ 2V

∂X∂Y
− ∂P

∂Y
+

1
Re

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
.

(15)

With a given set of initial conditions this set of PDEs in (15)
admit solution which is guaranteed by the following result.

Theorem 1 Let U = (U,V ). Suppose
f(X , t,U,UX ,UY ,UXX ,UXY ,UYY ) satisfies the Lipschitz
condition in each of its arguments with the Lipschitz constant
i.e.

L = K +
5

∑
i=1

Kiδi.

Further, assume that ∃ scalars δ j ∈ R+ such that

||Ui,m − Ūi,m−1|| ≤ δ j||Um − Ūm−1||,

where i takes values from the set {X ,Y,XX ,YY,XY} and m ∈
Z+, then the solution to the system in (15) exists if

1−n
B(n)

+
tn
max

B(n)Γ(n)
< 1.

Proof Applying the fundamental premise of fractional calcu-
lus,we can write

U(X , t)−U(X ,0)=
(

1−n
B(n)

)
f(X , t,U,UX ,UY ,UXX ,UXY ,UYY )

+
n

B(n)Γ(n)

∫ t

0
(t−ξ )n−1f(X , t,U,UX ,UY ,UXX ,UXY ,UYY )dξ ,

(16)

or,

U(X , t) = U0 +
1−n
B(n)

f(X , t,U,UX ,UY ,UXX ,UXY ,UYY )

+
n

B(n)Γ(n)

∫ t

0
(t−ξ )n−1f(X , t,U,UX ,UY ,UXX ,UXY ,UYY )dξ .

(17)

Assuming that U is a solution of (15) at the mth time step, an
explicit relation can be obtained as

Um(X , t)=U0+
1−n
B(n)

f(X , t,Um−1,UX ,m−1,UY,m−1,UXX ,m−1,

UXY,m−1,UYY,m−1)

+
n

B(n)Γ(n)

∫ t

0
(t−ξ )n−1f(X , t,Um−1,UX ,m−1,UY,m−1,UXX ,m−1,

UXY,m−1,UYY,m−1)dξ . (18)
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Let βm = Um −Um−1, then from (18) we can write

βm =
1−n
B(n)

[
f(X , t,Um−1,UX ,m−1,UY,m−1,UXX ,m−1,

UXY,m−1,UYY,m−1)− f(X , t,Um−2,UX ,m−2,UY,m−2,UXX ,m−2,

UXY,m−2,UYY,m−2)
]
+

n
B(n)Γ(n)

∫ t

0
(t −ξ )n−1

[
f(X , t,Um−1,

UX ,m−1,UY,m−1,UXX ,m−1,UXY,m−1,UYY,m−1)− f(X , t,Um−2,

UX ,m−2,UY,m−2,UXX ,m−2,UXY,m−2,UYY,m−2)
]
dξ . (19)

Let us use the following notations for convenience

fm−1 = f(X , t,Um−1,UX ,m−1,UY,m−1,UXX ,m−1,UXY,m−1,UYY,m−1),

fm−2 = f(X , t,Um−2,UX ,m−2,UY,m−2,UXX ,m−2,UXY,m−2,UYY,m−2),

then taking norm on both the sides of (19) and using triangular
inequality we get

||βm|| ≤
1−n
B(n)

∥ fm−1 − fm−2∥

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1 ∥ fm−1 − fm−2dξ∥ . (20)

Now, since f is Lipschitz in its each argument therefore

βm ≤ 1−n
B(n)

[
KUm−1 −Um−2 +K1UX ,m−1

−UX ,m−2 +K2UY,m−1 −UY,m−2 +K3UXX ,m−1

−UXX ,m−2 +K4UXY,m−1 −UXY,m−2 +K5UYY,m−1 −UYY,m−2

]
+

n
B(n)Γ(n)

∫ t

0
(t −ξ )n−1dξ

[
KUm−1 −Um−2 +K1UX ,m−1−

UX ,m−2 +K2UY,m−1 −UY,m−2

+K3UXX ,m−1 −UXX ,m−2

+K4UXY,m−1 −UXY,m−2 +K5UYY,m−1 −UYY,m−2

]
, (21)

this implies

||βm|| ≤ [K||Um−1 −Um−2||+K1||UX ,m−1 −UX ,m−2||+
K2||UY,m−1 −UY,m−2||+K3||UXX ,m−1 −UXX ,m−2||

+K4||UXY,m−1 −UXY,m−2|+K5||UYY,m−1 −UYY,m−2||

]
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1dξ

]
, (22)

||βm||< [K||βm−1||+K1δ1||βm−1||+K2δ2||βm−1||+K3δ3||βm−1||+K4δ4||βm−1||

+K5δ5||βm−1||]
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1dξ

]
, (23)

||βm||< ||βm−1||[K+K1δ1+K2δ2+K3δ3+K4δ4+K5δ5]

[
1−n
B(n)

+

n
B(n)Γ(n)

∫ t

0
(t −ξ )n−1dξ . (24)

Leaving K +
5

∑
i=1

Kiδi = L < 1,, it can be stated that

||βm||< L||βm−1||
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1dξ

]
.

It is now easy to see that.

||βm|| ≤ ||β0||Lm
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )dξ

]m

,

further, tmax can be chosen such that

||βm||< ||β0||Lm
[

1−n
B(n)

+
tn
max

B(n)Γ(n)

]m

.

Therefore, the solution to the system in (15) exists if tmax is
such that [

1−n
B(n)

+
tn
max

B(n)Γ(n)

]
< 1.

A. Uniqueness of the solution:

Corollary 1.1 The solution of (15) is unique.

Proof Assume that the system in (15) has two distinct solutions
i.e., Um,1(X , t) and Um,2(X , t). Let

χ = (U,UX ,UY ,UXX ,UXY ,UYY ).

Denote
fχi = f(X , t,χi), for i = 1,2.

Consider

Um,1(X , t)−Um,2(X, t) =
1−n
B(n)

(fχ1 − fχ2)+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1(fχ1 − fχ2)dξ .

(25)

Taking norm on both sides, we obtain

||Um,1(X , t)−Um,2(X , t)||=∣∣∣∣∣∣∣∣1−n
B(n)

(
fχ1 − fχ2

)
+

n
B(n)Γ(n)

∫ t

0
(t −ξ )n−1 (fχ1 − fχ2

)
dξ

∣∣∣∣∣∣∣∣ ,
(26)

=⇒ ||Um,1(X , t)−Um,2(X , t)|| ≤
1−n
B(n)

||fχ1 − fχ2 ||+
n

B(n)Γ(n)

∫ t

0
(t −ξ )n−1||fχ1 − fχ2 ||dξ .

(27)

Since f is Lipschitz, therefore

||Um,1(X , t)−Um,2(X , t)||<

||U0||Lm
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )dξ

]m

. (28)

Applying limit

lim
m→∞

||Um,1(X , t)−Um,2(X , t)||<

lim
m→∞

||U0||Lm
[

1−n
B(n)

+
n

B(n)Γ(n)

∫ t

0
(t −ξ )dξ

]m

. (29)
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As L < 1, therefore

lim
m→∞

||Um,1 −Um,2|| → 0

this implies
Um,1 = Um,2.

5. SOLUTION BY LAPLACE TRANSFORM WITH
ATANGANA-BALEANU DERIVATIVE

The system in (15) is now solved by the application of Laplace
transform with the Atangana-Baleanu derivative approach as
explained in the flowchart in Figure 1. The system of PDEs is
re-expressed as

ABCDn
t (U) =−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (30)

and

ABCDn
t (V ) =−U

∂V
∂X

−V
∂V
∂Y

−R f

(
U2 ∂ 2V

∂X2 +V 2 ∂ 2V
∂Y 2 +2UV

∂ 2V
∂X∂Y

)
− ∂P

∂Y
+

1
Re

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
.

(31)

Here, n is the order of derivative in time t. Since we know that

L
{ABCDτ f (t)

}
=

M(τ)

1− τ
· pτL { f (t)}− pτ−1 f (0)

pτ +
τ

1− τ

(32)

Take the Laplace transform of both sides in the first equation
of (30)

L
{ABCDn

t (U)
}
= L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (33)

Using (32) in (33) =⇒

M(n)
1−n

· pnL {U(t)}− pn−1U(0)
pn + n

1−n
=

L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2

+2UV
∂ 2U

∂X∂Y
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (34)

=⇒

pnL {U(t)}− pn−1U(0)
pn + n

1−n
=

1−n
M(n)

L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (35)

=⇒

pnL {U(t)}− pn−1U(0) =(
pn +

n
1−n

)
1−n
M(n)

L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2

+V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

− ∂P
∂X

+
1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)}
,

(36)
=⇒

pnL {U(t)}= pn−1U(0)

+

(
(pn +n+npn)

M(n)

)
L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2

+2UV
∂ 2U

∂X∂Y
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)}
, (37)

This implies

L {U(t)}= U(0)
p

+

(
(1−n+np−n)

M(n)

)
L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)}
, (38)

or,

U(t) =U(0)+L −1

{(
(1−n+np−n)

M(n)

)
L

{
−U

∂U
∂X

−V
∂U
∂Y

−R f

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)}}
. (39)

VOLUME XX, 2024 5

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



Muhammad Sabeel Khan, Ayesha Sagheer, and Zarafshan Azeem

Fig. 1. Flowchart outlining the steps for solving a system of PDEs using the Laplace transform and iterative approach with the Atangana-Baleanu
fractional derivative.

In an iterative setting,

Um+1(t) =U(0)+L −1

{(
(1−n+np−n)

M(n)

)

L

{
−Um

∂Um

∂X
−Vm

∂Um

∂Y
−R f

(
U2

m
∂ 2Um

∂X2 +V 2
m

∂ 2Um

∂Y 2

+2UmVm
∂ 2Um

∂X∂Y
− ∂P

∂X
+

1
Re

(
∂ 2Um

∂X2 +
∂ 2Um

∂Y 2

)}}
. (40)

Now, to write the solution in Case 1, let m = 0 in (40), which
implies

U1(t) =U(0)+L −1
{(

(1−n+np−n)

M(n)

)
L

{
−U0

∂U0

∂X

−V0
∂U0

∂Y
−R f

(
U2

0
∂ 2U0

∂X2 +V 2
0

∂ 2U0

∂Y 2 +2U0V0
∂ 2U0

∂X∂Y

)
− ∂P

∂X
+

1
Re

(
∂ 2U0

∂X2 +
∂ 2U0

∂Y 2

)
. (41)

As 0 < n < 1 therefore M(n) = 1, further assume P to be con-
stant,then and after utilizing the initial conditions in (41) we
can write

U1(t) = eX +

(
eX

Re
− e2X −R f e3X

)(
(1−n+

ntn

n!
)

)
. (42)

Similarly, for m = 1 in (40) and after some simplifications, we

get

U2(t) = eX +

(
eX

Re
− e2X − e3X

)(
1−n+

ntn

n!

)
+

(
eX

R2
e
− 2e2X

Re
−

9R f e3X

Re
− e3X

Re
+4e4X +9R f e5X

+3e3X +4R f e4X
(

1−n+
ntn

n!

)2

−
(

e3X

R2
e
+ e5X +R2

f e7X

− 2e4X

Re
+2R f e6X −2

R f

Re
e5X

(
1−n+

ntn

n!

)3

−
(

e2X

R2
e
−3

e3X

Re
−4

R f

Re
e4X +2e4X +5R f e5X +3R2

f e6X
)

(
1−n+

ntn

n!

)3

−·· · , (43)

The solution of the system (15) is now obtained by U(t) =
U0 +U1 +U2 + · · · and thus reads

U(t) = 2eX +

(
2eX

Re
−2e2X − (R f +1)e3X

)(
1−n+

ntn

n!

)
+

(
1
Re

(
eX

Re
−2e2X −9R f e3X

)
− e3X

Re
+4e4X +9R f e5X

−3e3X −4R f e4X
(

1−n+
ntn

n!

)2

−
(

e3X

R2
e
+ e5X +R2

f e7X

− 2e4X

Re
+2R f e6X −2

R f

Re
e5X

(
1−n+

ntn

n!

)3

−
(

e2X

R2
e
−3

e3X

Re
−4

R f

Re
e4X

+2e4X +5R f e5X +3R2
f e6X

(
1−n+

ntn

n!

)3

−
(

e3X

R3
e

+9
e5X

Re
+19

R2
f

Re
e7X −6

e4X

R2
e
+28

R f

Re
e6X −22R2

f e8X −17R f e7X

−
11R f e5X

R2
e

−4e6X −9R3
f e9X

(
1−n+

ntn

n!

)4

. (44)
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Table 1. Effect of Reynolds number, relaxation time and order on U-
velocity

Re order U(0.5,1) U(1,1)

R f = 0 R f = 0.01 R f = 0 R f = 0.01

100 0.9 4.607270585 4.623948405 11.24992525 11.41133054
0.93 4.154751014 4.164093064 9.057627674 9.143094325
0.95 3.878614048 3.884093905 7.794226682 7.841368265
1.0 3.399961728 3.400544856 5.810255314 5.813794382

200 1.0 3.400134915 3.400718244 5.810553289 5.814093265
400 1.0 3.400221512 3.400804941 5.810702282 5.814242711
1000 1.0 3.400273471 3.400856960 5.810791679 5.814332381
2000 1.0 3.400290791 3.400874300 5.810821479 5.814362271

Similarly, the solution in Case 2 is expressed as

U =

(
6X +2

Re
−X2 −X3

)
Y +

(
1
Re

(
4R f −12X −24R f

)
−4X2 +7X3Re −X +4Y 2 +(13X2 +36R f X −12R f /Re)Y 3

+8R f /ReY 4 −4/Re2X , (45)

and

V =

(
1
Re

)((
4−4R f

)
X2 +R f (8X −12)X3 +

(
6X −12X2

−24R f X2+36R f X3Y −
(
4X2 −13X3 −8X4)Y 4+

(
7X2 +3X3

−32X4Y 3 +
(
4X2 −47X3)Y 4 −13X2Y 5. (46)

In Table 1, the effect of relaxation time and differential or-
der is observed on the velocity profile at two selected points
within the domain. It is observed that the velocity of the parti-
cles with the medium at the selected points is increased as the
fractional order derivative is decreased. A reduction of 93.6%
in the velocity is observed with a 10% increase in the fractional
order of the derivative. Moreover, it is found that in the pres-
ence of relaxation time, the velocities of the particles are higher
than in the case of without relaxation. The solution obtained
is predicting a natural characteristic of increasing velocities by
increasing the Reynolds number. Figure 2 plots the velocity
profiles over the domain in varying time with the variation of
the relaxation time factor. Reynold’s number in these compu-
tations is kept constant at Ra = 100. The relaxation time factor
is varied between R f = 0 and R f = 0.2. It can be seen from
these computations that when R f = 0 the maximum velocity
of the particles is close to 30. When R f = 0.1 the velocity
plateau gets increased and when R f is further increased to a
value of 0.2 the velocity gets a further increase in its value.
This indicates an increase in the velocity of the particles with
an increasing relaxation time factor. Physically, the relaxation
time factor represents the time required for the fluid particles
to adjust to changes in the flow. A higher relaxation time sug-
gests that the fluid has more time to respond to local stresses,
increasing particle velocity. This can be interpreted as a slower
adjustment to the shear forces, allowing the particles to attain
higher velocities over time.

In Figure 3 the U-velocities are plotted against time and the
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(c) R f = 0.15
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(d) R f = 0.2

Fig. 2. U-velocity in Case 1 with Ra = 100 and varying R f .

Fig. 3. U-velocity in Case 1 with Ra = 100, n = 0.05 and varying R f =
0,0.1,0.3,0.5

(a) n = 1.0 (b) n = 1.08

(c) n = 1.1

Fig. 4. U-velocity in Case 1, with Ra = 100, R f = 0.5 and varying n =
1.0.1.08 and 1.1

x-coordinate. The Reynolds number, similar to Figure 2, Ra
is kept constant at 100, and the order of the fractional deriva-
tive is kept constant at n = 0.05. The fluid time relaxation,
R f is varied from 0,0.1,0.3 and 0.5 and it is observed what
are the corresponding peak U-velocities. It can be seen that
when R f = 0 the peak U-velocity is U(X , t) = 7.5, and as the
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(a) n = 1.0 (b) n = 1.5

(c) n = 2.0

Fig. 5. Effect of order greater than one on the U-velocity in Case 1 with
Ra = 100, and R f = 0.5

(a) R f = 1 (b) R f = 1.7

(c) R f = 2

Fig. 6. U-velocity in Case 2, with Ra = 100, n = 0.7, and y = 0.15

value of R f is increased, velocities go from 8 to 9 to slightly
over 10. The general trend is that with higher R f the velocities
become higher too. Physically, the increase in velocity with
higher relaxation time indicates that the fluid takes longer to
respond to changes in the applied forces. A higher R f suggests
a greater time for the particles to adjust to the local stresses, al-
lowing the fluid to "relax" more before the velocity reaches its
maximum. This behavior is indicative of more pronounced vis-
coelastic effects, where the fluid has a greater ability to store
and release energy, increasing the peak velocity as the relax-
ation time factor grows. In Figure 4 the U-velocities are plotted

(a) n = 0.5 (b) n = 0.8

(c) n = 0.9

Fig. 7. U-velocity in Case 2, with Ra = 100, R f = 1.5, and y = 0.05

concerning time and the x-coordinate. The Reynolds number
Ra is kept constant at 100 and the fluid time relaxation is kept
constant at R f = 0.5. Then we make a change in the order of
the derivative to see what effect it has on the velocity. When
the order of the derivative is n = 1, the peak U-velocity is at
around U(X , t) = 5. As the order is increased to n = 1.08, the
peak U-velocity goes to U(X , t)= 6, and at n= 1.1, the highest
peak, at around U(X , t) = 10 is reached. The general trend that
can be seen is that with the increase of the order of the deriva-
tive, the velocities also increase. For comparison of results, the
reader is recommended to see [39]. Physically, this behaviour
suggests that as the order of the fractional derivative increases,
the system exhibits a greater degree of memory or history de-
pendence in its flow behaviour. A higher-order derivative typ-
ically means that the fluid has a more pronounced non-local
response to applied forces, where the velocity at any given
time is influenced by a broader range of past states. This can
lead to an increase in the peak velocities as the fluid exhibits
enhanced responsiveness over time, reflecting more complex
interactions between the particles and the flow. Figure 5 rep-
resents the effect of the fractional order of the derivative on
the velocity profiles within the domain of computation. Three
different orders of the derivative are taken into observation for
the velocity plots at a fixed Reynolds number. The relaxation
time factor in these calculations is fixed at a value of 0.5. It is
seen that fourth derivative of order one the velocity is linearly
distributed over the domain in x-direction in time, whereas a
nonlinear distribution is exhibited while the fractional order of
the differentiation is increased. Moreover, this nonlinear dis-
tribution becomes highly non-symmetric over the domain and
over time when the fractional order is taken to be two. As in
case 1, the second initial for V is the same as the one for U ,
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it results in the same final results for the V velocities as were
obtained for the U velocities.

In Figure 6, the U-velocity is plotted from case 2 against
time and the x-coordinate. The Reynolds number is kept con-
stant at 100, and the order of the fractional derivative is fixed at
0.7. The y-coordinate is also fixed at 0.15. The fluid time re-
laxation is varied to observe the effect it may have on the mag-
nitude of velocity, and it can be observed that when R f = 1,
the U-velocity crosses 6. A slight increase can be observed as
R f is changed to 1.3 and 1.7. As soon as R f becomes 2, our
peak velocity touches 10. This concludes that as the fluid time
relaxation is increased, the velocity increases.

In Figure 7, the Reynolds number is kept constant at 100,
the fluid relaxation is fixed at 1.5, and the y-coordinate is set
to 0.05. The order of the derivative is varied to observe its ef-
fect on the magnitudes of velocity. Graphs are plotted for the
U-velocities against the x-coordinate and time. It can be seen
that velocity is at its lowest when the order of the derivative is
lowest at 0.5, hitting a peak velocity at around 3. As the order
is increased to 0.6, the peak velocity surpasses 5. When it is
further increased to 0.8, the velocity crosses 20, and finally, it
hits a new high, surpassing 40, when the order is changed to
0.9. This concludes that as the order increases, so do the U-
velocities. Physically, this behavior can be explained by the
increasing effect of the fractional derivative on the fluid flow.
As the order of the derivative increases, the fluid’s memory ef-
fect becomes more pronounced, resulting in a higher sensitiv-
ity to past states and a greater response to the forces acting on
the fluid. This leads to an increase in the peak velocities. The
sharp rise in velocity as the order increases, especially between
0.8 and 0.9, suggests that the fluid exhibits more complex, non-
local interactions at higher derivative orders.

(a) n = 0.5 (b) n = 0.8

(c) n = 0.9

Fig. 8. V -velocity in Case 2, with Ra = 100, R f = 1.5, and x = 0.05

In Figure 8, the velocity V (Y, t) is shown for Case 2, where
the Reynolds number is fixed at Ra = 100, the fluid relaxation
time is set to R f = 1.5, and the x-coordinate is held constant
at x = 0.05. The plot captures the variation of the velocity

concerning the y-coordinate and time, providing insight into
how the velocity evolves under these conditions when the or-
der of the fractional derivative is increased from n = 0.5 to
n = 0.8, and finally to n = 0.9. The results reveal the dy-
namic behaviour of the system, highlighting the influence of
the specified parameters on the velocity profile. We can ob-
serve that when the order is minimal, the V-velocity is peaking
at 2. When the order is 0.8, velocity peaks around 20. And
finally, when the order is 0.9, the velocity is peaking around
40.

This approach offers several advantages over traditional
methods. By incorporating the Atangana-Baleanu fractional
derivative, it captures memory effects and non-local behaviour,
which are often present in complex physical systems but over-
looked in standard models. The use of Laplace transforms sim-
plifies solving partial differential equations, converting them
into algebraic equations in the frequency domain, which are
easier to handle. The iterative solution approach allows for a
more accurate and refined solution by progressively improving
the approximation, especially for systems with non-linearities
or complex boundary conditions. In general, this method pro-
vides a more flexible and accurate framework for solving PDE
systems in cases where classical approaches may fail.

6. CONCLUSIONS

In this work, the analytical solution of a viscoelastic fractional-
time relaxation model is obtained by combining the Laplacian
approach with a distinctive method based on the Atangana-
Baleanu fractional calculus. The upper convected Maxwell
constitutive relaxation equation serves as the foundation for the
fractional time relaxation model. The results on the existence
and uniqueness of the solution are established. For the under-
lying viscoelastic model of physical-time relaxation, analytical
representations of the solutions are found. The complex behav-
ior of a two-dimensional viscoelastic fluid is examined using
two test models specified with initial conditions. Examines and
explains how important parameters, such as Reynolds number,
relaxation time, and order of the fractional derivative, affect
the properties of fluid flow in the dynamics considered. The re-
sults show that as the relaxation time factor (R f ) increases, the
velocity of the particles also increases. Furthermore, a higher
order of the derivative leads to an overall increase in veloci-
ties, demonstrating the significant effect of both parameters on
flow dynamics. Moreover, it is observed that as the fractional
order of the differentiation increases, a non-linear distribution
is observed, while for a derivative of order one, the velocity is
linearly distributed over the domain in the x-direction in time.
Furthermore, when the fractional order is assumed to be two,
this nonlinear distribution becomes extremely non-symmetric
over the domain and over time.

This work demonstrates the powerful capability of frac-
tional calculus in modelling complex viscoelastic systems, of-
fering deeper insight into the dynamic behaviour of fluid flows
that classical methods may overlook. The incorporation of
fractional-time relaxation and Laplace transforms provides a
more robust framework for understanding the interplay be-
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tween physical parameters like Reynolds number and relax-
ation time. Moving forward, future research could explore the
extension of this model to three-dimensional systems or more
complex geometries, as well as the application of other frac-
tional operators to capture different types of memory effects.
Additionally, experimental validation of the model could be
pursued to further refine the theoretical predictions and im-
prove its applicability in real-world scenarios, particularly in
industrial and environmental fluid dynamics.

APPENDIX

To nondimensionalize the equations governing the two-
dimensional unsteady incompressible viscoelastic flow, we in-
troduce the following dimensionless variables.

U =
u
u0

, V =
v
u0

, T =
tL
u0

, X =
x
L
, Y =

y
L
, P=

p
ρu2

0
,

(47)
where u0 is the characteristic velocity, L is the characteristic
length, and ρ is the density.

Continuity Equation

The continuity equation in dimensional form is given as

∂u
∂x

+
∂v
∂y

= 0. (48)

To nondimensionalize this equation, we replace u, v, x and y
by their dimensionless counterparts such that

∂u
∂x

=
u0

L
∂U
∂X

,

and
∂v
∂y

=
u0

L
∂V
∂Y

.

Thus, the nondimensionalized continuity equation becomes

∂U
∂X

+
∂V
∂Y

= 0. (49)

X-Momentum Equation

The dimensional form of the x-momentum equation is given as

Dα
t (u)+u

∂u
∂x

+ v
∂u
∂y

+λ

(
u2 ∂ 2u

∂x2 + v2 ∂ 2u
∂y2

+2uv
∂ 2u

∂x∂y

)
=− 1

ρ

∂ p
∂x

+η

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
.

(50)

The following dimensionless variables are utilized.

u = u0U, v = u0V, x = LX , y = LY, t =
Tu0

L
.

The time derivative is nondimensionalized as follows.

Dα
t (u) =

u0

L
dα

dT α
U.

The spatial derivatives become

∂u
∂x

=
u0

L
∂U
∂X

,
∂u
∂y

=
u0

L
∂U
∂Y

, and
∂ 2u
∂x2 =

u0

L2
∂ 2U
∂X2 .

Similarly, we can express pressure p and its gradient as

∂ p
∂x

=
ρu2

0
L

∂P
∂X

.

Substituting all the above terms into the x-momentum equa-
tion, we get the following nondimensionalized form.

u0

L
dα

dT α
U +u0

(
u0U

∂U
∂X

+u0V
∂U
∂Y

)
+λu2

0

(
U2 ∂ 2U

∂X2 +V 2 ∂ 2U
∂Y 2 +2UV

∂ 2U
∂X∂Y

)
=− u0

ρL
ρu2

0
L

∂P
∂X

+η
u0

L2

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
.

(51)

Simplifying the nondimensionalized terms, the equation be-
comes

Y-Momentum Equation
The nondimensionalization process for the y-momentum equa-
tion follows similarly. Starting with the dimensional form

Dα
t (v)+u

∂v
∂x

+ v
∂v
∂y

+λ

(
u2 ∂ 2v

∂x2 + v2 ∂ 2v
∂y2 +2uv

∂ 2v
∂x∂y

)
=− 1

ρ

∂ p
∂y

+η

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
.

(52)

Following the same procedure as above, we substitute the di-
mensionless variables and obtain the nondimensionalized y-
momentum equation as
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