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Abstract.  In  the  paper  a  new,  fractional,  reduced,  multi  order  model  of  a  one  dimensional  heat  transfer  process  is  addressed.  The  proposed
model  is  the  generalization  of  state  space  models  using  single  fractional  order.  The  use  of  various  orders  for  each  mode  of  state  equation  allows
to  better  describe  a  behaviour  of  a  thermal  system.  In  addition,  the  analysis  of  controllability  and  observability  allows  to  reduce  the  dimension
of  the  model  without  loss  of  its  accuracy.  Such  a  model  has  not  been  proposed  yet.  Theoretical  considerations  are  validated  using  experimental
data  obtained  from  the  real  laboratory  system.  Results  of  analysis  supported  by  experiments  show  that  the  use  of  variouos  orders  together  with
eliminating  of  non  controllable  and  non  observable  modes  of  the  model  allows  to  obtain  the  accurate  and  relatively  low  order  model.
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1. INTRODUCTION

Non integer order or Fractional Order (FO) models of various
physical phenomena have been presented by many Authors
for years. Fundamental results can be found e.g. in books and
papers [1], [2], [3] (the heat transfer in an one dimensional
beam), [4] (u.a. fractional models of chaotic systems and
Ionic Polymer Metal Composites). FO models of diffusion
processes are proposed u.a. by [5, 6, 7]. Results using new
Atangana-Baleanu operator are collected in [8]. This paper
presents also the FO blood alcohol model, the Christov diffu-
sion equation and fractional advection-dispersion equation for
groundwater transport processes.

Recently FO models are employed among others to describe
a spread of diseases. This issue is considered e.g. in the papers
given by [9] (the modeling of the dynamics of COVID using
Caputo-Fabrizio operator), [10] (the modeling of a trans-
mission of Zika virus with the use of the Atangana-Baleanu
operator).

The "classic", single order state space FO models of the
one dimensional heat transfer have been proposed by author
in many papers, e.g. [11, 12, 13, 14, 15, 16, 17, 18]. These
models used different FO operators: Grünwald-Letnikov,
Caputo, Caputo-Fabrizio and Atangana-Baleanu as well as
discrete operators: Continuous Fraction Expansion (CFE) and
Fractional Order Backward Difference (FOBD). Each model
has been thoroughly theoretically justified and validated using
experimental results. In addition, each of them assures better
accuracy in the sense of square cost function than its IO
analogue.

The time-continuous, two-dimensional generalization of FO
models mentioned above is proposed in the papers [19, 20].

∗e-mail: kop@agh.edu.pl

All models mentioned above used single order approach,
i.e. the value of the fractional order is the same for all com-
ponents of the state equation. However the fractional calculus
proposes also an alternative, more general approach, called
"multi order". In such a system orders of all components
can be various. Of course, the analysis of such a system is
generally more difficult than single order. However in some
situations it allows to obtain more accurate models.

Theoretical background of multi order systems can be
found e.g. in the papers: [21, 22], [23], [24]. Initial problems
of multi order systems using Caputo operator are discussed
e.g. in the paper [25], the stability of this class of systems is
discussed e.g. in [26].

This paper proposes a new, multi order, fractional, state
space model of the one dimensional heat transfer process. The
heat transfer equation is expressed as an infinite dimensional
state equation. Next its finite dimensional, multi order approx-
imation is proposed and analyzed. The proposed model uses
a set of various fractional orders to describe a temperature
in single place. In addition, the omitting of uncontrollable
and unobservable modes allows to obtain an accurate and
low-order model. Such an approach has not been proposed yet.
Theoretical considerations are verified by experimental results.

The organization of the paper is following. Firstly ele-
mentary ideas and definitions from fractional calculus are
given and the construction of the experimental heat system is
recalled.

As the main results the new, multi fractional order state
space model is proposed and its basic properties: spectrum
decomposition, stability, controllability and observability are
discussed. The proposed conditions of controllability and
observability are applied to propose of the reduced model.

Furthermore orders of the model are numerically identified
using data from real experimental system and MSE cost func-
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tion. Finally the accuracy and numerical complexity of the
identified model are compared to the model using single frac-
tional order.

2. PRELIMINARIES

Theoretical background of the fractional calculus is presented
by many books, e.g. in the section "Fractional Systems:
Theoretical Foundations" of [27].

2.1. Basic Ideas
The non integer-order, integro-differential operator is defined
as follows (see e.g. [2], [28],[29], [27], [1]):

Definition 1 (The elementary non integer order operator)
The non integer-order integro-differential operator is defined
as follows:

aDα
t f (t) =


dα f (t)

dtα α > 0
f (t) α = 0
t∫

a
f (τ)(dτ)α α < 0

. (1)

where a and t are time limits for computing of the operator,
α ∈R denotes the non integer order of the operation. If α ∈Z,
then the operator (1) turns to classic integer order operator.

Next recall an idea of Gamma Euler function (see e.g. [29]):

Definition 2 (The Gamma function)

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

An idea of Mittag-Leffler function needs to be given next. It
is a non-integer order generalization of exponential function
eλ t and it plays crucial role in solution of fractional order state
equation. The one parameter Mittag-Leffler function is defined
as follows:

Definition 3 (The one parameter Mittag-Leffler function)

Eα(x) =
∞

∑
k=0

xk

Γ(kα +1)
. (3)

and the two parameter Mittag-Leffler function is defined as:

Definition 4 (The two parameters Mittag-Leffler function)

Eα,β (x) =
∞

∑
k=0

xk

Γ(kα +β )
. (4)

For β = 1 the two parameter function (4) turns to one parame-
ter function (3).

The fractional-order, integro-differential operator can be de-
scribed by definitions given by Grünwald and Letnikov, Rie-
mann and Liouville (RL) and Caputo (C). In this paper the C
definition is used ( see e.g. [2], [28],[29], [1]), [30]):

Definition 5 (The Caputo definition of the FO operator)

C
0 Dα

t f (t) =
1

Γ(M−α)

∞∫
0

f (M)(τ)

(t − τ)α+1−M dτ. (5)

where M−1 < α < M is the fractional order of operation and
Γ(..) is the Gamma function.

2.2. The Multi Order, SISO System
Next the linear, multi fractional order, Single Input, Single
Output (SISO) state equation needs to be given:{

0Dα
t x(t) = Ax(t)+Bu(t),

y(t) =Cx(t).
(6)

where x(t) ∈ RN is the state vector, u(t) ∈ is the control, α is
the following set of orders:

α = {α1, ...,αn}, α1 ̸= ... ̸= αn, n = 1, ...,N. (7)

With respect to (7) the equation (6) can be decomposed as fol-
lows:

Dα1x1(t) = A11x1(t)+A12x2(t)...+A1NxN(t)+B1u(t)
Dα2x2(t) = A21x1(t)+A22x2(t)...+A2NxN(t)+B2u(t)
...

DαnxN(t) = AN1x1(t)+AN2x2(t)...+ANNxN(t)+BNu(t)
(8)

where:

A =

A11 A12 ...A1N

....

AN1 AN2 ...ANN


N×N

, (9)

B = [B1 , ..., BN ]
T . (10)

In general, a solution of the state equation (6)-(10) is not a
trivial issue. The numerical method to do it is proposed e.g.
in [21], solutions for specific classes of systems are proposed
in [24], the representation of solution in the form of series in
given in [22].

In particular, a simple form of solution can be given for
diagonal form of the state matrix, i.e. Amn = [0] for m ̸= n.
This will be applied in this paper.

For infinite dimensional systems the A and B matrices ex-
pand to infinite dimensional, linear operators.

2.3. The Stability
The stability analysis for non-commensurate,multi order
systems is more complicated than for single order or commen-
surate systems. Results from this area are given e.g. by [31] or
[32]. In this paper the approach using the Mikhailov Theorem
proven in [32] and described by Theorems 3 and 4 will be
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employed. They are recalled beneath.

Theorem 1 The non-commensurate continuous-time system
(6) with fractional orders αn ∈R, n= 1, ...,N is asymptotically
stable iff the Mikhailov curve p( jω) of the system satisfies the
following two conditions:

p( jω) ̸= 0 ∀ω ∈ [0;∞)

∆Arg(p( jω)) |∞0 =
βnπ

2
,

(11)

where:

βn =
N

∑
n=1

αn, (12)

p( jω) = det(Dα( jω)−A) , (13)

Dα(s) = diag{sα1 sα2 , ...sαN }. (14)

Theorem 2 The non-commensurate continuous-time system
(6) with fractional orders αn ∈ R, n = 1, ...,N and the
Mikhailov curve p( jω) ̸= 0 ∀ω ∈ [0;∞) is unstable iff:

∆Arg(p( jω)) |∞0 ≤ βnπ

2
−π. (15)

where βn, p and Dα are described by (12), (13) and (14) re-
spectively.

The use of both theorems to the system with diagonal state op-
erator allows to obtain stability condition, presented in sequel.

3. THE EXPERIMENTAL HEATING SYSTEM AND ITS TIME-
CONTINUOUS, SINGLE ORDER FRACTIONAL MODEL

The experimental heat system is illustrated by Figure 1. Its
main part is the thin copper rod 260 mm long. To simplify its
length is assumed equal 1.0. Thanks to this, the location and
length of the heater and RTD-s is expressed relative to 1.0. The
rod is heated with use of the electric heater ∆xu long attached at
its end. The output signal from the system is the temperature.
It is measured using the miniature RTD-s of Pt100 type. The
length of each sensor is ∆x. Sensors are attached in points x j,1,
j = 1,2,3, 0.0 < x j.. < 1.0. The system is controlled by the
standard current from range 0-20 [mA] amplified to the range
0-1.5 [A] and sent to the heater. Signals from the RTDs are
read directly by analog input module of the PLC. Data from
PLC are collected by SCADA application. The whole system
is integrated with the use of PROFINET. The step responses
measured by all sensors are presented in the Figure 2.

The single fractional order model of this thermal system is
presented with details in the papers [11, 12]. In this paper, its
version with integer order along the length is used. It is as

Fig. 1. The experimental system.
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Fig. 2. The step responses from all sensors.

beneath:

CDα
t Q(x, t) = aw

∂ 2Q(x, t)
∂x2 −RaQ(x, t)+b(x)u(t)

∂Q(0, t)
dx

= 0, t ≥ 0
∂Q(1, t)

dx
= 0, t ≥ 0

Q(x,0) = Q0,0 ≤ x ≤ 1
y(t) = k0

∫ 1
0 Q(x, t)c(x)dx.

(16)

In (16) 0 < x < 1 is the length of the rod, aw > 0 is the
coefficient of the heat conduction along the rod, Ra > 0 is the
coefficient of the heat transfer from rod to environment.

The heat transfer equation (16) can be expressed as an infinte
dimensional state equation (see [11]):

CDα
t Q(t) = AQ(t)+Bu(t)

Q(0) = 0
y(t) = y0CQ(t).

(17)
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where:

AQ(x) = aw
∂ 2Q(x)

∂x2 −RaQ(x),

D(A) =
{

Q ∈ H2(0,1) :
∂Q(x)

∂x
|x=0 = 0,

∂Q(x)
∂x

|x=1 = 0
}
,

aw,Ra > 0,

H2(0,1) =
{

u ∈ L2(0,1) :
∂u
∂x

,
∂ 2u
∂x2 ∈ L2(0,1)

}
,

CQ(t) = ⟨c,Q(t)⟩,Bu(t) = bu(t),
Q(t) = [q1(t),q2(t)..]

T .
(18)

The orthonormal basis of the state space is built by the follow-
ing set of the eigenvectors of the state operator A:

hn =

{
0, n = 0√

2cos(nπx), n = 1,2, ...
. (19)

Eigenvalues of the state operator take the following form:

λn =−aw(nπ)2 −Ra, n = 0,1,2, ... (20)

and the state operator is as beneath:

A = diag{λ0,λ1,λ2, ...}. (21)

The input operator B is as follows:

B = [b0,b1,b2, ...]
T . (22)

Each element bn = ⟨b(x),hn⟩, where ⟨..⟩ is the inner product:

⟨b(x),hn⟩=
1∫

0

b(x)hn(x)dx. (23)

In (23) b(x) is the shaping function of the heater:

b(x) =

{
1,x ∈ [0,xu],

0,x ̸∈ [0,xu].
(24)

After taking into account (19), (23) and (24) each element bn
is equal:

bn =

{
∆xu, n = 0,√

2sin(nπ∆xu)
nπ

, n = 1,2, ...
(25)

The output operator C describes the size and location of RTD-
s. It is as beneath:

C =

 C1

C2

C3

 , (26)

Each row of output operator C takes the following form:

C j =
[
c j,0,c j,1,c j,2, ...

]
j = 1,2,3... (27)

where c j,n = ⟨c(x),hn⟩, ⟨..⟩ is the scalar product analogically
as (23), c(x) is the output sensor function:

c j(x) =


1,x ∈ [x j,1,x j,2],

0,x ̸∈ [x j,1,x j,2],

j = 1,2,3.
(28)

In (28) coordinates x j,1 and x j,2 describe the place of the sensor
attachment (x j,2 = x j,1 +∆x or equivalently: x j,1 = x−0.5∆x,

x j,2 = x+0.5∆x).

With respect to (19), (23) and (28) each element c jn is as
follows:

c j,n =


∆x, n = 0,√

2(sin(nπx j,2)−sin(nπx j,1))
nπ

,

n = 1,2, ... , j = 1,2,3.

(29)

The step response of the model read by the j-th sensor (16)-
(29) is as follows:

y j(t) = k0

∞

∑
n=0

(Eα(λntα)−1(t))
λn

bnc jn,

j = 1,2,3.
(30)

In (30) Eαl,h(..) is the one parameter Mittag-Leffler function,
k0 is the steady-state gain of the model, necessary to fit a
step response of model to experimental one, λn, bn and cn are
described by (20), (25) and (29) respectively.

The non integer order model (17) - (30) is infinite dimen-
sional. Its use to modeling requires us to apply its finite
dimensional approximant, obtained by truncation of further
modes in the state equation (17). The dimension of such a
finite dimensional model N is the minimum value assuring
its good accuracy in the sense of a slected cost function.
Simultaneously further increasing of N should no longer
improve of the cost function. Looking for suitable value of N
can be done numerically with the use of MATLAB. This has
been presented in [12]. The estimated value is equal N = 22.
For a finite dimensional model the operators: A, B and C are
interpreted as matrices.

Consequently the step response (30) turns to the finite sum:

y j(t) = k0

N

∑
n=0

(Eα(λntα)−1(t))
λn

bnc jn,

j = 1,2,3.

(31)

In (31) N is the dimension of the finite dimensional ap-
proximation of the model (17) - (30). It can be estimated
numerically (see [12]).

4. MAIN RESULTS

4.1. The Multi Fractional Order System

Consider the infinite-dimensional state equation (17) with the
state operator (21). It can be decomposed to single, separated
modes, as it was shown in [11].

Assume that the fractional order αn of the n-th decomposed
mode can be different from others:

α0 ̸= α1 ̸= ... ̸= αn..., n = 0,1,2, ... (32)

All orders belong to the following, infinite, countable set:

{α}= {α0,α1, ...,αn, ....} ⊂ (0.0;2.0), n = 0,1,2, .... (33)
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This yields the following form of the state equation (17):
CD{α}

t Q(t) = AQ(t)+Bu(t)
Q(0) = 0
y(t) = y0CQ(t).

(34)

Each n-th order from the set (33) is associated to n-th, scalar
mode of the decomposed system, described as beneath:

CDαn
t qn(t) = λnqn(t)+bnu(t), n = 0,1,2, ... (35)

The impulse response of the single mode (35) takes the follow-
ing form:

g jn(t) = bnc jntαn−1Eαn,αn(λntαn). (36)

And consequently the impulse response of the system at the
j-th output is as follows:

g j(t) =
∞

∑
n=0

gn(t),

j = 1,2,3.
(37)

For the control being the Heaviside function u(t) = 1(t) and
homogenous initial condition the step response of the single
mode is as follows:

y jn(t) = bnc jn
(Eαn(λntαn)−1(t))

λn
, (38)

and consequently the step response of the system (30) takes the
following form:

y j(t) = k0

∞

∑
n=0

y jn(t),

j = 1,2,3.
(39)

where k0 is the steady state gain allowing to fit the response of
the model to the experimental result.

The multi order system described by (32) - (39) is infinite
dimensional. Analogically as for single order system discussed
previously, possible to apply in practice is its finite dimensional
approximation. It is obtained by truncation of further modes of
inifnite dimensional system. Consequently the operators A, B
and C are interpreted as matrices and the set of orders (33)
reduces to the finite set:

{α}= {α0,α1, ...,αN}, n = 0,1,2, ..,N. (40)

and impulse and step responses take the form of finite sums:

g j(t) =
N

∑
n=0

gn(t),

j = 1,2,3.

(41)

y j(t) = k0

N

∑
n=0

y jn(t),

j = 1,2,3.

(42)

where gn(t) and yn(t) are expressed by (36) and (36) respec-
tively.

Each mode of response (36) or (38) is different from zero
iff suitable elements of control and observation operators bn
and c jn are non zero too. This is equivalent to the requirement
of the controllability and observability of particular mode and
is associated to the construction of the experimental system.
This is discussed with details in the next subsection.

Next, the knowledge about non controllable and non observ-
able modes of the system allows to construct a reduced model,
containing only controllable and observable modes. Such a
model will be as accurate, as full but its dimension will be
smaller. This is presented in sequel too.

4.2. The Controllability and the Observability of the Sys-
tem

The controllability and observability of the considered system
can be examined for each decomposed mode separately and
some modes can be controllable and observable and other can
be not. To describe such a situation ideas of partial controlla-
bility and observability are proposed. An idea of partial con-
trollability appears e. g. in [33], but here it is a little bit differ-
ent.

Definition 6 (The partial controllability).
Consider the decomposed system (34), (35). It is partially con-
trollable if there exist its non controllable modes, i.e. ∃ bn =
0, n = 0,1,2, ....

Definition 7 (The partial observability).
Consider the decomposed system (34), (35). It is partially ob-
servable if there exist its non observable modes, i.e. ∃ c jn =
0, j = 1,2,3, n = 0,1,2, ....

The controllability and observability are determined by
the construction of the real experimental system. The con-
trollability is determined by the length of the heater and the
observability is determined by the location and size of sensors.

The existence of non observable or non controllable modes
is described by the following propositions.

Proposition 1 (The non controllability of the n-th mode)
Consider the infinite dimensional, multi order system (34). As-
sume that the heater is 0.0 < ∆xu < 1.0. The n-th mode qn(t)
of the system is non controllable iff:

∆xu =
1
n
, n = 2,3, ...

∨

∆xu =
2
n
, n = 3,4, ..

(43)

Proof 1 To prove the condition (43) recall the form of n-th el-
ement of the control operator (25). From it we obtain that:
sin(nπ∆xu) = 0. For 0 < ∆xu < 1 this is equivalent to:

nπ∆xu = π, n = 1,2...
∨
nπ∆xu = 2π, n = 2,3, ..

(44)

Condition (44) yields directly (43) and the proof is completed.
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Next define the set of indices of non controllable modes:

Definition 8 (The set of indices of non controllable modes)
Consider the control operator of the system, expressed by (22)
and (25). The indices of non controllable modes meet the con-
dition (43):

Nnc = {nnc = 1,2, ... : bnnc = 0}. (45)

Analogically the non observability can be described.

Proposition 2 (The non observability of the jn-th mode)
Consider the infinite dimensional, multi order system (34). As-
sume that the sensor is 0.0 < ∆x < 1.0 long and attached in
the place 0.0 < x j,1 +∆x < 1.0. The jn-th mode q j,n(t) of the
system is non observable iff:

x j,1 =
1
n −∆x

2
, n = 1,2,3, ...

∨

x j,1 =
3
n −∆x

2
, n = 2,3, ...

(46)

Proof 2 The jn-th element (29) of the observation operator C
for n = 1,2, ... is as follows:

√
2
(
sin
(
nπx j,2

)
− sin(nπx j,1)

)
nπ

=

= 2

√
2

nπ
sin
(

∆x
2

)
cos
(

2x j,1 +∆x
2

)
.

(47)

The expression (47) is equal zero iff:

nπ(2x j,1 +∆x)
2

=
π

2
∨
nπ(2x j,1 +∆x)

2
=

3π

2

(48)

Computing x j,1 from (48) gives directly (46) and the proof is
completed.

The set of indices of non observable modes can be defined ana-
logically:

Definition 9 (The set of indices of non observable modes)
Consider the output operator of the system, expressed by (26),
(27) and (29). The indices of non controllable modes meet the
condition (46):

Nno = {nno = 1,2, ... : c jnno = 0}. (49)

For the inifinite dimensional model both sets of indices (45)
and (49) are infinite and countable sets.

Next, the system will be called fully controllable or fully
observable, if all its modes are controllable or observable.
This can be examined for infinite dimensional system or its
finite dimensional approximation.

The controllability and observability of the infinite di-
mensional system implies these properties for its finite
dimensional approximation, but the inverse implication is not

a true, because non controllable or non observable modes
can appear in the truncated part of the approximated, finite
dimensional system.

Proposition 3 (The full controllability of the multi order frac-
tional system)
Consider the infinite dimensional, multi order system (34). For
it the following sentences are equivalent:

• The system is fully controllable,
• all modes of the system are controllable,
• bn ̸= 0 ∀n = 1,2, ....,
• Nnc = /0.

Proposition 4 (The full observability of the multi order frac-
tional system)
Consider the infinite dimensional, multi order system (34). For
it the following sentences are equivalent:

• The system is fully observable,
• all modes of the system are observable,
• c jn ̸= 0, j = 1,2,3, ∀n = 1,2, ....,
• Nno = /0.

Next criteria of partial controllability and partial observability
can be proposed.

Proposition 5 (The partial controllability)
Consider the infinite dimensional, multi order system (34). It
is partially controllable iff:

Nnc ̸= /0 ⇐⇒ ∃bn = 0, n = 1,2, .... (50)

Proposition 6 (The partial controllability)
Consider the infinite dimensional, multi order system (34). It
is partially observable iff:

Nno ̸= /0 ⇐⇒ ∃c j,n = 0, j = 1,2,3, n = 1,2, .... (51)

Both propositions follow directly from above considerations.

The above analysis was run for infinite dimensional system.
Its finite dimensional approximation requires to deal with
finite number of modes and in general it is a little bit simplier.

The conditions (43), (46), (45) and (49) should be tested for
n ≤ N, where N is the size of finite dimensional model. For
such a situation it is also possible to estimate a suitable dimen-
sion of approximation assuring keeping its full controllability
or full observability for fixed parameters of heater and sensor.
It is described by the propositions given beneath.

Proposition 7 (The maximum size Nc of the finite dimensional
approximation assuring the full controllability of the model)
Consider the model of the system, being the finite dimensional
approximation of the model (34). Assume that the heater is
∆xu long.

The maximum size of the finite dimensional approximation
assuring its full controllability meets the following inequality:

Nc <
1

∆xu
. (52)
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Proof 3 To proove the condition (52) recall the condition of
non controllability (43). For finite amount of modes Nc it is as
beneath:

∆xu =
1
n
, n = 2,3, ..,Nc

∨

∆xu =
2
n
, n = 3,4, ..,Nc

⇐⇒

∆xu =
1

Nc
, ...,

1
2

∨

∆xu =
2

Nc
, ...,

2
3

(53)

From (53) it can be noted that the minimum "non controllable"
length of heater ∆xu is achieved for maximum size of model
Nc. This means that for ∆x smaller than this border value all
modes will be controllable. This is expressed as follows:

∆xu <
1

Nc
⇐⇒ Nc <

1
∆xu

. (54)

This completes the proof.

Analogical condition describes the maximum size of the ap-
proximated model from point of view of observability.

Proposition 8 (The maximum size No of the finite dimensional
approximation assuring the full observability of the model)
Consider the model of the system, being the finite dimensional
approximation of the model (34). Assume that the sensor
is equal ∆x long and it is attached in the place x j,1 where
∆x+ x j,1 < 1.0.

The maximum size of the finite dimensional approximation
assuring its full observability meets the following inequality:

No <
1

2x j,1 +∆x
. (55)

The proof is analogical as for condition (52) and it can be
omitted.

A quick analysis of the condition (55) shows that its keeping
can be difficult for a real system, because it requires to attach
small sensors closely to heater.

On the other hand, non controllable and non observable
modes of a system can be omitted in the impulse and step
responses. This allows to reduce the dimension of a model
without decreasing of its accuracy. Such a reduced model is
presented in the next subsection.

4.3. The Reduced, Finite Dimensional Model
The analysis of controllability and observability given in
the previous section shows that not all modes of the system
impact to its input-output behaviour. The non controllable
and non observable modes described by indices n ∈ Nnc and
n ∈ Nno respectively can be omitted during computation of
impulse and step responses of the finite dimensional model
(42) without loss of its accuracy.

To simplify the further considerations let us define the in-
dices of controllable and observable modes of the finite dimen-
sional model.

Definition 10 (The set of indices of controllable and observ-
able modes Nco)
Assume that the size of the finite dimensional model is equal
N. The set of indices of controllable and observable modes of
this model is defined as follows:

Nco = {n = 0, ...N : n /∈ Nnc, n /∈ Nno}= {0, ...,N}\Nnc \Nno.
(56)

Using the definition (56) the reduced step and impulse re-
sponses can be described as beneath.

g j(t) = ∑
n∈Nco

g jn(t),

j = 1,2,3.
(57)

y j(t) = k0 ∑
n∈Nco

y jn(t),

j = 1,2,3.
(58)

where g jn and y jn are expressed by (36) and (38) and Nco is
described by (56).

4.4. The Stability

At the beginning a sense of stability analysis for the considered
system should be shortly explained. The modeled physical
processes are heat conduction and dissipation. They are from
their nature stable. However, a numerical identification of
model parameters with the use of experimental data can lead
to obtain of "hidden" unstable parameters. They can assure
a good performance of model for single data set used to
identification, but of course such a model is useless in general.

The stability of the is described by the following Proposi-
tions. The first one describes the stability of the finite dimen-
sional model, the next one - the infinite dimensional.

Proposition 9 (The stability of the multi fractional order,
finite dimensional system with diagonal state matrix)
Consider the multi fractional order, finite dimensional system
of size N, being finite dimensional approximation of the system
described by (34) with operators expressed by (21) - (29) and
fractional orders described by (32) and (40).

The system is asymptotically stable for each order αn ∈
{α} ⊂ (0;2), n = 0,1, ...,N.

This proposition will be proven using Theorems (11) and (15).

Proof 4 The polynomial (13) with respect to (21) is as be-
neath:

p( jω) =
N

∏
n=0

pn( jω), (59)

where:

pn( jω) = (( jω)αn −λn) =(
ω

αn
(

cos
αnπ

2
+ jsin

αnπ

2

)
−λn

)
.

(60)
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The phase of p( jω) is equal:

φ(ω) =
N

∑
n=0

φn(ω), (61)

where:

φn(ω) = arctan

(
sin αnπ

2

cos αnπ

2 − λn
ωαn

)
, (62)

From (59) and (60) it turns out that the 1’st condition from
(11) is met.

The phase (61) for ω = 0 equals to zero. Its limit value for
ω → ∞ is a sum of limit values of all components (62). For
0.0 < αn < 2.0, n = 0,1, ...,N they are equal:

lim
ω→∞

φn(ω) =

= lim
ω→∞

arctan

(
sin αnπ

2

cos αnπ

2 − λn
ωαn

)
≈

≈ lim
ω→∞

arctan
(

sin αnπ

2
cos αnπ

2

)
=

=
αnπ

2
.

(63)

and consequently:

∆(Arg(p( jω))) =
π

2

N

∑
n=0

αn (64)

This means that the 2’nd condition in (11) is met for
0.0 < αn < 2.0.

Next consider αn ≥ 2.0, n = 0,1, ...,N. It can be expressed
as: αn = π +αnr, 0 < αnr < 1.0. This implies that

lim
ω→∞

φn(ω) =
αnrπ

2
<

αnπ

2
. (65)

This yields that the summarized increment of phase for all
modes is smaller than reqired to assure the stability and the
condition of unstability (15) is met. This completes the proof.

5. EXPERIMENTS AND SIMULATIONS

5.1. Parameters of the Real System
Experiments were done with the use of the system shown in
the Figure 1. The relative length of the heater is equal: ∆xu =
0.14, the sensors are ∆x = 0.06 long and they attached in the
following places:

x = 0.29 : x1,1 = 0.26, x1,2 = 0.32,
x = 0.50 : x2,1 = 0.47, x2,2 = 0.53,
x = 0.73 : x3,1 = 0.70, x3,2 = 0.76.

The coefficient of heat conduction aw and the coefficient
of heat exchange Ra are known (see [12]). They are equal:
aw = 0.000410, Ra = 0.0677066.

The analysis of the finite dimensional model will be done
for its two sizes: N = 8 and N = 20. This is helpful to compare
the proposed model vs model using single fractional order.

Table 1. The sets Nnc of the model

Nc N = 7 N = 20

7.1429 /0 {8,16}

Table 2. The sets Nno of the model

Sensor No Nno for N = 7 Nno for N = 20

1 1.56 /0 /0

2 1.00 {1,3,5,7} {1,3,5,7,9,11,13,15,17,19}
3 0.68 /0 /0

Table 3. The sets Nco for all sensors and N = 7, N = 20.

Sensor Nco for N = 7 Nco for N = 20

1 {n = 0 : 7} {n = 0 : 20}\{8,16}
2 {0,2,4,6} {0,2,4,6,10,12,14,18,20}
3 {n = 0 : 7} {n = 0 : 20}\{8,16}

5.2. Controllability and Observability
Firstly the controllability of the model for fixed location and
size of heater was examined. The "non controllable" lengths
of the heater are given by (43). They are as follows:

∆xu =
1
2
,

1
3
,

1
4
,

2
3
, ...

For the length of the sensor ∆xu = 0.14 the maximum size of
model assuring its full controllability can be computed using
(52). It equals to:

Nc <
1

0.14
= 7.1429

. This yields the order Nc ≤ 7. The sets Nnc for N = 7 and
N = 20 are given in the table 1.

Next the observability needs to be analyzed. This should
done for each sensor separately using the conditions (55) and
(46). Results are completed in the table 2.

The 1’st conclusion from the table 2 is that the condition
of observability (49) for the considered location and size of
sensors is impossible to meet in reality. Next, for sensors 1
and 3 the system is fully observable for both tested orders, but
for sensor 2 there are non observable modes for both tested
sizes of the model N.

Finally, the set (56) of the system for both tested dimensions
N and all sensors can be constructed. It is presented in the
table 3.

The profit from reduction of the order is illustrated by
the table 4 describing the amount of modes of model for
each sensor and both considered dimensions N. It can be
interpreted as the real order of the proposed model and it will
be denoted by Nr.
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Table 4. The amount of modes of model necessary to compute the
reduced step response (58) (the real order Nr) for all sensors and N = 7,
N = 20.

Sensor N = 8 N = 20

1 8 18

2 4 8

3 8 18

Table 5. The orders α for all sensors and N = 8.

j α MSE j

1 {0.9916,0.7823,0.6958,0.9865,
0.6772,1.1430,0.7787,1.3753} 0.0314

2 {0.9064,0.8950,0.7594,0.2825} 0.0130

3 {0.9730,0.9556,0.9426,0.9170,
0.9276,0.9049,0.9962,0.6950} 0.0316

The cost function (67) 0.0253

The sets Nco shown in the table 3 are applied to construct
of the reduced models with respect to (58). The orders
identification and accuracy of this model are presented in the
next subsection.

5.3. Identification of Orders αn and Accuracy

The accuracy of the model can be estimated with the use of
typical Mean Square Error (MSE) cost function. For single
j-th sensor it is as beneath:

MSE j =
1
K

K

∑
k=1

(y j(kh)− y je(kh))2 , (66)

and its mean value for all sensors is following:

3

∑
j=1

MSE j

3
. (67)

where k = 1, ...,K are the time instants, h is the sample time,
y je(kh) and y j(kh) are the step responses of plant and model
(31), measured and computed at the same time grid. During
experiments the number of samples was equal: K = 300 and
sample time was equal h = 1s.

The cost function (66) is identical as applied in [12]. This
allows to compare the proposed, multi order, reduced model
to the model using the single order.

The identification of orders was done via minimization of
the cost function (66) with the use of the MATLAB function
fminsearch for each sensor separately. Results are presented
in the tables 5 and 6 and illustrated by the figures 3 and 4.

Furthermore the stability condition was examined. To do
it the impulse responses for all sensors and orders given in
the Table 5 were computed using (57). They are shown in the

Table 6. The orders α for all sensors and N = 20.

j α MSE j

1 {0.9092,0.9400,0.9271,0.8831,0.9882,
0.9272,0.9221,0.9173,0.8929,0.9602,

0.9855,0.8959,0.8234,0.0457,
0.9534,0.8383,0.8536,0.7841} 0.0114

2 {0.9094,0.90120.8863,0.8723,
1.0552,1.1264,1.3524,1.2985,} 0.0136

3 {0.9199,0.9613,1.2834,1.1333,1.0599
,0.8525,0.7347,0.6018,0.4752,0.8341,

1.0758,0.4358,0.6494,1.4482
0.8098,1.0222,1.2556,0.7470} 0.0066

The cost function (67) 0.0105

Table 7. The cost function (67) for single order model [12] and multi
order reduced model.

Model N = 8 N = 20

single order 0.1434 0.0504

multi order reduced 0.0253 0.0105

Nr for sensors 1,3 8 18
Nr for sensor 2 4 10

figure 5.

Next, the order of the 3’rd mode was changed to: α3 =
2.3707. The set of impulse responses for this situation is illus-
trated by the Figure 6. It is important to note that the response
of the 2’nd sensor is stable, because the unstable mode is not
observable (see Table 2).

Finally the proposed, multi order, reduced model should be
compared to single order model discussed in [12], Table I. The
values of the cost function (67) for both models are presented
in the table 7.

The table 7 shows that the proposed, multi order model is
more accurate in the sense of the MSE cost function than the
single order model. This good accuracy is achieved for rela-
tively low order of model, additionally decreased by omitting
of non controllable and non observable modes in the step re-
sponse.

6. FINAL CONCLUSIONS

The main conclusion from the paper is that the proposed
model using various orders allows to more accurately describe
a fractional behaviour of high order system. This is confirmed
by results presented in other papers. For example in the paper
[34] the fractional order transfer function using two orders
more accurately describes real temperature than simplier one,
employing only one fractional order.

Next, the analysis of the controllability and observability of
the model allows to reduction of the dimension of the model
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Fig. 3. The comparison of the step responses model vs experiment for
N = 8. Sensor 1 - top, sensor 2 - middle, sensor 3 - bottom.

without loss of its accuracy. This is particularly important
during implementation of thermal models at bounded digital
platforms.

The main disadvantage of the proposed model is the need to
identify its many orders. Definitely, the use of the MATLAB
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Fig. 4. The comparison of the step responses model vs experiment for
N = 20. Sensor 1 - top, sensor 2 - middle, sensor 3 - bottom.

function fminsearch is not the best solution.

The area of further investigation covers among others a
proposition of an effective identification algorithm of orders.
Here a biologically inspired approach appears to be promiss-
ing.
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Fig. 5. The impulse responses of the stable model.

Next, the considered model should be proposed also in the
discrete version, ready for digital implementation.

REFERENCES

[1] I. Podlubny, Fractional Differential Equations. San
Diego: Academic Press, 1999.

[2] S. Das, Functional Fractional Calculus for System Iden-
tification and Controls. Berlin: Springer, 2010.
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[19] K. Oprzędkiewicz, W. Mitkowski, and M. Rosol, “Frac-
tional order model of the two dimensional heat transfer
process.” Energies, vol. 14, no. 19, pp. 1–17, 2021.
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