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Abstract. Quantum computers with hundreds of noisy qubits are already available for the research community. They have the potential to run
complex quantum computations well beyond the computational capacity of any classical device. It is natural to ask the question, what applica-
tion these devices could be useful for? Land Use and Land Cover classification of multispectral Earth observation data collected from the earth
observation satellite mission is one such problem that is hard for classical methods due to its unique characteristics. In this work, we compare
the performance of several classical machine learning algorithms on the stilted re-labeled dataset of the Copernicus Sentinel-2 mission, when
the algorithm has access to Projected Quantum Kernel (PQK) features. We show that the classification accuracy increases drastically when the
model has access to PQK features. We then naively study the performance of these algorithms with and without access to PQK features on
the original Copernicus Sentinel-2 mission data set. This study provides key evidence that shows the potential of quantum machine learning
methods for Earth Observation data.
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1. INTRODUCTION

Quantum computers with more than 1000 noisy qubits are
available to researchers; they will be able to run complex quan-
tum calculations that are well beyond the computational ca-
pacity of any classical device. The computational power of
these devices is expected to increase in the coming years as the
noise in these devices is addressed with error-correcting codes
and producers increase the number of physical qubits avail-
able. With such powerful devices at hand, it is natural to look
for problems that are generally difficult for classical machines
to solve and find algorithms to run on the new device. Earth
observation (EO) is one such problem that is difficult due to its
unique characteristics. It would be a futuristic step to develop
algorithms that can run on these new devices and understand
their limitation concerning Earth observation.

Earth observation and specifically Land Use and Land Cover
classification (LULC) is an important task for achieving Sus-
tainable Development Goals (SDGs) [1]. Extracting knowl-
edge from continuous multispectral and hyperspectral data
quickly and effectively on-Earth objects and land covers, map-
ping them, and monitoring their changes on digital twins [2] is
the need of the hour. The amount of remote sensing data that
is being continuously captured by Earth observation satellites
with onboard multispectral, hyperspectral, and radar sensors is
in excess of 150 terabytes per day, which is not always pro-
cessed efficiently [3]. The amount of data generated by EO
missions fall in the category of Big Data. The massive amount
of data comes with the so-called four challenges of Big Data
referred to as “four Vs”: Volume, Variety, Velocity, and Ve-
racity [4, 5]. Extracting meaningful information from such a
huge volume of data efficiently requires special tools and meth-
ods. Although Machine Learning (ML) algorithms have shown
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great potential in terms of obtaining a detailed understanding
of Earth observation data [6, 7, 8, 9]. The amount of training
data and available computational power limits the performance
of these ML techniques. With the availability of a quantum
computer with a promise to solve complex problems more ef-
ficiently than any available classical machine, it has become
necessary to explore new quantum computing methods for un-
derstanding multispectral Earth observation data. There has
been some progress in this area, where researchers have used
some combination of classical and quantum parts for Remote
Sensing data classification [10, 11, 12, 13, 14, 15, 16, 17, 18].
While aforementioned works focus mostly on solving machine
learning tasks directly we extend the idea presented in [19] and
study if there is a possibility of quantum advantage for Earth
observation data processing. Our goal is more abstract and has
no direct application in practice. We show that there exists sce-
narios where use of quantum classifiers significantly improve
the results.

A large-scale, fully error-corrected quantum computer will
not be built for many decades. Nevertheless, the recent ad-
vancement in their implementation allows us to study their ap-
plication to real-life computational problems [20]. Quantum
computers consisting of hundreds of noisy qubits are already
available and can run specific quantum algorithms. One class
of such algorithms uses quantum models to generate corre-
lations between variables that are inefficient to represent us-
ing classical models of computation. Recent theoretical and
experimental evidence suggests that quantum computers can
efficiently sample probability distributions that are exponen-
tially hard to sample classically [21, 22]. This is the type of
advantage that is exploited by both quantum neural network
(QNN) [23] and quantum kernel methods [24]. QNN parame-
terizes a distribution using a set of adjustable parameters, and
the quantum kernel method encodes classical data into a quan-
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tum state as a feature map which maps the data in higher-
dimensional quantum Hilbert space and uses a quantum com-
puter to compute the inner products of quantum states [25].

It is postulated that quantum machine learning algorithms
can outperform their classical counterparts, and the justifica-
tion that is generally provided for this is that if the quantum
circuit is hard to sample classically, then there is a potential for
quantum advantage. Huang et al.[26] showed this argument
to be incomplete and proved that with a sufficient amount of
training data, classical models can be elevated to rival quan-
tum models, even when the quantum circuit is hard to sample
classically. They also proposed a “geometric difference” be-
tween kernel functions defined by classical and quantum ma-
chine learning models and showed that if the geometric dif-
ference is small, then the classical machine learning model is
guaranteed to provide similar or better performance in predic-
tion on the data set. If the geometric distance is large, then a
data set exists where the quantum model exhibits a large pre-
diction advantage. They also found that due to small geomet-
ric differences, a variety of common quantum models in the
literature perform similarly or worse than the classical model.
To circumvent it, they proposed the projected quantum kernel
(PQK) method that generally enlarges the geometric difference
between the kernels.

The mapping of land on Earth is categorized into land use
(LU) classification and land cover (LC) classification. Al-
though the two terms are used interchangeably they are dif-
ferent. According to the Food and Agriculture Organization
(FAO) of the United Nations, “Land cover is the observed
(bio)physical cover on the Earth’s surface”, while “The ar-
rangements characterize land use, activities, and inputs by
people to produce, change, or maintain a certain land cover
type” [27]. In simple terms, land cover is what covers the sur-
face of the Earth, e.g. classes: water, snow, grassland, decidu-
ous forest, and bare soil and land use describe how the land is
used, e.g. classes: wildlife management area, agricultural land,
urban, and recreation areas. The two terms, land use and land
cover are tightly coupled, and they are jointly classified, hence
“land use and land cover” (LULC) classification is considered
a more general concept.

Remote sensing missions capture the imagery using optical,
thermal, or Synthetic Aperture Radar (SAR) imaging systems.
The optical sensor is sensitive to a spectrum range from visi-
ble to mid-infrared radiation from Earth’s surface and captures
Panchromatic, multispectral, or hyperspectral images. Com-
monly, images with more 2 to 13 spectral bands per pixel are
called multispectral, while the images with hundreds of spec-
tral bands are called hyperspectral.

The LULC classification problem is mathematically defined
as an assignment f : X → Y from the set of spectral images
to the set of pixel class arrays. The input space X ⊆ RW×H×B

represents the set of possible images with W,H,B being re-
spectively the image width, height, and the number of spectral
bands. The output space for pixel-level land cover classifica-
tion is represented as Y ⊆ CW×H , where C = {0,1, . . . ,N} ⊆
Z0+ is the set of LULC categories. A variety of approaches
is used to perform the Land Use and Land Cover classification

task. The approach that is used depends on the resolution of
the image being processed, the exact task to be performed, and
the available resources [28].

For this work, we use the Sentinel-2 data, which contains
multispectral data with pixels of 10m resolution. For such a
dataset, a common task is to perform semantic segmentation,
where labels are assigned to every pixel [29] individually. The
traditional Machine Learning (ML) techniques that are used
for this task are support vector machines, decision trees, and
perceptron-like neural networks. Semantic segmentation is of-
ten a two-step process. In the first step, pixel-by-pixel clas-
sification is performed where only the spectral information is
used. In the second step, the labels are smoothed out by em-
ploying a probabilistic graphical model such as e.g. Markov
random field or conditional random field. Occasionally, spa-
tial and spectral information are used jointly in the semantic
segmentation task [30]. In this work, we focus solely on spec-
tral information classification, and we deliberately ignore the
spatial relationship between pixels.

In this work, we are particulary interested in answering the
question whether quantum machine learning [31, 32] is suit-
able for the classification of multispectral data such as, for ex-
ample, data gathered by the Earth observation satellites. The
specific goal is to study a Quantum Machine Learning sys-
tem for Land Use and Land Cover classification of the Earth’s
surface is based on Sentinel-2 images. We find evidence that
shows that there exists a data set where classical model test
accuracy increases drastically when the model has access to
Projected Quantum Kernel features. It is a follow-up to the
previous work on multispectral image classification with QNN,
where one of the authors of this work showed that the QNN-
based classifier achieved a score of 66% in multi-class classi-
fication scenario [10] and extension of the work [19]. In the
next section, we will start by providing a brief overview of
key concepts used in this work, such as quantum kernel meth-
ods, geometric distance, and projected quantum kernel (PQK)
method. We then describe the experiment, discuss the result,
and conclude.

2. METHODOLOGY

2.1. Quantum kernel methods

In machine learning, kernel function k :RB×RB →R0+ can be
understood as a measure of similarity — a generalized scalar
product — between given feature vectors xi ∈RB and x j ∈RB.
Given a set of feature vectors {x1,x2, . . . ,xNsamples} and a kernel

function k we can calculate a kernel matrix [Ki, j]
Nsamples,Nsamples
i=1, j=1

with elements Ki, j = k (xi,x j) that stores similarity between all
Nsamples feature vectors. Matrix K is positive semi-definite.
And therefore we can calculate the geometric difference be-
tween two Kernel matrices K1, K2 associated with two kernel
functions k1, k2. The geometric difference is defined over a
dataset as

g
(
K1||K2)=√∥∥∥√K1 (K2)−1

√
K1
∥∥∥

∞

, (1)
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where ∥·∥
∞

is the spectral norm of the resulting matrix. We as-
sume that Tr

{
(K1)

}
= Tr

{
(K2)

}
= Nsamples [33]. To evaluate

a potential for quantum advantage, we must calculate the geo-
metric difference between quantum kernel and classical kernel.
It is a crucial test for comparing classical and quantum ma-
chine learning models. The geometric difference for a quan-
tum kernel is defined with respect to the closest efficient clas-
sical model. If the geometric distance is small, then the classi-
cal machine learning model is guaranteed to provide similar or
better performance in prediction on the data set, independent
of the function values or labels. If the geometric distance is
large, then a data set exists where the quantum machine learn-
ing model exhibits a large prediction advantage. These notions
provide an important test for finding potentially useful quan-
tum machine learning models.

A number of quantum machine learning models found in lit-
erature can be shown to perform similarly or worse than classi-
cal machine learning models due to their small geometric dif-
ferences. The small geometric difference is often due to the
fact that encoded features are too far apart because of the ex-
ponentially large Hilbert space employed by existing quantum
models. To solve this problem, the projected quantum kernel
method that circumvents this issue and enlarges the geometric
difference was proposed in [33].

Reading the information out of the quantum computer re-
quires performing a quantum measurement what requires the
entire quantum circuit has to be executed on the quantum com-
puter. Because of this fact calculating the value of a quantum
kernel function between feature vectors requires multiple exe-
cutions of the quantum circuit implementing said function. It
was recently observed that in many cases one can need an ex-
ponentially growing, in function of number of qubits, number
of measurements [34, 35] needed in order to be able to estimate
the value of a kernel function. This makes the application of
quantum kernel futile in such a case since any possible quan-
tum advantage is lost. Fortunately, in our case, we use the PQK
kernel with relatively shallow linear entanglement generating
circuit — it was shown in [35] that this particular kind of ker-
nel does not exhibit concentration properties and therefore, in
principle, could provide quantum advantage.

2.2. Projected quantum kernel

Projected quantum kernels (PQK) are a family of kernels that
work by projecting the quantum states to an approximate clas-
sical representation, for example, reducing physical observ-
ables or classical shadows [33] and then defining the kernel
function using the classical representation. The modified quan-
tum kernel is referred to as the projected quantum kernel. The
PQK method was first introduced by Huang et al. in [26]. The
projection reduces the large training set dimension to a smaller
classical space that generalizes better. The projected quantum
kernel is defined on the classical feature space to evade the dif-
ficulty in learning due to the exponential dimension in quan-
tum Hilbert space. Projecting an exponentially large Hilbert
space using a projected quantum kernel is a difficult task on
a classical computer. One of the simplest examples of a pro-

jected quantum kernel is to measure the one-particle reduced
density matrix (1-RDM) on all qubits for the encoded state,
ρk(xi) = Tr j ̸=k [ρ (xi)], and then define the kernel as

kPQ (xi,x j) = exp

(
−γ

PQ
∑
k

∥∥ρk (xi)−ρk (x j)
∥∥2

F

)
, (2)

where γPQ is a real positive hyperparameter. The partial trace
Tr j ̸=k over qubits labelled by j can be defined as follows

Tr j ̸=k [ρ (xi)] = ∑
j∈{0,1}k−1

∑
j′∈{0,1}D−k+1

Tr
[
(Pj ⊗1⊗P′

j′)ρ (xi)
]
,

where Pj = | j⟩⟨ j|.

2.3. Computing PQK features

To compute the PQK features for a given data instance xi, we
encode this data instance into the quantum state

|ψi⟩=V (xi/ntrotter)
ntrotterUqb |0⟩ , (3)

where Uqb =
⊗N

j=1 Rx(φ
j

1 )Ry(φ
j

2 )Rz(φ
j

3 ) is the tensor product
of Pauli rotations operators, Rx(φ) = e−iXφ/2, angles are ran-
domly selected once as φ ∼U(−2π,2π) and remain equal for
all data points. The integer ntrotter is a hyperparameter — the
number approximation steps for approximating time evolution
[36, 37], we set arbitrarily ntrotter = 10 in our experiments. The
unitary V (θ̂) is defined as

V (θ̂) = exp

(
−i

N

∑
j=1

∑
l∈{X ,Y,Z}

θ̂ jσ
l
jσ

l
j+1

)
, (4)

where σ l
j acts on j-th qubit and N is number of qubits. We

compute the PQK features based on the 1-RDM by measuring
the expectation values of ⟨ψi|σ l

j |ψi⟩, where i indexes over data
points, j indexes over qubits and l indexes over Pauli operators
{X ,Y,Z}. Mathematically it can be represented as fPQK :Rd →
R3(d+1) where fPQK(xi) = [⟨ψi|σ l

j |ψi⟩] j∈{1,2,...,d+1},l∈{X ,Y,Z}
and d = N −1 is the number of features.

2.4. Preparing Stilted Dataset

To achieve maximum separation between quantum and classi-
cal models, we artificially re-label the dataset using the spectral
information found in the classical and PQK kernel matrices. To
achieve that, we will perform the following three steps.

We first train the Radial Basis Function (RBF) kernel sup-
port vector machine using the “scikit-learn” library [38] and
“scikit-optimize” library to obtain the best gamma γRBF

best using
the original dataset — original feature vectors and labels.

Next, we compute the kernel matrix for the best classical
model using found γRBF

best and the original feature vectors. We
also compute the quantum kernel matrix using feature vectors
transformed by fPQK, and γPQ = 1.

Finally, we construct the new stilted dataset that will yield
the largest separation between quantum and classical models
from a learning-theoretic sense by assigning new labels. The
new labels yyyrelabel are obtained from vector v′ =

√
KQv, where

v is the eigenvector of
√

KQ
(
KC
)−1√KQ corresponding to
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the eigenvalue of g2 =
∥∥∥√KQ

(
KC
)−1√KQ

∥∥∥
∞

, by assigning
yyyrelabel,i = 1v′i>median({v′i}i)

and changing 5% labels randomly.
This relabeling of the data maximizes the separation be-

tween the quantum and classical models by maximizing the ge-
ometric distance between the classical kernel and the PQK ker-
nel. For a detailed description, we refer to Appendix G: “Con-
structing dataset to separate quantum and classical model”
of [26]. The geometric distance [26] between the kernel of
classical and quantum models is defined as

g
(
KC||KQ)=√∥∥∥√KQ (KC)

−1
√

KQ
∥∥∥

∞

(5)

where KC and KQ are kernel matrices for the classical and
quantum models respectively.

2.5. Classifiers
The Support Vector Machine (SVM) with the Radial Basis
Function (RBF) kernel was used in our classification experi-
ments as a high-performance method with efficient, stable im-
plementation [38]. The classifier was also used to prepare the
stilted dataset in Section 2.4 and is a standard reference classi-
fier for hyperspectral and multispectral classification [39]. As
a reference, we also used three well-known classifiers com-
bining high performance with explainable decision-making: a
k−Nearest Neighbors (k−NN), a Decision Tree (DT), and a
Naive Bayes (NB).

3. EXPERIMENTS

In this study, we use Copernicus Sentinel-2 Earth Observation
land cover multispectral image data. Sentinel-2 is a European
wide-swath, high-resolution, multispectral imaging mission. It
comprises a constellation of two polar-orbiting satellites that
aim to capture land cover changes monitoring and natural dis-
aster management. It carries an onboard MultiSpectral Imager
(MSI) sensor that samples 13 spectral bands: four bands at 10
m, six bands at 20 m, and three bands at 60 m spatial reso-
lution. The orbital swath width is 290 km [40]. The dataset
used in the experiments, presented in Fig 1, is a multispectral
cube CCC ∈ R512×512×12 of measured reflectance values. Multi-
spectral pixels are categorized into sixteen land use (LU) cate-
gories [10, 41]. For this work, we use only four land use cate-
gories: “Artificial surfaces and constructions”, “Cultivated ar-
eas”, “Broadleaf tree cover” and “Herbaceous vegetation” and
perform a binary classification task on pairs classes selected
out of the combinations of four classes.

The experiments aim to evaluate the impact of PQK fea-
ture extraction on multispectral classification accuracy. To
achieve this, we compare classifier performance (SVM, k-NN,
DT, NB) using PQK feature vectors with performance using
PCA-reduced spectral vectors (original data prior to PQK ex-
traction). Additionally, a baseline, naive comparison is con-
ducted using the original Sentinel-2 dataset, evaluating clas-
sifier performance with both PQK and PCA-reduced spectral
vectors using original class labels. Each experimental setup
involves three main steps: binary dataset preparation, stilted
dataset generation, and classification.

62
73
82
102

Fig. 1. RGB and GT visualization of the dataset used in experiments
with four classes: “Artificial surfaces and constructions” (62), “Culti-
vated areas” (73), “Broadleaf tree cover” (82), “Herbaceous vegetation”
(102). Note that the stilted datasets generated, as explained in Sec-
tion 2.4, have different sets of labels.

3.1. Binary datasets preparation

The experiments utilize binary (two-class) datasets generated
by selecting subsets of labeled multispectral pixels from a mul-
tispectral image. Labels are created from all combinations
of four Land Use (LU) classes, resulting in six class pairs.
To manage memory requirements associated with computing
PQK features, we randomly select a subset of 1000 labeled pix-
els for each class and reassign class labels to 0 and 1. These re-
duced datasets are employed in subsequent experiments. This
sampling procedure is repeated Nrepetitions = 10 times to create
multiple instances of the training dataset T c

i where c denotes
a pair of classes and i ∈ {0,1, . . . ,Nrepetitions − 1} denotes an
instance of the experiment.
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3.2. Stilted dataset preparation
A binary dataset T = (XXX ,yyy), where XXX ∈Rl×m denotes an array
of pixels with multispectral features, and yyy denotes the vector
of class labels. The aim of this step is to engineer a stilted
dataset Tstilted = (XXXpqk,yyyrelabel) where XXXpqk denotes an array
of PQK features and yyyrelabel denotes a vector of new labels, re-
sulting from the relabeling of class labels such as to maximize
the geometric distance between classical and quantum models.
The procedures are described in Section 2.2, Section 2.3 and
Section 2.4 and can be summarized in the following steps:

1. Train/test split: Binary dataset T = (XXX ,yyy) is split into train
set Ttrain = (XXX train,yyytrain) and test set Ttest = (XXX test,yyytest).

2. Standardization (calculating z-score): Arrays XXX train,XXX test are
standardized into XXX standarised

train ,XXX standarised
test .

3. PCA (dimension reduction): Arrays XXX standarised
train ,XXX standarised

test
are reduced to 4 features XXX reduced

train ,XXX reduced
test . We use only

XXX reduced
train to fit the PCA model.

4. SVM kernel optimization: Grid-search is performed on
(XXX reduced

train ,yyytrain) to find the best value of the parameter γ .
5. PQK features extraction: PQK procedure as described in

Section 2.3 is used on the arrays XXX reduced
train ,XXX reduced

test to com-
pute XXXpkq

train,XXX
pkq
test .

6. Stilted dataset creation: The training set XXX reduced
train ,XXX reduced

test ,
PQK features XXXpkq

train,XXX
pkq
test , and best gamma value γ are used

to assign new labels yyyrelabel as described in Section 2.4.

3.3. Classification experiment
To compare the classification accuracy of classifiers (SVM,
k−NN, DT, NB) over the original and the stilted datasets, we
use a standard two-stage cross-validation experiment. For ev-
ery binary dataset T = (XXX ,yyy), its labelled examples are di-
vided into training sets T k

train = (XXXk
train, yyyk

train) and test sets
T k

test = (XXXk
test, yyyk

test) using k-fold stratified cross-validation with
a number of folds k = 5. For every fold, the following steps are
performed:

1. Standardization: Training and tests are standardized using
mean and standard deviation computed on the training set.

2. Parameter selection: Classifier parameters are selected using
grid-search and internal stratified 3-fold cross-validation on
the training set.

3. Classifier testing: The accuracy of the classifier that is
trained on the training set is computed using a test set.

The final accuracy of a classification experiment is computed
by averaging accuracies for every fold.

3.4. Parameter selection and implementation
In our experiments, we used classifiers and PCA implemen-
tation from scikit-learn [38] library. Unless stated otherwise,
datasets were partitioned into training and testing sets using an
80%/20% split.

The range of selected parameters for each classifier is as fol-
lows:

• SVM: Parameters γRBF ∈ {10−2, . . . ,102}, C ∈
{10−2, . . . ,102}.

• k−NN: Number of neighbors k ∈ {1, . . . ,15} with two dif-
ferent neighbors weighting strategies — uniform: where all
neighbors have the same weight, distance: where neighbors
are weighted by the inverse of their distance.

• DT: The minimum number of examples required to split
a node s ∈ {2,3,4}, maximum depth of the tree d ∈
{2,3,5,10,α}, where α denotes expansion of nodes until
all leaves contain less than s examples.

• NB: The classifier is non-parametric.

An experimental run, encompassing dataset preparation,
PQK feature computation, and classification across 10 repe-
titions, required approximately 9 hours to complete.

3.5. Classifier comparison

To compare results between classifiers, we use the Bayesian
approach, adapted from [42]. This method avoids limitations
of traditional null hypothesis significance testing (NHST), for
example, the fact that point-wise null hypotheses are usually
false, provided that a sufficiently large number of data points
is available, as well as the difficulty in interpreting outcomes
upon rejection of the null hypothesis.

Bayesian approach evaluates the posterior distribution of
classifier performance differences, employing a region of prac-
tical equivalence (ROPE) to establish meaningful differences.
The outcome can be directly interpreted as probability P(B)
that, on average, method B is more accurate than method A (or
that methods are practically equivalent). Our analysis involves
multiple datasets (six class pairs); therefore, we adopted a hi-
erarchical Bayesian approach with a ROPE value of 2% accu-
racy. The method also includes a simplex visualisation of the
comparison outcome described in detail in [42].

3.6. Experiment list

In order to fully assess the influence of PQK features on the
classification accuracy, the classification experiment described
in Section 3.3 was repeated for four combinations of original
and PQK features on original and stilted datasets:

• Classification with reduced spectral features on stilted
dataset: binary datasets had the form: T = (XXX reduced,
yyyrelabeled).

• Classification with PQK features on stilted dataset: binary
datasets had the form: T = (XXXpqk, yyyrelabeled).

• Classification with reduced spectral features on original
dataset: binary datasets had the form: T = (XXX reduced, yyy).

• Classification with PQK features on original dataset: binary
datasets had the form: T = (XXXpqk, yyy).

4. RESULTS AND DISCUSSION

Results of the experiments are presented in two tables sum-
marising averages over all 6 combinations of labels, 10 ex-
periment repetitions, and 5 cross-validation rounds. Since our
classification dataset is balanced and the label assignment is
arbitrary (with no inherent positive/negative class distinction),
accuracy well represents classification performance. However,
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Table 1. Mean training and test accuracy of classification for relabeled
datasets.

Mean Training Accuracy Mean Test Accuracy
Features Original PQK Original PQK
Classifier

DT 0.83±0.09 0.94±0.04 0.70±0.03 0.78±0.02
KNN 0.99±0.03 0.98±0.05 0.69±0.02 0.83±0.02
NB 0.57±0.02 0.82±0.01 0.56±0.03 0.82±0.02

SVM 0.91±0.06 0.93±0.01 0.68±0.03 0.91±0.02

Table 2. Mean training and test accuracy of classification for datasets
with original labels.

Mean Training Accuracy Mean Test Accuracy
Features Original PQK Original PQK
Classifier

DT 0.94±0.01 0.79±0.13 0.92±0.01 0.60±0.03
kNN 0.98±0.03 0.98±0.06 0.92±0.01 0.66±0.03
NB 0.89±0.01 0.61±0.01 0.89±0.01 0.60±0.03

SVM 0.93±0.01 0.81±0.08 0.93±0.01 0.68±0.03

since the Matthews correlation coefficient (MCC) can some-
times provide a more interpretable measure, MCC results are
included in the appendix.

Table 1 contains mean training and test accuracies for the
classification task using relabelled stilted datasets. The in-
troduction of PQK features substantially enhances classifica-
tion accuracy compared to spectral features. This difference
is significant when comparing best classifiers in both sce-
narios using the methodology described in Section 3.5 with
P(SVM) = 1.

Table 2 reports mean training and test accuracies for datasets
with their original labels. In this — more realistic — scenario,
we do not observe an improvement in classification accuracy.
In contrast, the transformation of original features using PQK
features leads to a notable decrease in accuracy.

The results in Table 1 indicate that two of the classifiers,
SVM and NB, achieve high accuracy for PQK features, and
their result for test data is similar to the result for training data.
This is not the case with k−NN and DT classifiers, for which
significantly higher accuracy on the test set may indicate over-
training. This effect can also be observed in Table 2 for the
k−NN classifier.

Since for small and medium-sized datasets SVM is consid-
ered an SOA classifier, we compare its accuracy with next
best method in every scenario. For relabelled datasets (Ta-
ble 1) applying the comparison method described in Sec 3.5,
we determine that for PQK features SVM outperforms the next
best kNN with probability P(SVM) = 1 while for spectral fea-
tures, SVM is practically equivalent to the DT classifier with
P(ROPE) = 0.822 and P(SVM) = 0.02. For datasets with
original labels (see Table 1) and spectral features, we deter-
mined that SVM is practically equivalent to other methods with
P(ROPE) = 0.997 and P(SVM) = 0.02. This equivalence may
result from a simplification of input data due to PCA. However,
with PQK features, SVM gains some advantage over the next-
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Fig. 2. 5-fold Cross Validation accuracy on relabeled data for classes
“Broadleaf tree cover — 82”, and “Herbaceous vegetation — 102”. (a)
Without PQK features. (b) With PQK features.

best kNN classifier with P(SVM) = 0.97, suggesting that more
complex models (e.g., neural network-based) might uncover
additional meaningful structures. A simplex visualization of
this case is provided in Fig 4.

For the results’ visualization, we provide box plots of classi-
fication accuracies in Fig. 2 and Fig. 3 that represent the accu-
racy of classifiers (SVM, k-NN, DT, NB) over the stilted and
original datasets created using the spectral data for two classes:
“Broadleaf tree cover” and “Herbaceous vegetation”. The
classification accuracies for the original features are shown in
Fig. 2a. The classification accuracies for the PQK features are
shown in Fig. 2b. Visibly, the accuracy increases significantly
over the same stilted datasets if the classifiers have access to
the PQK features. We also naively repeat the experiment over
original datasets to assess the effectiveness of PQK features,
and the result is shown in Fig. 3a and Fig. 3b.

5. CONCLUSIONS

The main conclusion we draw from this empirical investiga-
tion is that there exists a dataset that is easy for the quantum
model to learn and hard for the classical model to learn. We
showed that all the important classical ML models generally
used for image segmentation underperform on the stilted data
set using standard spectral features. We provide key evidence
that suggests that quantum procedures, in addition to classical
methods, could give an advantage in learning tasks for Earth
observation datasets. There are at least two open questions
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Fig. 3. 5-fold Cross Validation accuracy on orignal data for classes
“Broadleaf tree cover — 82”, and “Herbaceous vegetation — 102”. (a)
Without PQK features. (b) With PQK features.

p(kNN) = 0.000

p(rope) = 0.027

p(SVC) = 0.973

Fig. 4. Advantage of SVM over kNN in classification experiment for
datasets with original labels and PQK features, visualized using method
from [42]. There is a 97.3% probability that average SVM performance
is higher for a rope value of 2%.

that needs further investigation:

• Are there any other classical ML models that perform bet-
ter using only the standard spectral features over the stilted
dataset?

• Does there exist a natural EO dataset that matches the char-
acteristics of the stilted dataset?

Table 3. Mean training and test Matthews correlation coefficient (MCC)
for relabeled datasets.

Mean Training Accuracy Mean Test Accuracy
Features Original PQK Original PQK
Classifier

dtree 0.66±0.18 0.86±0.09 0.40±0.05 0.55±0.04
knn 0.98±0.06 0.96±0.09 0.38±0.05 0.66±0.04
nb 0.14±0.03 0.65±0.02 0.13±0.06 0.64±0.05

SVM 0.84±0.12 0.85±0.02 0.37±0.05 0.81±0.03

Table 4. Mean training and test Matthews correlation coefficient (MCC)
for datasets with original labels.

Mean Training Accuracy Mean Test Accuracy
Features Original PQK Original PQK
Classifier

dtree 0.87±0.02 0.56±0.24 0.83±0.03 0.21±0.05
knn 0.96±0.06 0.96±0.12 0.84±0.02 0.31±0.05
nb 0.79±0.01 0.23±0.03 0.79±0.03 0.21±0.06

SVM 0.87±0.01 0.66±0.18 0.86±0.03 0.37±0.05

If we can show the answer to the first question as false and find
a natural EO dataset where we see an advantage with PQK fea-
tures, then we can confidently claim that quantum computers
would be useful in processing EO data.

Our investigation, presented in this paper, is limited by
many factors: due to substantial computational resource re-
quirements associated with generating PQK features, our ex-
perimental datasets are small subsets of the whole image; we
use only a particular data encoding and quantum kernel out of
many; we consider a small ideal simulated quantum computer,
and we also assume an infinite number of samples sampled
from the quantum circuits that encode the data. Yet, we can
claim that this empirical study shows the potential for quantum
machine learning methods to Earth Observation data analysis
and encourages us to perform further investigation.

APPENDIX

Classification performance measured with Matthews correla-
tion coefficient (MCC) is presented in Table 3 for the relabelled
datasets and in Table 4 for datasets with original labels.

The source code and dataset allowing for replication of this
study are available at https://doi.org/10.5281/zenodo.
15513886
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