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Abstract.  In  this  paper,  we  propose  a  novel  lossless  image  compression  method.  During  the  prediction  stage  for  each  block  of  8  ×  8  pixels,
a  mechanism  for  preselecting  one  of  N  linear  predictors  from  the  dictionary  is  employed.  The  dictionary  is  determined  individually  for  each
encoded  image  using  vector  quantization  (initially  with  a  redundant  number  of  vectors  in  the  dictionary)  and  a  fast  algorithm  that  minimizes
mean  absolute  error.  In  next  steps,  the  prediction  errors  are  encoded  in  a  two-step  manner  using  an  adaptive  Golomb  code  followed  by  an
adaptive  binary  arithmetic  coder.  In  this  study,  we  demonstrate  the  efficiency  of  the  proposed  solution  against  other  competitive  codecs,
including  those  based  on  deep  learning.  The  proposed  method  offers  high  compression  efficiency  and  is  characterized  by  a  short  decoding  time.
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1. INTRODUCTION

Cost optimization plays an important role in computer sys-
tems. Owing to data compression, costs can be lowered at
both the transmission and data archiving levels. The memory
requirements for storing multimedia data are especially chal-
lenging because of the high memory demand and transmission
bandwidth. This paper focuses on lossless image compression,
which finds its use in archiving various types of images such as
medical 2D, 3D and 4D (three-dimensional video sequences)
[1, 2, 3, 4, 5], astronomical or compressing satellite images
[6]. Moreover, the lossless mode is often required during digi-
tal photo processing, creating advertising materials, film post-
production etc.

Compression methods typically consist of two stages: data
decomposition to decrease information redundancy and data
compression using one of efficient entropy coding methods,
among which arithmetic and Huffman coding are the most ef-
ficient [7]. In case of images, decorrelation can significantly
reduce data redundancy due to the high level of dependency
between adjacent pixels. At this stage, wavelet transforms are
the most frequently used e.g. JPEG2000 [8], SPIHT [9], ICER
[10], as well as prediction methods JPEG-LS [11], CALIC
[12]. In the majority of studies, linear or nonlinear prediction
is used. Insight into different lossless coding approaches can
be found in review papers [13, 14, 15].

The highest efficiency of lossless compression is achieved
by algorithms with high computational complexity that belong
to the time-symmetric class (where coding and decoding times
are equally long). These solutions are based on linear predic-
tion models with backward adaptation. They use mechanisms
known from the literature, such as RLS [16], OLS [17, 18, 19],
or WLS [20], where encoding and decoding of each subse-
quent pixel is accompanied by a procedure of adaptation or

∗e-mail: frydrychowicz.malgorzata@zut.edu.pl
∗∗e-mail: grzegorz.ulacha@zut.edu.pl

recalculation of linear predictor coefficients.
The latest methods are based on deep learning and use non-

linear neural networks [21, 22, 23, 24]. They are also usu-
ally characterized by high computational complexity, and short
(not in all cases) encoding/decoding time is achieved only be-
cause of the high level of parallelization, using GPU/NPU
technologies [25, 26, 27]. Therefore, in this paper we propose
a relatively efficient method that offers short decoding time
without the need for dedicated high-performance computing
units. This advantage is important because usually images are
compressed once, whereas decoding is performed many times.

The basics of image modeling, which make it possible to
compress data efficiently by reducing data redundancy, are dis-
cussed in section 2. The original solution, which involves the
initial construction of a dictionary containing N predictors in-
dividually calculated for each encoded image, is presented in
section 3. In section 4, the bit average of the proposed solution
and other popular codecs is compared.

2. BASICS OF IMAGE MODELING

One way to remove mutual information from encoded im-
ages is to use linear prediction with an appropriate selection
of adjacent pixels and prediction order. Due to the direction
of image encoding assumed in this paper (row by row, from
top to bottom, starting from left to right), both the encoder
and decoder have access to the pixels above and to the left of
the currently encoded (decoded) pixel, which is described as
the principle of causality. Using the assumption of decreas-
ing correlation together with increasing distance between pix-
els, the neighbouring pixels of the currently encoded one can
be numbered according to the increasing Euclidean distance√

(∆x j)2 +(∆y j)2 between them. The numbering of equally
distant pixels is determined clockwise. This allows to obtain a
one-dimensional signal domain, which makes it easier to math-
ematically describe many equations and relations known from
the literature regarding one-dimensional signals. Figure 1 il-
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Fig. 1. Neighbourhood pixel numbering

lustrates the 48 nearest neighbouring pixels of the currently en-
coded pixel xn, where the j-th index indicates a pixel of value
P( j). Theoretically, the higher the pixel index, the lower its
impact on improving encoding efficiency.

Various techniques are used in data modeling. However, in
lossless image compression, a typical linear predictor of order
r is most often used. In linear prediction, the predicted value
of currently encoded pixel xn is based on r neighbouring pix-
els (in accordance with the principle of causality known to the
encoder and decoder). The linear predictor takes the following
form:

x̂n =
r

∑
j=1

b j ·P( j), (1)

where elements P( j) are the values of the nearest neighbouring
pixels of the currently encoded pixel xn, and b j are the predic-
tion coefficients forming a vector B = [b1,b2, ...,br] [7]. In
practical solutions, it is often assumed, that the sum of the co-
efficients of such model should be equal to 1 (which is a condi-
tion for an unbiased prediction estimator). With this assump-
tion and an 8-bit greyscale input values, the predicted value
x̂ ∈ ⟨0;255⟩. The use of linear or nonlinear predictor enables
the encoding of prediction errors only, that is, the differences
between the actual pixel values and predicted values (rounded
to the nearest integer, because often the predicted values be-
long to the set of real numbers), which are usually small values
oscillating near zero:

en = xn− [x̂n]. (2)

In this way, we obtain a differential image in which the prob-
ability distribution of errors en is close to the geometric distri-
bution, enabling efficient encoding of those errors using one of
the entropy coding methods.

2.1. Predictive modeling methods with block division
By taking advantage of the variety of characteristics of differ-
ent areas within a single image, it can be divided into blocks
(e.g. 8× 8 or 16× 16 pixels). Each block is assigned an in-
dividual prediction model (in a form of r linear predictor co-
efficients in accordance with the formula (1)). One of the first
solutions of this kind was the method presented in [28], where
each 8× 8 pixels block was assigned one static model from a
dictionary consisting of 8 models in total (dictionary was pre-
defined and constant), which produced the lowest mean ab-
solute error. The header information associated with a single

block required 3 bits, and with this data the prediction model
index was identified (in general, each block is coded using one
selected predictor from the dictionary of size N, meaning that
the block is assigned a predictor from dictionary, and an index
of this predictor must be saved in header data).

Further enhancements of this approach introduced the mini-
mization of the mean square error (MMSE) as a method for de-
termining the best set of prediction coefficients. However, the
need to store a very large size of header information emerged,
because of the large number of bits required to save prediction
coefficients. In order to reduce size of header, blocks with sim-
ilar characteristics were grouped together into clusters, with
which a single shared prediction model was associated [29].
Using vector quantization techniques (as well as fuzzy cluster-
ing [30]), the optimized sets of e.g. 16 prediction models were
created. Owing to this, even with high prediction order the
overall size of output file header did not significantly increase
the bit average. In paper [31], a technique for combining ad-
jacent blocks belonging to the same category (associated with
the same predictor) into groups resulting in larger blocks was
used. Then, a map of blocks of different sizes was saved using
an efficient technique for coding quadtrees.

It is possible to obtain prediction coefficients that outper-
form predictors created using MMSE method in terms of low-
ering entropy [31]. In paper [32], the authors used minimum
mean absolute error (MMAE), which allowed for better results
compared to the use of MMSE for applications with block di-
vision. A wider explanation of the nonoptimal influence of
MMSE on entropy minimization was presented in [33]. There-
fore, in proposed solution, we decided to use a convenient
method - Iterative Reweighted Least Squares (IRLS), to de-
termine prediction coefficients based on minimizing mean ab-
solute error criterion (see Section 3).

2.2. Cumulative prediction error correction method

In many cases, prediction methods can contain a constant com-
ponent Cmix, which value depends on the characteristics of the
individual context. Hence, many solutions offer an adaptive
method for Cmix removal (bias cancellation), also known as
context-based error correction techniques, which improve the
results of predictive modeling. In this case, the “context” is
understood as a set of features resulting from the dependen-
cies occurring between several nearest pixels of the currently
encoded value xn.

Adaptive context dependent constant removal method is
used i.e. in CALIC and JPEG-LS. For each context, the num-
ber of its occurrences Mi is recorded together with its accumu-
lated sum of errors Si. Based on these values, the currently de-
termined prediction error is being corrected [12]. The value of
constant component Cmix = Si/Mi is added to predicted value
calculated with main predictor, and after rounding the result to
the nearest integer the final prediction error value is calculated
as:

en = xn− [x̂n +Cmix]. (3)

A broader description of our method for determining context
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number can be found in [34].

2.3. Components of proposed codec

The proposed solution is based on cascading approach (see
Fig. 2), in which beside predicted value determined using lin-
ear prediction, a CDCCR (Context-Dependent Constant Com-
ponent Removal) block for removing constant component Cmix
associated with certain context is used. The final blocks of
the cascade are used for efficient prediction error en encoding
using an adaptive Golomb coder and context-adaptive binary
arithmetic coder (CABAC). The calculation of the constant
component Cmix and our prediction error coding algorithm are
described in detail in [34].

Algorithms 1 and 2 show the data processing steps in coder
and decoder of the solution proposed in this paper, respec-
tively. Before encoding with Algorithm 1, it is necessary to
build a dictionary of N centroids based on vector quantization
(described in section 3) and determine the number of the best-
fit centroid for each encoded square.

Algorithm 1 Encoder data processing steps

1: For each sequentially encoded pixel xn:
2: Read predictor number (associated with a given 8×8 pix-

els square) from dictionary.
3: Determine predicted value (Eq. (1)) and prediction error

en (Eq. (3)) after taking into account context-dependent
constant component Cmix.

4: Convert prediction error en into a stream of bits using an
adaptive Golomb coder.

5: Encode bitstream from step 4 using adaptive binary arith-
metic coder.

6: If there are remaining pixels to encode, then return to step
2.

Algorithm 2 Decoder data processing steps

1: For each sequentially encoded pixel xn:
2: Convert input bitstream using an adaptive binary arith-

metic decoder, resulting in a Golomb codeword.
3: Convert the Golomb codeword into prediction error en

form.
4: Read predictor number (associated with a given 8×8 pix-

els square) from dictionary.
5: Determine predicted value (Eq. (1)) and Cmix, and then

add those values to en, to obtain decoded value of pixel xn.
6: If there are remaining pixels to encode, then return to step

2.

3. LINEAR BLOCK PREDICTION METHOD

The compression method proposed in this paper utilizes a lin-
ear prediction, where each block of 8× 8 pixels is associated
with one predictor from dictionary (individually calculated for
each encoded image (see Section 3.3)). In contrast to the clas-
sic k-means approach, we proposed a scheme with a redundant

number of predictors in dictionary and a procedure for their re-
duction to the desired amount. The final set of these predictors
is determined in several steps (initialization, vector quantiza-
tion process).

The initialization process begins with calculating the indi-
vidual predictor for each 8× 8 pixels block by minimizing
the mean absolute error (see Section 3.1). For example, an
512× 512 px image will have 4096 individual predictors. In
the next step this number has to be lowered to much smaller
amount of 1.5N shared predictors, and this is done at the dictio-
nary initialization stage (see section 3.2). Classes group blocks
with similar features and have one shared predictor (centroid),
which is used to encode pixels of blocks belonging to certain
class. After the initialization stage, blocks are reclassified (re-
assigned) into the class that best matches their characteristics.
After this, the vector quantization procedure begins leading
to the optimization of bit average. After each reclassification
step, centroids are recalculated using blocks based on current
assignment to classes. Thus, classes are adapting to the char-
acteristics of regions encoded by them (to the set of blocks
with similar characteristics). In contrary to the MRP codec
[31] which uses MMSE, in this paper the MMAE (based on
IRLS see section 3.1) is used. Moreover, the initial number of
classes is redundant and is later reduced to the specified Nstop
level in the last stage of the predictor determination algorithm.
To optimize compression efficiency the values: N and Nstop
were selected experimentally depending on the resolution of
compressed images (see section 3.3).

3.1. Iterative Reweighted Least Squares algorithm
In paper [32], it was proposed to use the minimum mean abso-
lute error, which allowed (in the case of dividing the image into
squares of size 8× 8) to obtain better results compared to the
use of MMSE. It is noteworthy that, to determine the prediction
model it is not necessary to know the optimal solution which
guarantees mean absolute error minimization, but an approxi-
mate solution is sufficient [35]. To achieve this, instead of us-
ing improved simplex algorithms, a method that uses the clas-
sic MMSE to reduce the problem to the problem of minimiz-
ing Weighted Least Squares (WLS) can be used. For this, an
iterative approach, namely Iterative Reweighted Least Squares
(IRLS) [36] with a parameter p = 1 is used, which enables to
relatively quickly (compared to simplex method) obtain a sub-
optimal solution of mean absolute error minimization.

IRLS allows to get approximated lp – norm solution mini-
mizing average error for data in area Q:

∥e∥p =
(

∑
n∈Q
|en|p

)1/p
, (4)

by solving the problem of minimization of the weighted least-
squares, which offers relatively low computational complexity:

∥e∥p =
(

∑
n∈Q

w2
n · |en|2

)1/p
, (5)

It is possible to perform an approximate minimization for
any lp – norm using an iterative algorithm that minimizes the
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Fig. 2. Block diagram of cascade coding proposed in this paper

expression:

∥e∥p =
(

∑
n∈Q
|en|(p−2) · |en|2

)1/p
. (6)

In the first iteration, weights are set to wn = 1, and weighted
least-squares minimization is performed using Eq. (5). Then,
the equation is solved using Cholesky decomposition:

B = R−1 ·P, (7)

where R is a r× r square matrix of elements R( j, i):

R( j, i) = ∑
n∈Q

w2
n · yn(i) · yn( j), (8)

where j = {1,2, . . . ,r}, i = {1,2, . . . ,r}, and P is a r×1 vector
of P( j) elements:

P( j) = ∑
n∈Q

w2
n · xn · yn(i), (9)

where xn denotes the value of the n-th sequentially en-
coded pixel and vector Yn = [yn(1),yn(2), . . . ,yn(r)]. In
proposed solution, the prediction model uses the r nearest
neighbouring pixels (see Fig. 1), therefore the vector Yn =
[Pn(1),Pn(2), . . . ,Pn(r)]. In next iterations of the IRLS algo-
rithm, the weights are set using errors eold

n received based on
linear prediction model received in previous iteration using:

wn = |eold
n |

(p−2)/2 (10)

Each subsequent iteration in the IRLS algorithm converges
towards the expected minimization accuracy. In the case of
8-bit data used in images, good results are achieved after ap-
proximately eight iterations. To minimize mean absolute error,
a parameter p = 1. Then, substituting Eq. (10) into Eq. (5),
we obtain the classical WLS problem:

∥e∥1 = ∑
n∈Q

1
|eold

n |
· |en|2 ≈ ∑

n∈Q
|en|, (11)

Special attention should be paid to the prediction errors os-
cillating around zero and preventing division by 0. Guard
|eold

n | ←max{0.6, |eold
n |} gives good results.

3.2. Dictionary initialization

In order to speed up the convergence of the k-means algorithm,
we proposed our own algorithm for initializing centroids dic-
tionary (as opposed to the classical k-means approach, where

initialization is done by random selection of N input data vec-
tors). During the initialization process, a dictionary contain-
ing 1.5N classes that group blocks (8×8 pixels squares) with
similar features is created. Later, during encoding stage, these
blocks use a shared linear predictor (centroid) of the class to
which they are assigned. As a part of the steps of the dictionary
building algorithm, predictors are adapting to the characteris-
tics of image, and the number of classes is gradually reduced
to Nstop. The number of classes depends on the dimensions of
the image – the larger the image, the more classes are used.

Prediction errors are encoded using a two-stage Golomb-
CABAC coder (see Fig. 2). Due to the fact, that this coder
adapts the probability distributions after each sequentially en-
coded value of |en|, it is problematic to minimize the bit av-
erage at the stage of determining the predictors assigned to
classes (centroids). Therefore, a certain simplification can be
made by calculating the bit average as follows:

Lavg = H(S)+
Nstop · (r−1) · (nb +2)
img height · img width

+
log2Nstop

(square size)2 (12)

where: nb – is the number of bits reserved for the fractional part
of prediction coefficient, r is a prediction order, and (r−1) is
the number of coefficients saved into file (the first coefficient
b1 is skipped, because the sum of all coefficients b j is equal
to 1, therefore skipped coefficient can be easily reconstructed
on decoder side), H(S) is an entropy of prediction errors cal-
culated using the following formula:

H(S) =−
|emax|

∑
i=1

pi · log2 pi, (13)

where pi is the probability of occurrence of prediction error
equal to i.

To determine the Nstop predictors offering the lowest possi-
ble bit average, a vector quantization algorithm must be used.
Unlike classical methods such as LBG (k-means), in our case,
the target function is defined differently and is based on the
Minkowski distance. It is not a mean-square error but a func-
tion based on minimizing the mean prediction error values (in
a given square):

di =
1
z

z

∑
j=1
|e j|α , (14)

where z is the number of pixels in a square, and i denotes
square index. Depending on the phase of the algorithm, dif-
ferent values of parameter α are used.
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The starting set of 1.5N classes is initialized in a hybrid
manner: first 0.5N via Algorithm 3, and the remaining N via
Algorithm 4.

Algorithm 3 First algorithm to determine class membership

1: For each square in the image, an individual linear predictor
is calculated using the MMAE method, and each square is
then encoded using Eq. (1) and Eq. (2).

2: For each square, a value of target function di with α = 1 is
calculated (Eq. (14)).

3: Results are sorted by the values of di assigned to each
square and divided into 0.5N equal parts, creating a set
of 0.5N initial classes.

Algorithm 4 Second algorithm to determine class membership

1: si← 0
2: for j← 0,k−2 do
3: if b j ≥ b j then
4: si← si +2 j

5: if ∆i > ∆ then
6: si← si +2k−1

The second method for determining centroids (Algorithm
4) is to calculate the arithmetic mean from all individual pre-
dictors at the beginning, creating an averaged vector B =
(b1, . . . ,br). The class membership is determined using Al-
gorithm 4.

Symbols in Algorithm 4 denotes:
i – square index,
si – class index assigned to the square of index i,
N = 2k – number of centroids,

and value of ∆i and ∆ are calculated as:

∆i =
r

∑
j=1

d j · |b(i)j −b j|γ , (15)

∆ =
1

number of squares
·

number of squares

∑
i=1

∆i (16)

where γ = 1.9 (value chosen experimentally) and

d j =
1√

(∆x j)2 +(∆y j)2
, (17)

where ∆x j and ∆y j represents horizontal and vertical distance
between pixel xn and P( j) on Fig. 1.

Both sets created as a result of Algorithms 3 and 4 are then
combined into a single set of size 1.5N. Then, the assignments
of squares to classes are removed. This is due to the fact, that
by using two independent initialization algorithms working on
the same set of squares, the assignments of squares to classes
are created within each of these algorithms, meaning that the fi-
nal assignment of squares will be doubled after combining sets
into a single merged set. Therefore, after calculating predic-
tors of initial set of 1.5N classes, the assignments are cleared,
and squares are once again assigned to the nearest class at the
reclassification stage (described in Section 3.3).

3.3. Building a dictionary of predictors

Algorithm 5 Quantization algorithm

1: Reclassification of squares to the closest class (in terms of
criterion Eq. (14) with α = 1.2).

2: Recalculation of centroids based on current squares as-
signment using MMAE (3 iterations of IRLS).

3: Repeat steps 1-2 for t1 times.
4: Removal of the least used class and new assignment of its

squares to the closest class (in terms of criterion Eq. (14)
with α = 1.2).

5: Recalculation of centroids based on current squares as-
signment using MMAE (3 iterations of IRLS).

6: Reclassification of squares to the closest class (in terms of
criterion Eq. (14) with α = 1.2).

7: Repeat steps 4-6 for t2 = 1.5N−Nstop times.
8: Reclassification of squares to the closest class (in terms of

criterion Eq. (14) with α = 1.2).
9: Recalculation of centroids based on current squares as-

signment using MMAE (3 iterations of IRLS).
10: Repeat steps 8-9 for t3 times.

Initialization is the first stage of the dictionary building algo-
rithm. It begins with the calculation of individual predictor for
each block (8×8 pixels square) using the MMAE method. To
achieve this, an iterative IRLS algorithm is used (described in
Section 3.1), which offers fast calculation of the approximated
solution. The number of iterations of the IRLS algorithm for
calculating the individual predictors was set to 10.

After initialization (Section 3.2), having already created the
first set of 1.5N classes, the quantization procedure (summa-
rized in Algorithm 5) begins. Coder for t1 iterations reclassifies
blocks between classes (second stage of dictionary building).
During reclassification, all blocks are encoded with each cen-
troid (predictor associated with a single class). After block en-
coding, the target function Eq. (14) with parameter α = 1.2 is
calculated, which determines the measure of the block’s prox-
imity to given class. Blocks are assigned to the class which
offers the lowest values of di. At the end of each iteration of
reclassification, the matrices R and vectors P of all blocks as-
signed to certain classes are added and using Eq. (7) based on
MMAE (3 iterations of IRLS) a new shared predictor is calcu-
lated.

After completing t1 iterations of the second stage of the al-
gorithm, the class settings (centroid and assigned blocks) giv-
ing (within t1 iterations) the lowest bit average (Eq. (12))
are saved and passed on to the third stage, where during t2 =
1.5N−Nstop iterations a number of 1.5N classes is gradually
reduced to Nstop classes. In each iteration, the class assigned
with the fewest blocks is removed and its blocks are assigned
to the closest (in terms of criterion Eq. (14) with α = 1.2)
of the remaining classes. After this operation, the predictors
of each class are determined again and all squares are reclas-
sified. After reaching Nstop classes (where Nstop ≤ 1.5N), the
fourth stage takes place, during which an additional t3 itera-
tions of reclassification of all squares is performed (similarly
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Table 1. Bit average based on a database of 45 standard test images for different codecs

Images Pngcrush
[37] WebP [38] WebP2

[39]
JPEG-XL

[40] MRP [41] MRP
optimized

Proposed
codec

Average 4.719 4.216 4.266 4.123 4.058 4.022 3.983

Table 2. Bit average based on a test image dataset from paper [21]

Images BPG PNG LCIC JPEG
2000

JPEG-
LS

JPEG-
XL FLIF WebP WebP2 L3C CWPLIC LCIC

duplex
Proposed

codec

Airplane 4.32 4.26 3.99 4.00 3.80 3.71 3.82 3.87 3.84 4.56 3.69 3.69 3.63
Barbara 5.06 5.22 4.61 4.61 4.70 4.40 4.56 4.55 4.51 5.44 4.35 4.36 3.94
Coastguard 5.70 5.06 4.82 4.83 4.86 4.73 4.93 4.81 4.82 5.82 4.80 4.83 4.41
Comic 6.15 5.84 5.63 5.65 5.30 5.07 5.50 5.45 5.39 6.60 4.83 4.83 5.01
Flowers 5.18 5.08 4.91 4.92 4.62 4.51 4.74 4.76 4.70 5.53 4.41 4.35 4.38
Goldhill 4.95 4.70 4.58 4.59 4.43 4.37 4.50 4.47 4.41 5.27 4.33 4.33 4.22
Lennagrey 4.54 4.61 4.31 4.31 4.24 4.16 4.28 4.14 4.13 4.95 4.13 4.08 3.96
Mandrill 6.61 6.23 6.11 6.11 6.04 5.98 6.14 5.89 5.90 6.97 5.95 5.89 5.74
Monarch 4.10 4.26 3.82 3.82 3.70 3.54 3.68 3.73 3.72 4.37 3.40 3.45 3.42
Pepper 4.77 4.90 4.63 4.63 4.51 4.48 4.58 4.50 4.47 5.38 4.67 4.38 4.28
Ppt3 2.20 2.35 2.41 2.41 2.04 1.84 1.87 2.06 2.01 3.71 2.14 2.07 1.93
Zebra 5.83 5.19 4.89 4.89 4.81 4.66 4.84 4.86 4.84 6.08 4.65 4.68 4.36

Average 4.951 4.808 4.559 4.564 4.421 4.288 4.453 4.424 4.395 5.390 4.279 4.245 4.113

Table 3. Coding parameters for images with different resolutions

Resolution r N Nstop nb

≤ 256×256 35 4 6 9
≤ 512×512 36 16 16 10
> 512×512 35 32 32 10

Table 4. Time statistics for MRP codec and proposed codec

MRP optimized Proposed codec

Encoding time [s] 565.584 263.837
Decoding time [s] 0.062 0.327

Table 5. Configuration of tested codecs

Codec Configuration

Pngcrush -reduce -brute
WebP -lossless -m 6 -q 100

WebP2 -q 100 -alpha_q 100 -effort 9
JPEG-XL –distance=0 –effort=9

MRP with default configuration
MRP optimized -o

to second stage).
Based on the experiments performed on 45 test images

[42], consisting of images with three different resolutions:
256×256, 512×512, and 720×576 pixels, the individual pa-
rameters presented in Table 3 were selected. Larger images,
which may contain many regions with different characteris-
tics are encoded using a larger number of classes in contrast
to smaller images. The prediction order r is approximately 35.

The number of iterations t1 = t3 = 20 was also selected.
In practice, nearly 98% of the coded data are compressed

prediction errors. About 1.5% is the cost of storing indexes (to
the rows of dictionary) assigned to each square. The size of the
dictionary, on the other hand, is only about 0.5% of the size
of the encoded file. It has Nstop rows, and each row consists
of r prediction coefficients, which are (nb + 2)-bit (see Table
3). The size of dictionary equals Nstop · (nb + 2) · (r− 1) bits,
where Nstop is a number of classes (shared predictors), nb+2 is
a number of bits required to save single prediction coefficient,
and r is a prediction order (see Eq. (1)).

4. EXPERIMENTS

The bit averages of several known lossless compression meth-
ods are compared in Table 1. Experiments were performed on
images with different features (with small and large variations
of noise, photographs, artificially generated images with soft
tonal gradations, images with textured areas etc.). The config-
urations of tested codecs were set to achieve the best results
and is presented in Table 5.

From the paper [21], we decided to use another set of test
images (in 8-bit grayscale) (see Table 2), because it is one of
the few comparisons referring to the use of neural networks
(LCIC, L3C, CWPLIC, LCIC duplex codecs), in which bit
averages for individual encoded images are shown (unfortu-
nately, in the case of many deep learning papers, there is usu-
ally one average result for the entire image database, which
makes it difficult to analyse in more depth the capabilities
offered by individual codecs for different types of images).
The authors of mentioned paper also included several classi-
cal codecs (e.g., accepted by JPEG [43]) in their comparison.

In Table 4 the time statistics are shown for coding an exam-
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ple image Lennagrey (512×512 pixel) using processor AMD
Ryzen 7 5700x 3.4GHz. The statistics were collected for two
solutions based on linear prediction with block division. The
results presented in Tables 1 and 4 show the advantage of the
proposed solution over MRP Optimized in terms of both bit
average and encoding time.

5. CONCLUSIONS

In this paper, a method for lossless image compression was
presented. At the prediction stage, for each block of 8× 8
pixels, a mechanism of preselecting one of the N linear pre-
dictors from the dictionary was employed. The dictionary was
calculated individually for each encoded image using original
vector quantization method and fast mean absolute error min-
imization. After calculating prediction error, a simple method
for correcting the cumulative prediction error was used. Such
prepared prediction errors were coded in a two-step manner us-
ing the Golomb code followed by an adaptive binary arithmetic
coder.

The developed method is asymmetric in terms of time, and
offers a relatively short decoding time. For example, for the
image Lennagrey (512× 512 pixels) (using AMD Ryzen 7
5700x 3.4GHz processor) the encoding time is shorter by 53%
comparing to MRP - Optimized codec and is equal to 263.837
s (see Table 4). Although there are methods offering compres-
sion efficiencies higher by a few percent, the decoding time is
usually higher even several times (e.g. Vanilc WLS-D [44],
Blend-28 [34]).

For the future development of proposed codec, it is planned
to improve compression efficiency by introducing compres-
sion of the prediction coefficients dictionary, and improving
the mechanism of dictionary initialization. The introduction
of fuzzy quantization at the building stage of the dictionary is
also considered. Importantly, this will not affect the decoding
time compared to the solution presented in this paper.
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