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Abstract. In response to the challenge of identifying fault types in ball screws of CNC machine tools, particularly under complex 

operating conditions where classification accuracy is often low, we propose a convolutional neural network fault diagnosis model 

that incorporates multi-scale convolution and an attention mechanism (MSCAM). First, we collect fault data corresponding to 

various fault types of the ball screw and establish a comprehensive fault dataset. Next, we apply the S-transform to the original 

data to generate time-frequency diagrams, which serve as input for the two-dimensional neural network. In this paper, we present 

a multi-scale convolutional layer integrated with an attention mechanism, designed to highlight key features in fault information 

and extract more comprehensive characteristics. Ultimately, the model's superior recognition and classification capabilities are 

validated through experimental datasets, and its robustness is thoroughly analyzed. 
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1. INTRODUCTION 

With the advent of the Industry 4.0 era, the growth of sectors 

such as aviation, automotive, and shipbuilding has led to an 

increasing demand for high-speed and high-precision CNC 

machine tools [1]. As a critical transmission component of 

CNC machine tools, the ball screw pair plays a vital role in 

maintaining accuracy and ensuring performance reliability [2]. 

To enhance accuracy retention, it is essential to implement 

intelligent detection and diagnosis of ball screw faults [3]. 

Currently, the rapid advancement of machine learning 

algorithms has significantly accelerated progress across 

various fields. Today, nearly all modern fault diagnosis 

technologies depend on machine learning algorithms [4]. In 

the realm of fault diagnosis, the application of machine 

learning models alleviates the maintenance burden on 

researchers and enhances equipment reliability [5-6]. 

The working environment of CNC machine tool ball screws 

is complex, and the vibration signals they produce are often 

contaminated by significant amounts of noise. These signals 

exhibit nonlinear and non-stationary characteristics [7], 

complicating the extraction of feature information and 

increasing the difficulty of fault diagnosis. Therefore, to 

extract fault features from the vibration signals more 

comprehensively, it is essential to analyze the time-frequency 

domain of the fault signals. Time domain analysis is suitable 

for intuitive feature extraction. Frequency domain analysis 

captures frequency information more comprehensively, but 

time-frequency analysis can distinguish dynamic 

characteristics and is more suitable for processing complex 

signals. At present, the commonly used time-frequency 

analysis methods include short-time Fourier transform (STFT) 

[8], wavelet transform [9] and S transform [10]. Because the 

short-time Fourier transform [11] uses a fixed short-time 

window function, it is essentially a single-resolution signal 

analysis method, and it is difficult to maintain good resolution 

in the time domain and frequency domain of non-stationary 

signals. Wavelet transform [12] has certain difficulty in 

selecting wavelet bases, and the data redundancy is serious, 

and the analysis results of different wavelet bases are also 

different. S transform [13] is a new time-frequency analysis 

tool with adjustable time-frequency resolution, which can 

meet the time-frequency analysis requirements of different 

frequency signals. Because of its superior anti-noise ability, S 

transform is particularly suitable for the analysis and 

processing of vibration signals. 

Guo et al. [14] employed the orthogonal matching pursuit 

(OMP) algorithm to eliminate harmonic signals while 

preserving impulse signals and noise. Wavelet analysis was 

utilized to perform a time-frequency transformation on the 

signal, and a deformable convolutional neural network was 

implemented for feature extraction and classification. The 

experimental results indicate that the accuracy of this method 

can reach 99.9% across various fault modes, enabling precise 

identification of rolling bearing faults. To address the 

challenge of end-to-end fault diagnosis, Wu et al. [15] 

developed a convolutional neural network that learns features 

directly from the original vibration signal before conducting 

fault diagnosis. The effectiveness of this proposed method 
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was validated using the PHM (Prediction and Health 

Management) 2009 gearbox challenge data and a planetary 

gearbox test bench. Liu et al. [16] identified the bearing fault 

frequency band based on the physical parameters of the 

bearing, constructed a sparse wavelet decomposition structure, 

and integrated it with a one-dimensional convolutional neural 

network for fault diagnosis. In [17], an adaptive convolutional 

neural network fault diagnosis model based on end-to-end 

recognition was employed to diagnose faults in cylindrical 

roller bearing cages, addressing the issues of instability and 

the lack of impact characteristics in rolling bearing cage fault 

signals. However, due to the limited receptive field of the 1D-

CNN, insufficient network depth, and the propensity for 

overfitting during the training process, the diagnostic 

accuracy remains low. Consequently, the performance of the 

1D-CNN in processing time-frequency signals is inferior to 

that of the 2D-CNN. 

Wang et al. [18] proposed a fault classification method 

based on multi-sensor information fusion. In this approach, 

time-domain vibration signals from multiple sensors 

positioned at different locations are organized into a two-

dimensional rectangular matrix. An improved two-

dimensional convolutional neural network (CNN) is then 

employed to perform signal classification. Zhang et al. [19] 

transformed the original one-dimensional signal into a two-

dimensional image, thereby eliminating the influence of 

expert experience on the feature extraction process. This 

method facilitates automatic feature extraction and fault 

diagnosis through a two-dimensional CNN. Wang et al. [20] 

introduced a general bearing fault diagnosis model that 

converts the original acceleration signal into a time-frequency 

image of the same dimensions. Furthermore, the standardized 

images generated by eight different time-frequency analysis 

methods are utilized to validate the effectiveness of the 

proposed method in two distinct cases. Additionally, Xie et al. 

[21] combined continuous wavelet transforms with a two-

dimensional CNN for the fault diagnosis of ball screws. The 

diagnostic results for various types of faults indicate that this 

method can reduce the uncertainty associated with manual 

feature extraction. Although the two-dimensional CNN 

possesses robust image processing capabilities and offers 

significant advantages in extracting fault features and 

enhancing diagnostic accuracy, it may not adequately 

prioritize certain critical features. 

Although the aforementioned research demonstrates strong 

performance in fault identification under a single working 

condition, challenges remain in accurately identifying fault 

types and achieving high classification accuracy for ball 

screws operating under complex conditions. To address these 

issues, this paper introduces a two-dimensional convolutional 

neural network (CNN) model integrated with an attention 

mechanism. The model transforms the collected one-

dimensional vibration signals into two-dimensional images 

using the S-transform as input. This time-frequency 

representation conveys more comprehensive fault information. 

Additionally, the traditional convolutional layer has been 

enhanced, and a multi-scale convolutional layer has been 

designed to extract more subtle and significant features in the 

horizontal direction. The integration of the attention 

mechanism with the two-dimensional CNN facilitates 

improved recognition of ball screw faults in CNC machine 

tools. The attention mechanism enhances focus on critical 

features, thereby increasing the accuracy of fault diagnosis. 

2. RELATED THEORIES 

2.1.  S transform 

The S-transform is a reversible time-frequency analysis 

technique that integrates the features of both the short-time 

Fourier transform and the wavelet transform. It overcomes the 

limitation of the short-time Fourier transform, which cannot 

modify the frequency of the analysis window, and incorporates 

the multi-resolution analysis of the wavelet transform while 

preserving a direct relationship with the Fourier spectrum [22]. 

The S-transform is defined as follows: 
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In the formula :  is time, control the position of the window 

function on the time axis ; ( )h t  is the analysis signal ; f  is 

the frequency ; ( ),S f  is the time-frequency spectrum 

matrix obtained by transformation. 

2.2. Convolutional neural network 

Convolutional Neural Networks (CNNs) are specialized 

neural networks designed for processing image data. They 

possess the capability to learn features and utilize a 

hierarchical structure to classify input information in a 

translation-invariant manner. The structure of a CNN is 

illustrated in Figure 1. 

 

Fig.1 The structure of CNN 

2.2.1 Convolution layer 

The convolutional neural network (CNN) extracts local 

features from the input data through convolution operations. 

Each convolutional kernel in the convolutional layer is 

designed to extract a specific feature, and multiple kernels can 

operate in parallel to capture various types of features. The 

mathematical model can be expressed as follows: 
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In the formula, X  is the input of the convolution layer, jM  

is the set of output feature maps of layer 1l − ,  is the weight 

matrix of the corresponding convolution kernel, b  is the bias 

term, l  is the number of convolution layers, i and j  are two 
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connected neurons, and f  is the activation function, which 

can improve the nonlinear expression ability of the network. 

The commonly used activation function of CNN is ReLU, 

which can be expressed as: 

 ( ) ( ) max 0, log 1 expf x x= +    (3) 

2.2.2 Pooling layer 

The pooling layer, also referred to as the downsampling layer, 

is primarily utilized to downsample the output of the 

convolutional layer, facilitating dimension reduction. Its main 

purpose is to decrease the number of parameters and enhance 

computational efficiency. The most common pooling methods 

are max pooling and average pooling, which are defined as 

follows: 

 
1[ ( ) ]l l

down i jy p X x b−= +  (4) 

In the formula, y  is the output of the pooling layer, downX  is 

the downsampling function, x  is the input, and 
l

jb  is the bias 

term. 

2.2.3 Full connected layer 

Before the output layer of the network is the fully connected 

layer. This layer operates as a fully connected neural network, 

integrating the features extracted from the preceding layer for 

classification or regression tasks. Each neuron in the fully 

connected layer is connected to all neurons in the previous 

layer. Additionally, each neuron in the network is 

interconnected with other neurons at various levels, thereby 

maximizing the number of parameters throughout the entire 

network. Its mathematical model can be expressed as follows: 

 ( )y f x b=  +  (5) 

In the formula, x  is the input matrix, y  is the output matrix,

f  is the activation function, and b  is the bias of the full 

connection layer. 

2.2.4 Multi-scale convolutional layer 

In this paper, we propose an enhanced version of the 

convolutional neural network (CNN), referred to as the multi-

scale convolutional neural network, for the fault diagnosis of 

ball screws in CNC machine tools. This method employs 

convolutional kernels of three different sizes to extract 

features from images processed using the short-time Fourier 

transform, as shown in Figure 2. Unlike the traditional vertical 

deepening approach (which involves convolution, pooling, 

and re-convolution), our method comprehensively extracts 

subtle and significant features in the horizontal direction.  

 

Fig.2 Multi-scale convolution layer diagram 

Through multi-layer convolution, the network 

progressively learns and extracts more abstract and 

semantically rich features from the original image, thereby 

achieving more accurate and effective feature extraction and 

processing of the input data. 

2.3. Attention mechanism 

The ball screw of CNC machine tools typically operates in 

environments subject to significant external loads, resulting in 

time-varying and nonlinear characteristics of its vibration 

signals. Consequently, under identical conditions, the signal 

characteristics obtained at different times may vary. Some 

features effectively convey fault information, while others 

may introduce interference, thereby impacting the model's 

generalization ability. The attention mechanism adaptively 

assigns weights to the features of different signal segments, 

filters information, emphasizes critical fault features, and 

suppresses irrelevant features. Its structure is illustrated in 

Figure 3. When provided with an intermediate feature map, 

the CBAM module infers the attention map along two 

independent dimensions: the channel attention mechanism 

and the spatial attention mechanism. It then multiplies the 

attention map with the input feature map for adaptive feature 

optimization. 

 

Fig.3 CBAM diagram 

The attention mechanism [23] was originally developed for 

machine translation, typically employing self-encoding to 

facilitate sequence conversion. This mechanism is inspired by 

the study of human vision and has been extensively applied in 

natural language processing and various other fields. The 

Convolutional Block Attention Module (CBAM) comprises 

two sub-modules: the channel attention module and the spatial 

attention module, which focus on channel and spatial 

information, respectively. The input image F (with high 

channel dimensions) is processed through both a maximum 

pooling layer and a global average pooling layer to generate a 

feature map with a height and width of 1. Subsequently, these 

feature maps are fed into two shared perceptron networks, 

which output results by summing them sequentially. The 

channel attention features are then produced after applying the 

activation function. 

 ( )CF M F F =   (6) 

 ( )sF M F F=     (7) 

In the formula; 
C W HF R   ,

1 1C

CM R   ,
1 H W

SM R   , 

F is the output image after fusion,  is the multiplication of 

corresponding elements, C W H、 、  represents the number 

of channels, width and height respectively ; F   is the channel 

' attention ' module picture, F   is the spatial ' attention ' 
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module picture, SM  is a one-dimensional channel attention 

map, and CM  is a two-dimensional spatial attention map. 

2.4.  Fault extraction based on MSCAM-CNN 

The single-scale convolution kernel often faces challenges in 

fully extracting fault features. To address this issue, we 

propose the MSCAM-CNN model, which facilitates the 

extraction and classification of multi-scale feature 

information. The feature extraction block consists of a 

convolutional layer, an activation layer, a batch normalization 

layer, and a pooling layer. The classification block includes a 

fully connected layer followed by a Softmax layer. Unlike 

single-scale convolution kernels, convolution kernels of 

varying scales can capture frequency features at different 

resolutions. Consequently, utilizing multi-scale convolution 

kernels for fault feature extraction provides richer feature 

information, thereby enhancing the accuracy and robustness 

of fault recognition. 

In the process of collecting the original fault signal, noise 

interference is inevitable. Compared to smaller convolution 

kernels, larger convolution kernels are more effective at 

suppressing high-frequency noise. Therefore, larger 

convolution kernels, specifically (3 × 3) and (5 × 5) are 

employed in the feature extraction block to mitigate high-

frequency noise across multi-scale information. By utilizing 

multiple parallel convolution kernels of varying sizes within 

the feature extraction block, fault information features of 

different scales are extracted and further abstracted. 

Ultimately, the fault features are identified and classified by 

classification blocks, where the fully connected layer consists 

of 200 neurons, and the softmax layer contains 10 neurons. 

 

Fig.4 The structure of MSCAM-CNN 

Table 1 

Model parameters 

Type of layer Parameters 

Input [batch, −1,32×32,1]   [batch, 1@32*32] 

Convolution layer filter= [3×3,1,8] strides = [1,1,1,1] padding= “SAME” [batch, 8@32*32] 

Pooling layer ksize = [1,2×2,1] strides = [1,2,2,1] padding= “SAME” [batch, 8@16*16] 

Convolution layer filter = [3×3,8,16] strides = [1,1,1,1] padding= “SAME” [batch, 16@16*16] 

Pooling layer ksize = [1,2×2,1 strides = [1,2,2,1] padding= “SAME” [batch, 16@8*8] 

Fully connected layer    [batch, 1*6] 

Classification layer    [batch, 1*6] 

 

The details of the MSCAM-CNN model presented in this 

paper are shown in Table 1. After extracting the features, it is 

essential to apply an activation function to enhance the 

model's nonlinear representation. The Rectified Linear Unit 

(ReLU) function has been chosen as the activation function. 

The expression is as follows: 
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Where x  is the output value of the convolution operation. 

3. BALL SCREW FAULT DIAGNOSIS PROCESS BASED 

ON MULTI-SCALE CONVOLUTION AND ATTENTION 

MECHANISM 

The structure of the MSCAM-CNN fault diagnosis model 

proposed in this paper is illustrated in Figure 5. As shown in 

Figure 5, the method presented here consists of three main 

stages: dataset construction, feature extraction, and fault 

identification and classification. Vibration signals from six 

different fault types are collected. Following sliding sampling, 

the time-frequency diagrams are generated, and the dataset is 

divided accordingly. In the feature extraction phase, fault 

information is obtained through a multi-scale convolution 

layer and an attention mechanism, ultimately leading to the 

identification and classification of fault types. A multi-scale 

convolution kernel is utilized to integrate features from the 

data across various time scales, facilitating the extraction of 

deep features. The attention mechanism effectively highlights 

significant information within the horizontal features, thereby 

amplifying the influential factors associated with this subset 

of features. This approach enhances the model's accuracy 

while reducing the risk of overfitting. The detailed steps are 

outlined as follows: 

 

Fig.5 Fault diagnosis model based on multi-scale convolution and attention mechanism 

1) Data preprocessing and division of the fault dataset. The 

S-transform is employed to convert one-dimensional vibration 

signals into two-dimensional images. Concurrently, 

classification labels are assigned, and the data is divided into 

a training set and a test set. 

2) Fault Feature Extraction. Convolutional kernels of 

various sizes (1x1, 3x3, and 5x5) are employed to design a 

multi-scale convolutional layer, enabling the extraction of 

features from images processed using the S-transform. 
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3)Initialize the network architecture and configure the 

hyperparameters. 

4)The training dataset for the model is input into the 

proposed MSCAM-CNN, after which the model is trained. 

5)The trained MSCAM-CNN model is employed for the 

fault diagnosis of mechanical equipment to evaluate its 

effectiveness and robustness in identifying faults. 

4. EXPERIMENTAL VERIFICATION ANALYSIS 

4.1.  Experimental data acquisition 

The ball screw of the CNC machine tool is used to collect fault 

data. The GD4010 screw is employed in the experiment, and 

its specific parameters are presented in Table 2.  

Table 2 

Process parameters of GD4010 ball screw 

Name Screw 

diameter 

Ball 

diameter 

Contact 

angle 

Screw lead 

angle 

unit d0 /mm db /mm α/ ° λ/ ° 

value 40 5.953 45 4.55 

The experimental device primarily consists of a 

YMC121A100 unidirectional IEPE acceleration sensor, a 

YMC9216 signal collector, and YMC9800 signal analysis 

software, along with a measured screw, motor, coupling, and 

power amplifier. 

The speed is 1,772 revolutions per minute (r/min), and 

vibration signals from various fault types are collected. 

Additionally, a 16-channel data recorder is employed to gather 

these vibration signals. The sample length is 1,024, and the 

sampling interval is 128. The specific method for dividing the 

training set and test set is presented in Table 3. 

 

Fig.6 Fault information acquisition test bench 

A sliding window technique was employed to perform non-

overlapping slicing operations on the original vibration signal, 

resulting in a time series sample for every 1,200 sample points. 

Each fault category contains 1,000 samples, leading to a total 

dataset of 6,000 samples. The training set and test set were 

divided in a ratio of 7: 3. 

Table 3 

Fault types and labels 

Label Ball screw state 
Number of 

trainings 

Number of 

tests 

1 Normal 700 300 

2 Screw raceway wear fault 700 300 

3 Rolling element wear fault 700 300 

4 
Misalignment fault of 

screw 
700 300 

5 Screw bending fault 700 300 

6 Screw pitting fault 700 300 

 

   
a) Normal state                                      b) Screw raceway wear                               c) Rolling element wear 

  
d) Screw misalignment                                     e) Screw bending                                             f) Screw pitting 

Fig.7 Time-domain waveform of fault signal 
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a) Normal state     b) Raceway pitting fault c) Rolling element fault d) Misalignment fault      e) Bending fault              f) Pitting fault 

Fig.8 S-transform diagram of fault signal 

 

                

Fig.9 STFT diagram of fault signal 

 

One-dimensional vibration signals have been collected, and 

the time-domain waveforms of each fault signal are presented 

in Figure 7. As illustrated in Figure 7, the time-domain 

waveform can only capture the fault characteristics within the 

time domain, and the extracted features do not fully represent 

the fault characteristics of the screw. Consequently, we employ 

the S-transform to process the time-domain signal, resulting in 

the time-frequency diagram shown in Figure 8. The horizontal 

axis represents time, while the vertical axis denotes frequency. 

It is evident that the two-dimensional feature matrix generated 

by the vibration signal processed through the S-transform 

contains a richer array of fault information, providing a solid 

foundation for subsequent fault classification. 

In order to compare the time-frequency conversion effects of 

the S-transform, the Short-Time Fourier Transform (STFT) is 

employed to perform time-frequency conversion on one-

dimensional time series signals. The results are illustrated in 

Figure 9. 

4.2. Model performance verification 

The hyperparameters of the model cannot be adjusted during 

training; they are typically established prior to the training 

process. The optimization and adjustment of hyperparameters 

play a crucial role in fault diagnosis research. The batch size 

for input samples is set to 32, and the learning rate is 0.01. The 

widely used Adam optimizer has been selected, and both 

training and validation samples are fed into the model for 

parameter initialization and training. As training progresses, 

the model's performance gradually improves. The accuracy of 

the model during training is illustrated in Figure 10. 

It can be observed from Figure 9 that the network achieves 

an accuracy of 90% on the training set after approximately 75 

iterations, which improves to 99% after 125 iterations. 

Concurrently, as the number of iterations increases, the 

network's loss value continues to decrease, as illustrated in 

Figure 11, indicating that the network has not been overfitted. 

 

Fig.10 Change curve of model training accuracy 

 

Fig.11 Loss variation curve 

 

Fig.12 Confusion matrix 
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To demonstrate the effectiveness of fault diagnosis, a 

confusion matrix is employed to visualize the model's results. 

The recognition outcomes for each fault sample are presented 

in the form of a confusion matrix, as shown in Figure 12. The 

horizontal axis of the confusion matrix represents the 

predicted labels of the screws, while the vertical axis 

represents the actual labels of the screws. 

From Figure 12, it is evident that the recognition of screw 

pitting is frequently misclassified as other conditions, while 

the recognition rates for the other five states are exceptionally 

high. The fault recognition rate reaches 100%, and the overall 

accuracy rate is 99.44%. This demonstrates that utilizing 

multi-feature extraction in conjunction with a fusion 

convolutional neural network is highly effective for fault 

recognition. 

 
a) Input layer feature vector t-SNE diagram 

 
b) Classification layer feature vector t-SNE diagram 

Fig.13 t-SNE diagram before and after recognition 

t-SNE (t-Distributed Stochastic Neighbor Embedding) [24] 

is a nonlinear manifold learning algorithm that represents the 

similarity between high-dimensional spatial data points in the 

form of probabilities. This technique utilizes t-SNE diagrams 

to evaluate the fault identification and classification 

capabilities of the model. As illustrated in Figure 13, panel (a) 

depicts the degree of aggregation of the input layer feature 

vectors, while panel (b) illustrates the degree of aggregation 

of the classification layer feature vectors. Prior to 

identification, the fault features are dispersed, exhibiting a 

high degree of confusion, which complicates the effective 

differentiation between various faults. However, following 

identification, the aggregation of fault features is enhanced, 

and the degree of confusion is significantly reduced. This 

improvement indicates that the identification and 

classification performance of the model presented in this 

paper has been enhanced. 

In order to verify the effectiveness of the proposed model, 

the S Transform-CNN model is compared with the S 

Transform-CNN-SVM model and the S Transform-CNN-

BiGRU model. The original one-dimensional data is utilized, 

and the S Transform is applied to generate a time-frequency 

diagram. The total number of data iterations is set to 1,000. 

It can be observed from Figure 14 that the accuracy of 

network fault recognition using multi-scale feature extraction 

and a spatial attention mechanism is 3.33% higher than that of 

traditional convolutional neural networks. Compared to the 

CNN-SVM and CNN-BiGRU models, the recognition 

accuracy of the model presented in this paper is significantly 

greater. This indicates that the proposed model effectively 

extracts fault features and demonstrates superior fault 

diagnosis capabilities. 

 

Fig.14 Comparison of accuracy of different models 

To compare the diagnostic accuracy of various time-

frequency images using the model proposed in this paper, we 

employed the Short-Time Fourier Transform (STFT) and the 

S-transform for time-frequency image conversion. The results 

of the diagnostic accuracy are presented in Table 4. It is 

evident that the average diagnostic accuracy of the method 

proposed in this paper reaches 98.48%, while the average 

diagnostic accuracy of the STFT method is 96.79%. This 

demonstrates that the method outlined in this paper exhibits 

superior performance in terms of model accuracy. 

Table 4 

Diagnostic accuracy results 

Type of time-frequency diagram Average diagnostic accuracy 

S-transform 98.48% 

STFT 96.79% 

4.3. Robustness analysis 

Due to the potential disturbances caused by noise during the 

operation of machine tools under real working conditions, it 

is essential to consider the impact of noise on fault diagnosis, 

particularly concerning the ball screw of CNC machine tools. 

Various noises with differing signal-to-noise ratios were 

added to the original signal, and the diagnostic results are 

illustrated in Figure 15. The data indicate that when the signal-

to-noise ratio ranges from 40 to 60 dB, the addition of noise 
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to the original signal results in a slight decrease in accuracy. 

However, the accuracy consistently remains above 95%. The 

model presented in this paper demonstrates high diagnostic 

accuracy, indicating that its structure possesses significant 

robustness. 

This robustness is attributed to the S-transform, which 

converts the vibration signal from the time domain to the time-

frequency domain. This transformation allows for flexible 

selection of the noise suppression region across various 

frequency ranges, effectively mitigating the influence of noise 

while preserving the essential information of the signal. 

Additionally, the convolutional and pooling layers enhance 

the filtering effects. 

 

Fig.15 Robustness comparison 

4.4. Analysis of generalization ability 

Precision, Recall, and F1_score are introduced as the primary 

evaluation metrics for assessing a model's generalization 

ability. These values characterize the adaptability of 

diagnostic algorithms to various fault modes and evaluate the 

overall performance of the model. The specific definitions are 

as follows: 

 

2
1_

TP
Precision

TP FP

TP
Recall

TP FN

P R
F score

P R


= +




=
+
 

= +

 (9) 

Among these terms, TP stands for true positive (normal 

samples correctly identified as normal), FN denotes false 

negative (normal samples incorrectly identified as faulty), and 

FP signifies false positive (faulty samples incorrectly 

identified as normal). 

 By comparing the evaluation metrics of CNN-BiGRU, 

CNN-SVM, CNN, and the model presented in this paper, the 

results are illustrated in Fig. 16. It is evident that the accuracy, 

recall rate, and F1 score of the model proposed in this paper 

surpass those of the other models by approximately 2% or 

more. This indicates that the model also demonstrates strong 

performance in terms of generalization ability. 

 

Fig.16 Precision, recall and F1 _ score of different models 

5. CONCLUSIONS 

In this paper, the S-transform is employed to convert a one-

dimensional vibration signal into a two-dimensional time-

frequency image. Multi-scale feature extraction and an 

attention mechanism are utilized to extract fault information. 

Ultimately, fault recognition and classification are achieved 

using a two-dimensional convolutional neural network. The 

main conclusions are as follows: 

(1) The time-frequency analysis of nonlinear and unstable 

vibration signals is performed using the S-transform. This 

method capitalizes on the advantages of the S-transform in 

both the time and frequency domains, thereby offering more 

comprehensive information for input into two-dimensional 

neural networks. 

(2) The designed multi-scale feature extraction module 

effectively captures fault information across an extended time 

scale while achieving a larger receptive field, thereby 

enhancing the model's feature extraction capabilities. The 

attention mechanism prioritizes the critical features present in 

the fault information, which improves the accuracy of fault 

diagnosis. 

(3) The experimental results demonstrate that the proposed 

method outperforms traditional machine learning fault 

diagnosis techniques in terms of accuracy and robustness in 

fault identification. While the model exhibits exceptional 

diagnostic capabilities in the presence of significant noise, it 

does not sufficiently evaluate the effectiveness of fault 

identification under varying operational conditions. Future 

research will focus on fault diagnosis across diverse working 

environments. 

REFERENCES 

[1] J.Chen et al., “Toward intelligent machine tool.” Engineering, vol.5, n

o.4, pp. 679-690.2019, doi: 10.1016/j.eng.2019.07.018 

[2] X.Wei, J. Mao, “Research advance on geometric error recognition algo

rithm for CNC machine tools.”2020 3rd World Conference on Mechan

ical Engineering and Intelligent Manufacturing (WCMEIM). 2020, pp.

170-174, doi:10.1109/WCMEIM52463.2020.00042 

[3] Z. Wang et al., “A high-accuracy intelligent fault diagnosis method for

 aero-engine bearings with limited samples.” Computers in Industry, v

ol.159, 2024, doi: 10.1016/j.compind.2024.104099. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10 

[4] C.Li et al., “A review of static and dynamic analysis of ball screw feed

 drives, recirculating linear guideway, and ball screw.” International Jo

urnal of Machine Tools and Manufacture, vol.188, no.1,2023, doi: 10.

1016/j.ijmachtools.2023.104021 

[5] J. Li, L. Hu, “Review of machine learning for predictive maintenance.”

 Computer Engineering and Applications, vol.56, no.21, pp.11-19.202

0. 

[6] P. Kumar, AS. Hati, “Review on machine learning algorithm based fau

lt detection in induction motors.” Archives of Computational Methods i

n Engineering, vol.28, no.3, pp.1929-1940 ,2021, doi: 10.1007/s11831

-020-09446-w. 

[7] M. Saman Azari, F. Flammini, S. Santini, M. Caporuscio, “A systemati

c literature review on transfer learning for predictive maintenance in in

dustry 4.0.” IEEE access, vol.11, pp. 12887-12910,2023, doi: 10.1109/

ACCESS.2023.3239784. 

[8] L.Wang, Y. Xie, Z. Zhou, “Asynchronous motor fault diagnosis based 

on convolutional neural network.” Journal of Vibration, Measurement 

and Diagnosis, vol.37, no.6, pp.1208-1215,2017, doi: 10.16450/j.cnki.i

ssn.1004-6801.2017.06.021 

[9] K. Hadad, M. Pourahmadi, H. Majidi-Maraghi, “Fault diagnosis and cl

assification based on wavelet transform and neural network.” Progress

 in nuclear energy, vol.53, no.1, pp.41-47,2011, doi: 10.1016/j.pnucen

e.2010.09.006 

[10] G. Li et al., “Sensor data-driven bearing fault diagnosis based on deep 

convolutional neural networks and S-transform.” Sensors, vol.19, no.1

2, 2019, doi: 10.3390/s19122750. 

[11] H. Geraei et al., “A noise invariant method for bearing fault detection a

nd diagnosis using adapted local binary pattern (ALBP) and short-time

 Fourier transform (STFT).” IEEE Access, vol.12, pp.107247,107260,2

024, doi:10.1109/ACCESS.2024.3438106 

[12] Bowen. Li et al., “Self-iterated extracting wavelet transform and its ap

plication to fault diagnosis of rotating machinery.” IEEE Transactions 

on Instrumentation and Measurement, vol.73, pp. 1-17,2024, doi: 10.1

109/TIM.2024.3370784. 

[13] W. Liu et al., “Time-Reassigned Multisynchrosqueezing S-Transform f

or Bearing Fault Diagnosis.” IEEE SENSORS JOURNAL, vol.23, no.1

9, pp. 22813-22822,2023, doi:10.1109/JSEN.2023.3303879. 

[14] J. Guo et al., “Bearing intelligent fault diagnosis based on wavelet tran

sform and convolutional neural network.” Shock and Vibration, vol.20

20, no.1, pp.1-14,2020, doi: 10.1155/2020/6380486. 

[15] C. Wu et al., “Intelligent fault diagnosis of rotating machinery based o

n one-dimensional convolutional neural network.” Computers in Indust

ry, vol.108, pp. 53-61,2019, doi: 10.1016/j.compind.2018.12.001. 

[16] X. Liu et al., “One dimensional convolutional neural networks using sp

arse wavelet decomposition for bearing fault diagnosis.” IEEE Access, 

vol.10, pp. 86998-87007,2022, doi: 10.1109/ACCESS.2022.3199381. 

[17] Y. Zhen et al., “Fault diagnosis of cylindrical roller bearing cage based

 on 1D convolution neural network.” Journal of Vibration and Shock, v

ol.40, no.19, pp.230-238,2021, doi: 10.13465/j.cnki.jvs.2021.19.029 

[18] J. Wang et al., “Fault diagnosis of bearings based on multi-sensor infor

mation fusion and 2D convolutional neural network.” IEEE access, vol

.9, pp. 23717-23725,2021, doi: 10.1109/ACCESS.2021.3056767. 

[19] J. Zhang et al., “A new bearing fault diagnosis method based on modifi

ed convolutional neural networks.” Chinese Journal of Aeronautics，v

ol.33，no.2, pp.439-447,2020, doi: 10.1016/j.cja.2019.07.011. 

[20] J. Wang et al., “A deep learning method for bearing fault diagnosis bas

ed on time-frequency image.” IEEE Access, vol.7, pp. 42373-42383,20

19, doi: 10.1109/ACCESS.2019.2907131. 

[21] Z. Xie et al., “Ball screw fault diagnosis based on continuous wavelet t

ransform and two-dimensional convolution neural network.” Measure

ment and Control, vol.56, no.3-4, pp.518-528, 2023, doi: 10.1177/0020

2940221107620. 

[22] R.G. Stockwell, L. Mansinha, R. P. Lowe, "Localization of the comple

x spectrum: the S transform", IEEE Transactions on Signal Processing

, Vol.44, pp.998 - 1001, 1996, doi: 10.1109/78.492555. 

[23] H. Wang et al., “Data-Augmentation Based CBAM-ResNet-GCN Met

hod for Unbalance Fault Diagnosis of Rotating Machinery.” IEEE Acc

ess, vol.12, pp.34785-34799,2024, doi: 10.1109/ACCESS.2024.33687

55. 

[24] J. Soni, N. Prabakar, H. Upadhyay, “Visualizing high-dimensional data

 using t-distributed stochastic neighbor embedding algorithm.” Princip

les of data science, pp.189-206,2020, doi: 10.1007/978-3-030-43981-1

_9. 

 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


