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Abstract: This study aims to enhance damage detection methods for the agricultural sector
in Ukraine, which has been severely affected by ongoing conflict. While existing approaches,
such as the method by Kussul et al. (2023), are among the best for monitoring damage,
they are limited by the use of static threshold coefficients that can lead to inaccurate results,
particularly false positives. To address these issues, we introduce a new approach using
Symbiotic Artificial Intelligence (SAI), which integrates human oversight with machine
learning to enable real-time adjustments to detection sensitivity based on field-specific
characteristics. The proposed SAI-based method was tested using high-resolution satellite
imagery from MAXAR for fields in Donetsk and Kherson. Results demonstrated a significant
reduction in false positive rates, from 8.5% to approximately 1%, while maintaining a high
rate of correctly identified undamaged areas. However, a slight decrease in true positive
detections was observed, indicating a necessary balance between false positive reduction and
sensitivity to actual damage. The SAI method effectively minimized false detections at field
boundaries and other non-damage-related anomalies. This approach showcases the potential
of combining human expertise with AI to improve accuracy and adaptability in damage
detection. While the results are promising, further research should focus on automating the
adjustment of detection thresholds for broader application, such as developing regression
models to optimize field-specific coefficients.

Keywords: remote sensing, Symbiotic Artificial Intelligence, human interaction, agricul-
tural field anomaly detection, agricultural damage

0

TheAuthor(s). 2025 OpenAccess. This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

https://doi.org/10.24425/agg.2025.150688
mailto:omparkhomchuk@gmail.com
http://orcid.org/0009-0000-9184-5604
mailto:sofi.drozd.13@gmail.com
http://orcid.org/0000-0002-5149-5520
mailto:andrii.shelestov@gmail.com
http://orcid.org/0000-0001-9256-4097
mailto:geor.polina@gmail.com
http://orcid.org/0009-0002-6242-5218
mailto:omparkhomchuk@gmail.com
http://creativecommons.org/licenses/by/4.0/


2 Oleksandr Parkhomchuk, Sofiia Drozd, Andrii Shelestov, Polina Mikava

1. Introduction

Ukraine, a major global agricultural producer, is facing severe disruptions due to ongoing
conflict, which has profoundly affected its agricultural sector and food supply chains.
Monitoring and accurately assessing damage to agricultural fields amidst such conflict
presents significant challenges due to restricted access and threats to human safety in
affected regions.

Satellite-based remote sensing offers a practical solution, enabling field monitoring
from space. Satellite data is widely utilized in the agricultural sector for various applica-
tions, offering unique insights into crop health, yield predictions, and damage assessments.
For instance, Sentinel-2 and MODIS satellite images have been effectively used to predict
crop yields, as seen in studies by Becker-Reshef et al. (2010), Shammi andMeng (2021) and
Aslan et al. (2024). These satellite-based models provide reliable yield forecasts, essential
for food supply chain planning. Remote sensing data is also valuable for calculating culti-
vated areas, with studies like those by Zhu et al. (2019) using high-resolution imagery to de-
lineate agricultural land and improve monitoring accuracy. Additionally, satellite data aids
in detecting the impacts of natural disasters on agriculture. For instance, Garzón and Valán-
szki (2020) assessed damage from hail using satellite imagery, while Gitelson et al. (2019)
and Wu et al. (2023) explored satellite-based drought impact assessments on crop health.

Key studies specifically addressing damage detection using satellite imagery in conflict
or disaster zones include: Mueller et al. (2021) applied machine learning to MODIS
and Sentinel-2 data to monitor destruction in conflict zones, showing how satellite
imagery can accurately capture agricultural and environmental damage. Avtar et al. (2021)
highlighted remote sensing’s role in international peace and security, demonstrating
how satellite images help assess the impact of armed conflicts on agricultural areas,
specifically in post-conflict reconstruction planning. Goswami and Nayak (2022) focused
on the use of AI-enhanced satellite data for optimizing agricultural resilience, showing
how satellite images reveal the extent of crop damage post-disaster, informing recovery
strategies. Eklund et al. (2017) analyzed land use changes in conflict zones affected by ISIS
occupation, using Landsat data to observe declines in agricultural activity, emphasizing
remote sensing’s value in damage assessment. Butsic et al. (2015) investigated the
environmental effects of warfare in the Democratic Republic of Congo, using Landsat
to track deforestation linked to conflict, highlighting the indirect impacts on agriculture
and resource availability. Alvarez (2003) explored the impacts of Colombia’s conflict on
forest conservation and agricultural land use, utilizing satellite imagery to show shifts in
land use and environmental degradation.

Existing methods for detecting agricultural damage, while effective in certain contexts,
often face limitations in accuracy or fail to provide regularly updated data, sometimes
focusing only on specific areas. For instance, Duncan and Skakun (2023) utilized a
U-Net-based deep neural network with ultra-high spatial resolution satellite imagery,
successfully detecting even small craters. However, their research was confined to a
limited region in Donetsk Oblast. Meanwhile, Kussul et al. (2022) conducted bi-weekly
analyses across all of Ukraine throughout 2022, employing an NDVI-based change
detection approach. Despite its wide application, this method lacked sufficient reliability
in accurately identifying damage.
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The most promising approach for detecting damage to Ukraine’s agricultural fields
has been developed by Kussul et al. (2023). This methodology leverages free Sentinel-2
satellite imagery combined with a random forest classifier to identify damaged fields,
complemented by anomaly analysis of spectral bands and vegetation indices to detect
localized damage. While effective, this approach relies on static threshold coefficients,
which may not adapt well to the unique characteristics of each field, such as variations
in vegetation, soil type, and landscape features. As a result, the method can be overly
sensitive in some areas, mistaking natural variations for damage, or insufficiently sensitive
in others, missing actual war-induced damage. This lack of adaptability can lead to both
false positives and false negatives, compromising the accuracy of damage assessment.
The key limitation lies in the rigidity of autonomous AI systems, which can result in
frequent errors without human oversight to adjust and refine the model’s behavior.

To address these challenges, this study proposes an enhanced method based on
Symbiotic Artificial Intelligence (SAI) – a collaborative AI framework that integrates
human supervision to modify model parameters in real time. SAI’s flexibility enables
dynamic adjustment of sensitivity settings based on the specific features and anomalies
of individual fields, substantially reducing false-positive rates. Although applications of
human-AI collaboration in agricultural damage assessment are still emerging, similar
approaches in other sectors have shown significant success. For example, in medical
diagnostics, combining human expertise with AI has improved disease detection accuracy
(Hussain, W., 2024). Additionally, in organizational decision-making, human-AI integra-
tion has enhanced problem-solving capabilities. Calabrese et al. (2023) demonstrated the
effectiveness of human-AI collaboration in examining the relationship between sustainable
development and industry, while Taggio et al. (2024) highlighted the potential of SAI
for Earth observation applications. These studies underscore the growing momentum
behind SAI research and its broadening scope. We hypothesize that SAI could serve
as an effective tool for overcoming the limitations of Kussul et al. (2023) method in
detecting agricultural damage. Specifically, we believe that integrating human expertise
to dynamically set threshold coefficients, paired with AI-driven anomaly detection, will
help reduce false positives and improve overall accuracy in damage assessment.

2. Materials and methods

2.1. Kussul et al. (2023) damage detection methodology

This study expands upon the methodology developed Kussul et al. (2023) utilizing
Sentinel-2 satellite data to assess the damage to agricultural lands from military actions in
Ukraine, integrating the latest approach based on symbiotic artificial intelligence (SAI).
Kussul et al. (2023) highlighted the spectral bands B2 (blue) and B3 (green), as well
as vegetation indices such as NDVI (Normalized Difference Vegetation Index) and GCI
(Green Chlorophyll Index), as particularly effective for identifying damage in satellite
imagery. Through comprehensive analysis, they determined that bands B2 and B3 offer
high sensitivity for this purpose. Specifically, B2 is effective in detecting lighter areas that



4 Oleksandr Parkhomchuk, Sofiia Drozd, Andrii Shelestov, Polina Mikava

indicate white craters resulting from shelling, while B3 is useful for highlighting darker
areas, such as burn marks or disrupted soil. This combination of spectral characteristics
allows for distinguishing damaged regions from undamaged agricultural areas.

The study also established standard threshold coefficients k for each spectral band
and index to facilitate consistent damage detection across various areas and time periods
(Table 1).

Table 1. The coefficient k for different spectral bands and indexes Kussul et al. (2023)

index or
spectral band coefficient k

NDVI 0.5

GCI 1

GCI(1) −0.7

B2 −0.7

B3 0.4

Detection of damage using spectral bands involves identifying anomalous pixel values
within a field based on the following formula:

Banddam =

{
1, if Bandmean − Band > k · BandstdDev
0, if Bandmean − Band ≥ k · BandstdDev

. (1)

In this formula, Band represents the pixel values in the B2 and B3 spectral bands of
the Sentinel-2 satellite, Bandmean is the average band value within the field, BandstdDev is
the standard deviation of the band’s pixel values within the field, and k is the threshold
coefficient. Band B2 is used for recognizing light areas, while band B3 is sensitive to dark
craters. To calculate NDVI and GCI for damage analysis, the following formulas are used:

NDVI =
(NIR + RED)
(NIR − RED)

, (2)

GCI =
(NIR)

(GREEN − 1)
. (3)

For Sentinel-2 data, the band assignments are: GREEN = B2, BLUE = B3, RED =
B4, and NIR = B8. To detect damage in agricultural fields using GCI (suitable for areas
with low vegetation) and NDVI (used for fields with high vegetation), the analysis follows
these formulas:

Indexdiff = Indexfiltred − Indexreal, (4)

threshold = Indexdiffmean + k · IndexdiffstdDev, (5)

Indexan =

{
1, if Indexdiff − k · threshold < 0
0, if Indexdiff − k · threshold ≥ 0 . (6)
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Separate damage masks are generated for dark crater (Indexblack) and light crater
(Indexwhite). These masks are then combined to produce a comprehensive damage map
that highlights all affected pixels within the field:

DamageIndex = or Greendam · Indexblack
Bluedam · Indexwhite

. (7)

The coefficient k in this context is critically important as it determines the algo-
rithm’s sensitivity to damage detection. Increasing this parameter raises the threshold for
identifying damages, making the algorithm more conservative and potentially reducing
the number of false positive detections (Fig. 1), but it may also lead to missing some
truly damaged pixels. Conversely, decreasing this parameter makes the algorithm more
sensitive, increasing the risk of false positives but ensuring better detection of smaller or
less obvious damages Shelestov et al. (2023).

Fig. 1. An example of false-positive results of the method of Kussul et al. (2023) caused by static threshold
coefficients

Adjusting the k coefficient is therefore essential for fine-tuning the model’s accuracy
and ensuring reliable damage identification across agricultural fields.

2.2. SAI for improving the method of Kussul et al. (2023)

This study introduces the application of symbiotic artificial intelligence (SAI), guided by
human input, to refine the threshold coefficients in the methodology proposed by Kussul
et al. (2023). The goal is to adapt these thresholds according to vegetation density and
geographical context to improve the accuracy of crater detection in satellite imagery.
Regional variability plays a crucial role; for example, the landscape characteristics of the
Kherson region differmarkedly from those of the Luhansk region. Applying a uniform set of
standard coefficients across different regions can negatively impact identification precision.

By allowing human experts to adjust threshold coefficients, Kussul et al. (2023) method
can be tailored to specific regions, seasons, and the unique attributes of individual satellite
images. This flexibility enhances the reliability and accuracy of damage detection, ensuring
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that the methodology remains effective across diverse environments and conditions. Fig-
ure 2 presents the proposed algorithm that integrates SAI into Kussul et al. (2023) method,
aiming to achieve more precise and adaptable results in satellite-based damage detection.

Fig. 2. The scheme of the proposed improvement using the SAI algorithm of damage detection in agricultural
fields by the method of Kussul et al. (2023)

The process begins by selecting the target field for analysis. This field is then used to
search for craters using the anomaly detection method developed by Kussul et al. (2023)
with default threshold coefficients. These coefficients serve as initial settings for the
detection algorithm. Next, we manually adjust these threshold coefficients to improve the
accuracy of the detection. After making adjustments, we run Kussul et al. (2023) damage
detection algorithm again. This iterative process involves visually assessing the changes
in damage detection based on satellite imagery. We repeat this cycle of adjustment and
evaluation until we achieve satisfactory results. Once we have established the optimal
threshold coefficients for each index and channel, the overall extent of damage is then
quantified. For validating the proposed method, we plan to use MAXAR data (Bennett et
al., 2022; Sticher et al., 2023) that are closest in date to the Sentinel-2 satellite imagery.
The selected areas for this study are the Kherson and Luhansk regions, as they have
been most impacted by military activity. Given that MAXAR data are commercial and
acquiring them involves considerable expenses, we propose using Google Earth Pro, which
provides open-access MAXAR data composites. Utilizing MAXAR satellite imagery,
craters resulting from shelling will be manually digitized, creating a 10 m resolution crater
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mask that serves as a reference for validation. The validation process will compare two
methods – the SAI-enhanced approach and the original method Kussul et al. (2023) – by
calculating the pixels corresponding to the resultant damage mask and analyzing them
with the following formulas:

Damagevalidation =
damaged shellingSymbiotic AI − damaged shellingdefault coef

Actual positives
· 100%,

(8)
where TP is the number of correctly detected damage pixels, TN is the number of correctly
undetected damage pixels, FP is the number of damaged pixels that were not detected
by mistake, FN is the number of undamaged pixels that were mistakenly detected as
damaged, Actual positives is the number of pixels indicating damage to the field according
to Maxar data, Actual negatives is the number of undamaged pixels to the field according
to Maxar data damaged shellingSymbiotic AI is the number of pixels indicating damage to
the field according to the proposed method based on SAI, damaged shellingdefault coef is
the number of pixels indicating damage according to the method Kussul et al. (2023).
Figure 3 illustrates the research fields in the Kherson and Luhansk regions where the
validation will be conducted.

Fig. 3. Research area

These regions were chosen for their differing landscape properties, which significantly
impact the accuracy of damage detection. The application of symbiotic artificial
intelligence is therefore justified for enhancing the method’s adaptability and precision
in these diverse terrains.
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3. Results and discussion

According to the results of our study, the modified method based on Symbiotic Artificial
Intelligence (SAI) with human-guided parameter adjustment significantly improved the
accuracy of method Kussul et al. (2023). Figure 4 shows the accuracy results of applying
the method Kussul et al. (2023) and the proposed method based on SAI.

Fig. 4. Comparison of the accuracies of method with standard coefficients Kussul et al. (2023b) and the
method with Symbiotic AI

Figure 4 compares the effectiveness of two methodologies in detecting agricultural
damage due to military activity: (1) Kussul et al. (2023) method using static coefficients
and (2) the proposed SAI-based approach with adaptive coefficients. The graph illustrates
how the SAI method reduces the FPR by approximately 8%, from 8.6% to around 0,7%,
highlighting its improved accuracy in identifying undamaged pixels while acknowledging
an increase in false negatives due to coefficient adjustments (from 40.7% to 51.7%). Thus,
the SAI model’s dynamic coefficient adjustments significantly lower the FPR compared
to Kussul et al. (2023) method, resulting in fewer undamaged areas mistakenly flagged
as damaged. However, this improvement in precision comes with an increased FNR,
meaning some true damages may go undetected. This trade-off has practical implications.
Lower FPR enhances the model’s utility in focusing resources on genuinely damaged
areas, essential in resource-limited recovery efforts. However, the higher FNR could mean
that some affected areas remain unidentified, potentially delaying interventions in those
regions and impacting crop recovery planning. To mitigate this, future improvements
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could include adaptive thresholds or automated re-checks for high-risk zones, balancing
FPR and FNR based on specific application needs. Thus, while the SAI model’s reduced
FPR streamlines damage assessment, adjustments may be needed to ensure comprehensive
coverage in real-world applications. Visualization of the results is presented in Figure 5.

Fig. 5. Spatial Detection of Military-Induced Damage in Agricultural Fields in Luhansk and Kherson Regions

Figure 5 showcases two methods applied to detect field damage from military
actions: (a) Kussul et al. (2023) method in Luhansk with static coefficients, (b) SAI
method in Luhansk with adaptive thresholding, (c) Kussul et al. (2023) in Kherson, and
(d) SAI method in Kherson. The SAI method, with dynamic coefficients, reduces false
identifications, especially along field boundaries, demonstrating enhanced accuracy around
craters and minimizing anomalies that do not indicate damage. In analyzing the detection
results for the Kherson and Luhansk regions (Fig. 5), distinct environmental characteristics
reveal how regional differences affect the model’s accuracy. From Figure 5(a,b) we can
see, that field in Kherson region is characterized by relatively flat terrain and dense
agricultural vegetation during the growing season, Kherson’s high vegetation density
increases reflectance variability, making it challenging for the model to differentiate natural
vegetation changes from actual damage. The SAI model’s dynamic coefficient adjustments
mitigate some of these challenges by adapting sensitivity based on field conditions, though
occasional misclassifications persist due to the complex vegetation. However, the model
accurately detects large-scale damage, indicating reliable performance in areas with
strong visual contrasts. Figure 5(c,d) demonstrates that field in Luhansk region differs
with more varied terrain, sparser agricultural vegetation, and a significant presence of
forested areas. The reduced agricultural vegetation density and increased forest cover
allow the model to detect damage patterns more clearly, as the lower natural variability in
open fields minimizes false positives. The forested areas, however, introduce complexity,
as tree cover can obscure certain ground-level changes, potentially leading to missed
detections (higher FNR) in small or shaded damaged zones. Nevertheless, the SAI model
achieves improved accuracy here, as adjustments to coefficients better distinguish between
undisturbed forested areas and cratered soil typical of conflict-impacted landscapes. These
regional differences highlight the need to tailor detection thresholds to environmental
conditions. In regions like Kherson with dense agriculture, conservative adjustments
reduce false positives, while in areas like Luhansk with more forest cover and lower
agricultural density, increased sensitivity improves detection accuracy. Adapting the SAI
model to account for these regional characteristics can significantly enhance its overall
reliability across diverse landscapes. Looking toward future applications, the proposed
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model’s potential for automating the coefficient adjustment process could significantly
enhance its scalability and effectiveness across extensive agricultural areas in Ukraine.
To achieve this, we plan to train a regression model based on the coefficients collected
during the initial assessments. This regression model will analyze field-specific variables,
such as vegetation stage, geographical characteristics, and spectral responses, enabling
it to predict and adapt threshold coefficients dynamically for diverse conditions. By
automating this adjustment process, the model will no longer require manual fine-tuning,
making it feasible for large-scale implementation and ensuring consistent accuracy across
varied agricultural landscapes. This automation will streamline the damage detection
process, offering a robust tool for ongoing monitoring and rapid assessment in Ukraine and
potentially in other regions affected by similar conditions. Our future research will focus on
building a regression model to automate the selection of optimal threshold coefficients for
agricultural damage detection, leveraging the insights gained from this study’s Symbiotic
AI-based coefficient adaptation. This regression model will be designed to dynamically
determine thresholds based on environmental variables (e.g., vegetation density, soil type,
and regional climate), improving the model’s adaptability to various landscapes.

4. Conclusion

In this study, a novel method based on symbiotic artificial intelligence (SAI) guided by
human intervention was implemented to enhance the accuracy of war damage detection,
improving upon the existing approach developed by Kussul et al. (2023). The innovative
aspect of this method lies in its ability to modify coefficients, allowing for the adjustment
of the model’s sensitivity according to the unique landscape and vegetation characteristics
of specific fields. This flexibility makes it particularly useful for adapting to varying
environmental conditions, ensuring that the damage detection process remains robust
across different terrains.

A detailed comparison between the proposed SAI-based method and the original
Kussul et al. (2023) method was conducted. The findings demonstrated that the SAI-
enhanced method significantly reduces the false positive rate by 8%, thereby improving
the precision of war damage identification. This improvement is crucial for minimizing
incorrect damage assessments, which can lead to more accurate decision-making in
post-conflict recovery efforts. However, the analysis also highlighted an increase in false
negatives due to coefficient adjustments, rising from 40.7% to 51.7%.

The developed SAI method currently requires ongoing manual calibration of dynamic
coefficients. This manual process, while effective on a smaller scale, presents challenges
when scaling up to larger areas due to the significant time and labor involved. To address this
limitation, future research will focus on automating this process by developing a regression
model capable of determining the threshold coefficients automatically for each field. To
support this automation, a comprehensive dataset will be collected using the method estab-
lished in this study, laying the groundwork for more efficient and widespread application.

The automated regression model is expected to streamline the adaptation process,
enabling the method to maintain high accuracy without manual intervention. This
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advancement would significantly enhance the practicality and scalability of the SAI-
based approach, making it a more viable solution for extensive war damage assessments.
Ultimately, the improvements outlined in this research have the potential to support better
resource allocation and contribute to the efficient recovery and rehabilitation of affected
agricultural sectors.
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