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Abstract: This paper analyzes the transient thermal field in a system of two parallel con-
ductors. The skin and proximity effects are taken into account. An analytical method based 
on Green’s function is developed to determine the field distributions. The Green's function 
was determined analytically, and due to the complex forms of the expressions describing 
the current densities, the integrals resulting from the Green's identity were calculated nu-

merically. In addition, important parameters determining the dynamics of the conductors 
were also calculated: heating curves and thermal time constants. The influence of selected 
material parameters on the corresponding thermal field distributions is examined. The cal-
culation results are positively verified using the finite element method. 
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1. Introduction 

 

The analysis of thermal fields in electrical conductors and wires typically focuses on steady-

state conditions, which are crucial to determining critical parameters such as the steady-state 

current rating [1, 2]. Transient temperature fields are studied much less frequently. However, 

they allow for the determination of the dynamic properties of conductors and wires, for instance, 

under power-on conditions, load changes, or short circuits. Knowledge of transient temperature 

distributions is also essential when analyzing intermittent or periodic operation [3, 4], where a 

conductor may be overloaded with a current exceeding the steady-state current rating. 

Transient thermal fields in wires and cables can be calculated using analytical methods, 

numerical methods, their combinations, or methods based on thermoelectric analogy. Among 

these, the numerical methods [5–9] are the most widely used. They enable the analysis of systems 

with complex geometries and take into account the heterogeneity and non-linearity of materials. 
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The finite element method (FEM) [5–7] dominates among the numerical methods, while the 

finite difference method (FDM) [8, 9] is used less frequently. Another important group are 

methods based on thermoelectric analogy [10–13]. In this approach, different layers of the wire 

or cable are modeled using lumped like RC elements.  

The last group of the aforementioned methods for calculating the unsteady thermal field in 

conductors and wires consists of analytical methods. These methods mainly focus on solving the 

partial heat conduction equation with appropriate boundary and initial conditions. Their main 

advantage is the possibility of obtaining solutions in the form of analytical expressions, enabling 

the determination of the field distribution at any point in the model. Additionally, they facilitate 

the physical interpretation of results, the analysis of the influence of the parameters, and the 

derivation of approximation and asymptotic dependencies [14, 15]. Analytical methods have 

been used in transient state calculations in several studies [16–19]. In [16], an unsteady one-

dimensional thermal field was determined in a cylindrical wire, taking into account the skin 

effect. The variable separation method was used to solve the appropriate mathematical model. 

In [17], the unsteady thermal field was determined in a tubular busbar, taking into account its 

variable resistivity with temperature. In this case, Green's function was used for the calculations. 

In turn, in [18] the unsteady thermal field was determined in the ACCR line, taking into account 

the influence of the wind, using the method of separation of variables for calculations. In these 

studies [16–18], a convective heat exchange with the surrounding environment was assumed on 

the external surface of the model (third-kind boundary condition). In turn, in [19] the unsteady 

thermal field in the cable was determined by assuming an adiabatic boundary condition (i.e., no 

heat exchange on the external surface). This solution is correct for relatively short time intervals. 

In [19], the variable separation method was used for the calculations. 

The purpose of this article is to determine the unsteady thermal field in a system of two 

parallel conductors placed close to each other, taking into account both the skin and proximity 

effects [20–22]. Furthermore, in addition to determining the field distributions, other important 

transient parameters, such as heating curves and thermal time constants, were also determined. 

For this purpose, an analytical method based on the Green's function was developed. The Green's 

functions were determined analytically, and due to the complex forms of the expressions 

describing the current densities, the integrals resulting from the Green's identity were calculated 

numerically.  

 

 

2. Mathematical model of the system 

 

The subject of the analysis is a system of two parallel conductors placed close to each other 

(Fig. 1), separated by a distance d. It is assumed that both conductors have identical radii and 

that their length is much greater than the transverse dimension, defined as the sum of twice the 

diameter of the conductors and the distance between them. The system is assumed to be at 

ambient temperature T0 and shielded from direct sunlight. The thermal field in the conductors is 

generated by the flow of alternating current from the time t = 0 with the root-mean-square (RMS) 
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values of I1 and I2, in the left and right conductors, respectively (Fig. 1). It is assumed that the 

conductors are placed relatively close to each other so that the electromagnetic field of one 

conductor penetrates the other and vice versa, inducing eddy currents in the conductors 

(proximity effect). With the above assumptions, the transient thermal field in the conductors will 

depend on time and, in the cylindrical coordinate system adopted in the following, on two 

geometric coordinates (r - radial coordinate, and φ - angular coordinate). 

 

 

Fig. 1. A system of two identical conductors placed parallel to one other 

 

To facilitate the solution of the mathematical model defined below, the temperature increase 

relative to the ambient temperature T0 is defined as follows: 

 𝑣𝑖(𝑟, 𝜙, 𝑡) = 𝑇𝑖(𝑟, 𝜙, 𝑡) − 𝑇0 , (1) 

where vi (r,φ,t) denotes the temperature increase, T0 is the ambient temperature, i is the conductor 

index and t is the time. 

The non-stationary temperature increase, considering the previously stated assumptions, is 

described by the two-dimensional heat conduction equation [23, 24] of the following form: 

 
∂2𝑣𝑖(𝑟,𝜙,𝑡)

∂𝑟2 +
1

𝑟

∂𝑣𝑖(𝑟,𝜙,𝑡)

∂𝑟
+

1

𝑟2

∂𝑣𝑖
2(𝑟,𝜙,𝑡)

∂𝜙2 −
1

𝜒

∂𝑣𝑖(𝑟,𝜙,𝑡)

∂𝑡
= −

𝑔𝑖(𝑟,𝜙)

𝜆
, (2) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,   t > 0,   i = 1, 2,  

where: χ = λ/cδ, λ is the thermal conductivity of the conductor, c is the specific heat, δ is the 

density. The heat source term gi (r,φ) in Eq. (2) depends on the current density in the conductors 

and is defined as follows: 

 𝑔𝑖(𝑟, 𝜙) =
|𝐽𝑖(𝑟,𝜙)|2

𝛾
, (3) 

where γ is the electrical conductivity of the conductor. 

The current densities Ji (r,φ) in Eq. (3) include both the component resulting from the skin 

effect and proximity effect. The following analysis uses the results from [25], which provide 

approximate expressions for current densities in a system of two parallel conductors, as shown 

in Fig. 1: 
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 𝐽1(𝑟, 𝜙) =
𝐼1

𝜋𝑅2

Γ𝑅

2

𝐼0(Γ𝑟)

𝐼1(Γ𝑅)
∓

𝐼2

𝜋𝑅2 Γ𝑅 ∑ (−1)𝑛 (
𝑅

𝑑
)

𝑛 𝐼𝑛(Γ𝑟)

𝐼𝑛−1(Γ𝑅)
cos( 𝑛∞

𝑛=1 𝜙), (4) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,  

 𝐽2(𝑟, 𝜙) = ±
𝐼2

𝜋𝑅2

Γ𝑅

2

𝐼0(Γ𝑟)

𝐼1(Γ𝑅)
±

𝐼1

𝜋𝑅2 Γ𝑅 ∑ (
𝑅

𝑑
)

𝑛 𝐼𝑛(Γ𝑟)

𝐼𝑛−1(Γ𝑅)
cos( 𝑛∞

𝑛=1 𝜙), (5) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,  

where Γ = √𝑗2𝜋𝑓𝜇0𝛾, μ0 is the magnetic permeability, 𝑗 = √−1 is the imaginary unit, f is the 

frequency. The upper and lower signs in Eqs. (4) and (5) correspond to the same and opposite 

directions of current flow, respectively. The functions In (…) are the modified Bessel functions 

of order n. The first terms in Eqs. (4) and (5) describe the current densities resulting from the 

skin effect, while the second terms, expressed as series, correspond to the proximity effect 

components. These expressions were derived in [25] based on the solution of Helmholtz’s 

equation [26], using Maxwell’s classical equations and the magnetic vector potential. 

The described mathematical model of the thermal field is supplemented with boundary and 

initial conditions. It is assumed that the external surfaces of the conductors dissipate heat to the 

surroundings according to Newton’s law [23, 24]. This is expressed by the Hankel boundary 

condition: 

 
∂𝑣𝑖(𝑟,𝜙,𝑡)

∂𝑟
|

𝑟=𝑅
= −

ℎ

𝜆
⋅ 𝑣𝑖(𝑅, 𝜙, 𝑡), (6) 

 for  0 ≤ φ ≤ 2π,   t > 0,   i = 1, 2,  

where h is the heat transfer coefficient. 

As previously assumed, the system of conductors is heated by current starting from time 

t = 0. This results in zero initial conditions with respect to the temperature increase. 

 𝑣𝑖(𝑟, 𝜙, 𝑡 = 0) = 0, (7) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,   i = 1, 2.  

Equations (1)–(7) presented above form the mathematical model of the thermal field. 

 

 

3. Green’s function 

 

The mathematical model (1)–(7) defined in the previous section was solved using the Green’s 

function [27, 28]. The main advantage of the Green’s function is that it does not depend on 

forcing (heat sources). Additionally, compared to the frequently used state superposition method 

[23], it is not necessary to determine the steady and transient components separately. Moreover, 

the solutions obtained using the Green's function are in integral form and are usually 

characterized by high convergence. In the analyzed system (for a single conductor), the 

boundary-initial problem for Green’s function (G = G(r,φ,t;,θ,)) is formulated as follows: 
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∂2𝐺

∂𝑟2 +
1

𝑟

∂𝐺

∂𝑟
+

1

𝑟2

∂𝐺2

∂𝜙2 −
1

𝜒

∂𝐺

∂𝑡
= −

1

𝜒𝑟
𝛿(𝑟 − 𝜌)(𝜙 − 𝜃)(𝑡 − 𝜂), (8) 

 for   0 ≤ r, ≤ R,   0 ≤ φ,θ ≤ 2π,   t ≥ ,  

 
∂𝐺

∂𝑟
|

𝑟=𝑅
= −

ℎ

𝜆
[𝐺]|𝑟=𝑅, (9) 

 for   0 ≤ φ,θ ≤ 2π,   t ≥ ,  

 𝐺 = 0   for   t < , (10) 

 𝐺(𝑟, 𝜙, 𝑡 ; 𝜌 , 𝜃, 𝜂) = 𝐺(𝜌, 𝜃, −𝜂 ; 𝑟 , 𝜙, −𝑡), (11) 

where the right-hand side of Eq. (8) is the product of the shifted Dirac impulses (in space with 

respect to , θ and in time with respect to t). In the considered system, the unsteady temperature 

increase, using the Green’s function can be expressed by the following integral relation: 

 𝑣𝑖(𝑟, 𝜙, 𝑡) =
𝜒

𝜆
∫ ∫ ∫ 𝑔𝑖(𝜌, 𝜃)𝐺(𝑟, 𝜙, 𝑡 ; 𝜌 , 𝜃, 𝜂)𝜌d𝜌d𝜃d𝜂

𝑡

0

2𝜋

0

𝑅

0
, (12) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,   t > 0,   i = 1, 2,  

where gi (,θ) is described by the relationship (3) (after replacing  → r, θ → φ). The integral 

relation (12) given above results from the application of the second Green's identity to the 

corresponding components of the previously defined problems (1)–(7) and (8)–(11) as well as 

the use of the properties of the Green's function and Dirac's delta. The condition for determining 

the solution based on (12) is knowledge of the Green's function G(...). To obtain it, a method of 

solving two simpler (e.g., homogeneous) problems can be used [28], in which one of them was 

solved using the Green's function. Then, by utilizing an appropriate comparison, it is possible to 

determine the Green's function. For this purpose, a homogeneous problem for the function 

(r,φ,t) is defined below and then solved using two methods. 

 
∂2Θ(𝑟,𝜙,𝑡)

∂𝑟2 +
1

𝑟

∂Θ(𝑟,𝜙,𝑡)

∂𝑟
+

1

𝑟2

∂Θ2(𝑟,𝜙,𝑡)

∂𝜙2 −
1

𝜒

∂Θ(𝑟,𝜙,𝑡)

∂𝑡
= 0, (13) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,   t > 0,  

 
∂Θ(𝑟,𝜙,𝑡)

∂𝑟
|
𝑟 = 𝑅

= −
ℎ

𝜆
Θ(𝑅, 𝜙, 𝑡), (14) 

 for   0 ≤ φ ≤ 2π,   t > 0,  

 ),()0,,(  rFtr ==    for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π, (15) 

where F(r, φ) is an arbitrary distribution of the initial condition. 

In the first step, the problem (13)–(15) was solved using the method of separation of variables 

[23, 24]. By applying this method and eliminating non-physical solutions, the general solution 

to (13)–(15) was obtained in the form: 
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Θ(𝑟, 𝜙, 𝑡)                                                                                                        

= ∑ ∑ 𝐽𝑚 (𝛼𝑚𝑛
𝑟

𝑅
) ⋅ (𝐵𝑚𝑛 cos( 𝑚𝜙) + 𝐶𝑚𝑛 sin( 𝑚𝜙))𝑒

−𝛼𝑚𝑛
2 𝜒

𝑅2𝑡∞
𝑛=1

∞
𝑚=0

, (16) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,   t > 0,  

where Jm(...) are Bessel functions of the first kind of order m, Bmn, Cmn are unknown coefficients 

and αmn are eigenvalues. Subsequently, the eigenvalues αmn were determined from the eigenvalue 

equation, which was obtained by substituting (16) into the boundary condition (14). 

 𝐽𝑚+1(𝛼𝑚𝑛) −
𝑚

𝛼𝑚𝑛
𝐽𝑚(𝛼𝑚𝑛) −

𝑅ℎ

𝛼𝑚𝑛𝜆
𝐽𝑚(𝛼𝑚𝑛) = 0, (17) 

where αmn is numerically computed from Eq. (17) above. 

The unknown coefficients Bmn and Cmn in (16) were determined using the initial condition 

(15). For this purpose, (16) was substituted into (15) and obtained: 

 ∑ ∑ 𝐽𝑚 (𝛼𝑚𝑛
𝑟

𝑅
) ⋅ (𝐵𝑚𝑛 cos( 𝑚𝜙) + 𝐶𝑚𝑛 sin( 𝑚𝜙)) = 𝐹(𝑟, 𝜙)∞

𝑛=1
∞
𝑚=0 . (18) 

The relationship (18) was successively multiplied by rJk(αki r/R)cos(kφ) and by 

rJk (αki r/R)sin(kφ), and the resulting expressions were integrated with respect to the radial 

coordinate in the interval < 0,R > and the angular coordinate in the interval < 0,2π >. As a result 

of these operations, and after using the orthogonality of the Bessel and trigonometric functions 

in the appropriate intervals, the coefficients Bmn and Cmn were obtained. 

 𝐵𝑚𝑛 =
2 ∫ ∫ 𝑟𝐹(𝑟,𝜙)

2𝜋
0

𝑅
0 𝐽𝑚(𝛼𝑚𝑛

𝑟

𝑅
) cos(𝑚𝜙)d𝑟d𝜙

𝜋𝑅2(𝐽𝑚
2 (𝛼𝑚𝑛)−𝐽𝑚−1(𝛼𝑚𝑛)𝐽𝑚+1(𝛼𝑚𝑛))

, (19) 

 𝐵0𝑛 =
∫ ∫ 𝑟𝐹(𝑟,𝜙)

2𝜋
0

𝑅
0 𝐽𝑚(𝛼0𝑛

𝑟

𝑅
)d𝑟d𝜙

𝜋𝑅2(𝐽0
2(𝛼0𝑛)+𝐽1

2(𝛼0𝑛))
, (20) 

 𝐶𝑚𝑛 =
2 ∫ ∫ 𝑟𝐹(𝑟,𝜙)

2𝜋
0

𝑅
0 𝐽𝑚(𝛼𝑚𝑛

𝑟

𝑅
) sin(𝑚𝜙)𝑑r𝑑ϕ

𝜋𝑅2(𝐽𝑚
2 (𝛼𝑚𝑛)−𝐽𝑚−1(𝛼𝑚𝑛)𝐽𝑚+1(𝛼𝑚𝑛))

. (21) 

The coefficient B0n in (20) was determined separately. Its value is two times smaller than Bmn 

for m = 0. In the following analysis, the separate notation for this component was omitted, 

showing only the corresponding modification at m = 0. In the next step of the solution, the 

variables under the integrals in (19)–(21) were changed, i.e., r → , φ → θ, and then the 

modified (19)–(21) were substituted into the general solution (16). The obtained solution was 

compared with the general solution of the same problem in (13)–(15) and expressed using the 

Green’s function. This solution depends only on the initial condition F(r, φ) and has a similar 

form to (12) [28]. Finally, after appropriate comparison of the solutions under the integrals and 

also taking into account that t → t- [28], the desired Green’s function was obtained. 

 

𝐺(𝑟, 𝜙, 𝑡 ; 𝜌 , 𝜃, 𝜂)                                                                                                           

=
2

𝜋𝑅2
∑ ∑

𝐽𝑚(𝛼𝑚𝑛
𝑟

𝑅
)⋅𝐽𝑚(𝛼𝑚𝑛

𝜌

𝑅
)

𝐽𝑚
2 (𝛼𝑚𝑛)−𝐽𝑚−1(𝛼𝑚𝑛)𝐽𝑚+1(𝛼𝑚𝑛)

cos[ 𝑚(𝜙 − 𝜃)]𝑒
−𝛼𝑚𝑛

2 𝜒

𝑅2(𝑡−𝜂)∞
𝑛=1

∞
𝑚=0

 () 
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 for   0 ≤ r, ≤ R, 0 ≤φ,θ ≤ 2π,   t ≥ ,  

where, for the component m = 0, the right-hand side of Eq. (22) should be divided by 2. 

 

 

4. Unsteady thermal field of conductors and their thermal parameters 

 

The unsteady thermal field of the conductors was determined based on Eq. (12). For this 

purpose, Green's functions (22) were substituted into (12). After taking into account the 

definition of the increment (1) and analytically calculating the integral with respect to  time, the 

unsteady temperature distributions in the conductors were obtained. 

 𝑇𝑖(𝑟, 𝜙, 𝑡) = 𝑇0 +
2

𝜋𝜆
∑ ∑ ∫ ∫ 𝐷𝑚𝑛𝑖(𝜌, 𝜃) (1 − 𝑒

−𝛼𝑚𝑛
2 𝜒⋅𝑡

𝑅2 )
2𝜋

0

𝑅

0
𝜌d𝜌d𝜃∞

𝑛=1
∞
𝑚=0 , (23) 

 for   0 ≤ r ≤ R,   0≤ φ ≤2π,   t > 0,   i = 1, 2,  

where 

 𝐷𝑚𝑛𝑖(𝜌, 𝜃) =
𝐽𝑚(𝛼𝑚𝑛

𝑟

𝑅
)⋅𝐽𝑚(𝛼𝑚𝑛

𝜌

𝑅
)𝑔𝑖(𝜌,𝜃) cos[𝑚(𝜙−𝜃)]

𝛼𝑚𝑛
2 (𝐽𝑚

2 (𝛼𝑚𝑛)−𝐽𝑚−1(𝛼𝑚𝑛)𝐽𝑚+1(𝛼𝑚𝑛))
, (24) 

and gi (,θ) was determined using the relationship (3), after replacing  → r, θ → φ, and the right 

side of (23) for m = 0 should be divided by 2. Due to the complicated form of the heat sources 

gi (r,φ) (which include modules of current density), an analytical calculation of the integrals in 

Eq. (23) is practically impossible. 

From Eq. (23) given above, for 𝑡 → ∞, it was possible to obtain the stationary temperature 

distributions in the conductors which, among other things, were useful in calculating the steady-

state current rating. 

 𝑇𝑖(𝑟, 𝜙) = 𝑇0 +
2

𝜋𝜆
∑ ∑ ∫ ∫ 𝐷𝑚𝑛𝑖(𝜌, 𝜃)

2𝜋

0

𝑅

0
𝜌d𝜌d𝜃∞

𝑛=1
∞
𝑚=0 , (25) 

 for   0 ≤ r ≤R, 0 ≤ φ ≤ 2π,   i = 1, 2,  

where for the term m = 0, the previously mentioned modification should be considered. 

An important thermal parameter of conductors that determines the dynamics of the thermal 

field is the thermal time constant. It enables, among other things, the estimation of the duration 

of the transient state. In order to determine it, the well-known criterion of the averaged time 

constant was used [29, 30]. 

 𝜏𝑖(𝑟, 𝜙) = ∫
𝑇𝑖(𝑟,𝜙,𝑡)−𝑇𝑖(𝑟,𝜙,𝑡→∞)

𝑇𝑖(𝑟,𝜙,𝑡=0)−𝑇𝑖(𝑟,𝜙,𝑡→∞)

∞

0
d𝑡, (26) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,  i = 1, 2.  

After substituting (23) into Eq. (26), calculating the integral with respect to time and after 

appropriate simplification, the thermal time constants of the conductors were obtained. 
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 𝜏𝑖(𝑟, 𝜙) =
𝑅2

𝜒

∑ ∑ ∫ ∫
𝐷𝑚𝑛𝑖(𝑟,𝜙)

𝛼𝑚𝑛
2 𝜌d𝜌d𝜃

2𝜋
0

𝑅
0

∞
𝑛=1

∞
𝑚=0

∑ ∑ ∫ ∫ 𝐷𝑚𝑛𝑖(𝑟,𝜙)𝜌d𝜌d𝜃
2𝜋

0
𝑅

0
∞
𝑛=1

∞
𝑚=0

, (27) 

 for   0 ≤ r ≤ R,   0 ≤ φ ≤ 2π,  

and for m = 0 the appropriate modification should be applied. 

 

 

5. Computational examples 

 

Thermal field distributions (including eigenvalues) and thermal parameters were calculated 

using Mathematica software [31]. As a computational example, a system of two identical copper 

conductors with opposing current flow directions was considered. The following data were 

assumed: 

 

𝑅 =  0.009772 m,   𝜆 =
 360 W

mK
,   𝐼1 =  𝐼2 =  532.65 A, 𝑇0 =  20°C,

𝛾 =  5.28262 ·
 107 S

m
,   𝑐 =

 400 J

kgK
, 𝛿 =  8700 kg/m3,   

  𝑓 =  50 Hz,   𝜇0 =  4𝜋 ·  10 − 7 H/m,   ℎ =  6 W/m2K,   𝑑 =  0.05 m.

 (28) 

The calculated results of the unsteady thermal field in the conductors and the appropriate 

parameters are presented graphically. Figure 2 shows two-dimensional field distributions in both 

conductors at the times: t = 1 000 s, t = 2 000 s, t=3 000 s and t → ∞ (steady state). Figure 3 

shows the heating curves obtained from Eq. (23) on the perimeter of the conductor at φ = π / 2, 

located on the left side of Fig. 1. In addition, for comparison purposes, the heating curve with 

respect to direct current, i.e., without taking into account the skin and proximity effect, was also 

plotted in Fig. 3. The discussed heating curve was also obtained from Eq. (23), in which the 

efficiency of the heat sources (3) was defined as go = I0
 /πR2 (where the direct current I0 was 

assumed to be equal to the rms value of the AC current given in the data set (28)). An important 

aspect is the discussion of the impact of the heat transfer coefficient on the thermal field 

distribution. Its value is generally difficult to estimate due to the varying cooling conditions and 

arrangement of the conductor. Therefore, Figure 4 presents the heating curves for the same 

conductor (and the same point as above), but for the different heat transfer coefficients. The 

aforementioned heating curves were plotted using the same current load, given in the data set 

(28). Subsequently, the thermal time constants of the conductors were determined using Eq. (27). 

Due to the high thermal conductivity of copper, the time constants practically do not depend on 

the geometric coordinates and are the same for both conductors. For the data set (28), the thermal 

constant is τ  (r,φ) ≈ τ = 2834 s. Additionally, calculations showed that the thermal time constants 

are independent of the heat sources gi
 (r,φ) and have the same values for both direct and 

alternating current loading of the conductors. However, the thermal time constant significantly 

depends on the cooling conditions (i.e., the heat transfer coefficient). Therefore, Fig. 5 illustrates 

its dependence as a function of the heat transfer coefficient on the conductor perimeter for 

φ = π /2, located on the left side of Fig. 1. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 2. Temperature field distributions in the conductors at times: (a) t = 1 000 s; (b) t = 2 000 s; (c) 
t = 3 000 s; (d) t → ∞ (steady state) 
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In order to verify the correctness of the developed formulas (23) for I = 1, 2 describing the 

transient thermal field in the conductors, the boundary-initial value problem (1)–(7) was solved 

again. This was carried out using the finite element method (FEM) [32]. The analytical approach 

developed in this paper and the FEM represent completely different solution methods. In the 

FEM analysis, the COMSOL Multiphysics software [33] was used. The discrepancy between the 

results was evaluated using the following relationship: 

 𝛿(𝑟, 𝜙, 𝑡) = 𝑇𝐴(𝑟, 𝜙, 𝑡) − 𝑇𝑁 (𝑟, 𝜙, 𝑡), (29) 

where TA(r,φ,t) is the temperature distribution obtained using the analytical method (calculated 

in Mathematica program), and TN (r,φ,t) is the temperature distribution obtained using the finite 

element method. Figure 6 shows the relation (29) at the perimeter of the conductor for φ = π / 2, 

located on the left side of Fig. 1. At other points of both conductors, the differences (29) are 

almost identical to those shown in Fig. 6. Moreover, both methods yield two-dimensional field 

distributions of identical shapes. 

 

 

Fig. 3. Heating curves for alternating current TAC and direct current TDC at the perimeter of conductor 2, at 
the point φ = π / 2, with current I1 = I2 = 532.65 A 
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Fig. 4. Heating curves at the perimeter of conductor 2 at φ = π / 2, for selected values of the heat transfer 
coefficient, with current I1 = I2 = 532.65 A 

 

 

Fig. 5. Dependence of the time constant on the heat transfer coefficient h, at the perimeter of conductor 2 
at φ = π / 2 
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Fig. 6. Temperature differences (29) at the perimeter of conductor 2 at φ = π / 2 between the results 
obtained using the analytical method developed in the article and the finite element method (FEM) 

 

 

6. Conclusions 

 

This article examines the transient thermal field in a system of two parallel conductors, taking 

into account the skin and proximity effects. On the basis of analysis, the following conclusions 

can be drawn: 

– The analysis of the two-dimensional temperature distributions in the conductors 

Figs. 2(a)−(d) shows that the temperature distributions are symmetrical with respect to the 

vertical axis between the conductors. This symmetry holds for identical current loading, 

regardless of whether the current flows in the same or opposite directions. All of the above 

figures show that the temperature maxima in the conductors are shifted from the center of the 

conductors towards their outer surfaces. Furthermore, from Figs. 2(a)–(d) it can be observed that, 

as time increases, the temperature maximum in the conductors shifts more towards their center. 

The reason for this is the uneven distribution of current density (4)–(5) resulting from the 

proximity and skin effect, as well as the influence of the boundary condition. The small 

temperature differences observed in Figs. 2(a)–(d) are caused by the high thermal conductivity 

of copper. 

– Considering the influence of the skin and proximity effects, the heating curve for alternating 

current rises to a higher temperature than that for direct current (Fig. 3). At the end of the 

unsteady state (t = 12 000 s), the temperature difference between the heating curves mentioned 

above is approximately 1.38°C. This is physically due to the higher electrical resistance of the 

conductor for alternating current, which leads to increased heat generation and consequently to 

a higher temperature of the conductor. Since the thermal time constant is independent of heat 

sources, both heating curves are characterized by the same rate of increase. 
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– Changes in the heat transfer coefficient significantly affect the thermal parameters of the 

conductors (Fig. 4 and Fig. 5). An increase in this coefficient, for example, due to improved 

cooling conditions, results in a lower conductor temperature (Fig. 4) and simultaneously shortens 

the duration of the transient state (Fig. 5). 

– The thermal time constant of the conductors is independent of the heat sources (forcing). 

This conclusion is also confirmed by the electrical time constants of the RC and RL circuits, in 

which the time constants also do not depend on the excitation. In the analyzed system, using data 

set (28), the estimated duration of the transient state can be approximated as 4τ ≈ 11 336 s. 

Determining this duration is particularly important in the case of intermittent and periodic 

operation. 

– The defined temperature differences (29) between the heating curves calculated by the 

analytical method and the finite element method do not exceed 0.34°C. Slightly smaller 

discrepancies are observed at the beginning and end of the transient duration. 

– In future research, the method presented in this paper will be applied to the analysis of more 

complex systems, such as insulated conductors. This will make it possible to investigate, among 

other things, the impact of the skin effect and proximity effect on a key parameter of insulated 

conductors - their steady-state current rating. In the analysis of the above-mentioned system, it 

will be necessary to include additional boundary conditions related to the continuity of 

temperature and heat flux at the interfaces between regions. 

 

 

Acknowledgment 
The paper was prepared at Bialystok University of Technology within a framework of the WZ/WE-
IA/7/2023 project funded by Ministry of Education and Science, Poland 

 

 

References 
[1] Anders G.J., Rating of electric power cables in unfavorable thermal environment, Wiley-IEEE Press 

(2005). 
[2] Papailiou K.O., Overhead lines, Springer (2021). 
[3] Agrawal K.C., Electrical power engineering: reference & applications handbook, Taylor & Francis 

(2007). 
[4] Lejdy B., Sulkowski M., Electrical installations in building structures, Wydawnictwo Naukowe PWN 

(in Polish) (2019). 

[5] Nahman J., Tanaskovic M., Determination of the current carrying capacity of cables using the finite 
element method, Electric Power Systems Research, vol. 61, no. 2, pp. 109–117 (2002), DOI: 
10.1016/S0378-7796(02)00003-2. 

[6] Ghoneim S.S.M., Ahmed M., Sabiha N.A., Transient thermal performance of power cable ascertained 
using finite element analysis, Processes, vol. 9, no. 3, 438 (2021), DOI: 10.3390/pr9030438. 

[7] De Menezes E.A.W., Lisbôa T.V., Marczak R.J., A novel finite element for nonlinear static and dy-
namic analyses of helical cables, Engineering Structures, vol. 293, 116622 (2023), DOI: 
10.1016/j.engstruct.2023.116622. 

[8] Hanna M.A., Chikhani A.Y., Salama M.M.A., Thermal analysis of power cable systems in a trench in 
multi-layered soil, IEEE Transactions on Power Delivery, vol. 13, no. 2, pp. 304–309 (1998), DOI: 
10.1109/61.660894. 

Earl
y A

cce
ss

https://www.sciencedirect.com/science/article/pii/S0378779602000032
https://doi.org/10.3390/pr9030438
https://doi.org/10.1016/j.engstruct.2023.116622
https://doi.org/10.1109/61.660894


This paper has been accepted for publication in the AEE journal. This is the version, which has  
not been fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2025.155956 

 

14 

 

[9] Garrido C., Otero A.F., Cidras J., Theoretical model to calculate steady-state and transient ampacity 
and temperature in buried cables, IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 667–678 
(2003), DOI: 10.1109/TPWRD.2002.801429. 

[10] Chatzipanagiotou P., Chatziathanasiou V., Dynamic thermal analysis of a power line by simplified RC 
model networks: theoretical and experimental analysis, International Journal of Electrical Power and 
Energy Systems, vol. 106, pp. 288–293 (2019), DOI: 10.1016/j.ijepes.2018.10.009. 

[11] Mahairi M.G., Mohamed B., Arboleya P., Thermal model of DC conductors for railway traction net-
works: A hosting capacity assessment, Electric Power Systems Research, vol. 230, 110262 (2024), 

DOI: 10.1016/j.epsr.2024.110262. 
[12] Zhang Z., Deng X., Liang L., Wang X., Chen Y., Ruan J., Temperature field calculation and thermal 

circuit equivalent analysis of 110 kV core cable Joint, Processes, vol. 12, 463 (2024), DOI: 
10.3390/pr12030463. 

[13] Enescu D., Colella P., Russo A., Thermal Assessment of Power Cables and Impacts on Cable Current 
Rating: An Overview, Energies, vol. 13, 5319 (2020), DOI: 10.3390/en13205319. 

[14] Morgan V.T., Findlay R.D., Derrah S., New formula to calculate the skin effect in isolated tubular 
conductors at low frequencies, IEE Proceedings - Science, Measurement and Technology, vol. 147, 

no. 4, pp. 169–171 (2000), DOI: 10.1049/ip-smt:20000420. 
[15] Faria J.A.B., Raven M.S., On the success of electromagnetic analytical approaches to full time-domain 

formulation of skin effect phenomena, Progress In Electromagnetics Research M, vol. 31, pp. 29–43 
(2013), DOI: 10.2528/PIERM13042405. 

[16] Barletta A., Zanchini E., Time averaged temperature distribution in a cylindrical resistor with alter-
nating current, Warme - Und Stoffubertragung, vol. 29, pp. 285–290 (1994), DOI: 
10.1007/BF01578412. 

[17] Gołębiowski J., Zaręba M., Analytical modelling of the transient thermal field of a tubular bus in 

nominal rating, Compel - The International Journal for Computation and Mathematics in Electrical 
and Electronic Engineering, vol. 38, no. 2, pp. 642–656 (2019), DOI: 10.1108/COMPEL-02-2018-
0078. 

[18] Zaręba M., Gołębiowski J., The thermal characteristics of ACCR lines as a function of wind speed - 
an analytical approach, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 70, no. 2, 
e141006 (2022), DOI: 10.24425/bpasts.2022.141006. 

[19] Gong Y., Guo X., Transient thermal analysis of power cable-considering skin effect, Proceedings of 
the International MultiConference of Engineers and Computer Scientists (IMECS), Hong-Kong, 
pp. 767–770 (2015). 

[20] Kazimierczuk M., High-frequency magnetic components, John Wiley & Sons (2013).  
[21] Wojda R.P., Thermal analytical winding size optimization for different conductor shapes, Archives of 

Electrical Engineering, vol. 64, no. 2, pp. 197–214 (2015), DOI: 10.1515/aee-2015-0017. 
[22] Arslan S., Tarimer İ., Güven M.E., Investigation of current density, magnetic flux density, and ohmic 

losses for single-veined, Litz and foil structured conductors at different frequencies, Pamukkale Uni-
versity Journal of Engineering Sciences, vol. 19, no. 3, pp. 195–200 (2013), DOI: 10.5505/pa-
jes.2013.36844. 

[23] Latif M.J., Danesh-Yazdi A.H., Heat conduction, Springer (2024). 

[24] Wang L., Zhou X., Wei X., Heat conduction: mathematical models and analytical solutions, Springer-
Verlag (2008). 

[25] Jabłoński P., Szczegielniak T., Kusiak D., Piątek Z., Analytical-numerical solution for the skin and 
proximity effect in two parallel round conductors, Energies, vol. 12, no. 18, 3584 (2019), DOI: 
10.3390/en12183584. 

[26] Arfken G.B., Weber H.J., Mathematical methods for physicists, sixth edition, Elsevier Academic Press 
(2005). 

[27] Janicki M., De Mey G., Napieralski A., Application of Green’s functions for analysis of transient 

thermal states in electronic circuits, Microelectronics Journal, vol. 33, pp. 733–738 (2002), DOI: 
10.1016/S0026-2692(02)00057-5. 

[28] Hahn D.W., Ozisik M.N., Heat conduction, John Wiley&Sons (2012). 

Earl
y A

cce
ss

https://doi.org/10.1109/TPWRD.2002.801429
https://doi.org/10.1016/j.ijepes.2018.10.009
https://doi.org/10.1016/j.epsr.2024.110262
https://doi.org/10.3390/pr12030463
https://doi.org/10.3390/en13205319
https://digital-library.theiet.org/doi/10.1049/ip-smt%3A20000420
http://dx.doi.org/10.2528/PIERM13042405
https://doi.org/10.1007/BF01578412
https://doi.org/10.1108/COMPEL-02-2018-0078
https://doi.org/10.1108/COMPEL-02-2018-0078
https://doi.org/10.24425/bpasts.2022.141006
https://doi.org/10.1515/aee-2015-0017
https://dx.doi.org/10.5505/pajes.2013.36844
https://dx.doi.org/10.5505/pajes.2013.36844
https://doi.org/10.3390/en12183584
https://doi.org/10.1016/S0026-2692(02)00057-5


This paper has been accepted for publication in the AEE journal. This is the version, which has  
not been fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2025.155956 

 

15 

 

[29] Sikora R., Electromagnetic field theory, Wydawnictwo Naukowo-Techniczne (in Polish) (1998). 
[30] Brykalski A., Über die eindringzeit des elektromagnetischen feldes in leiter, Archiv für Elektrotech-

nik, vol. 68, pp. 299–304 (1985), DOI: 10.1007/BF01845943. 
[31] Wolfram Research, Mathematica, Version 11.1. Wolfram Research Inc. (2017). 
[32] Canuto C., Quarteroni A.,  Zampieri T., Finite element methods for differential equation, Springer 

(2022). 
[33] COMSOL Multiphysics, Reference Manual, Version 5.0, COMSOL AB (2014). 

Earl
y A

cce
ss

https://doi.org/10.1007/BF01845943



