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Abstract

This article examines the advancement of predictive maintenance (PdM) for industrial assets
through an innovative methodology that categorises diagnostic parameters into coherent groups.
Predictive maintenance constitutes a vital component in mitigating unforeseen downtime and
improving operational efficiency within manufacturing settings. The authors recommend
a centralised framework for PdM, effectively addressing the complexities arising from data
saturation by numerous sensor nodes. The proposed methodology refines the predictive main-
tenance process by systematically organising diagnostic parameters based on their significance
and interconnections, thereby enhancing its effectiveness and efficiency. The study utilises the
KNIME software platform for comprehensive data analysis and validation of the proposed
approach, demonstrating its practicality with datasets obtained from SCADA/MES systems.
The results confirm the robustness and accessibility of the methodology, highlighting its
potential applicability across various industrial sectors. Future research directions include the
integration of advanced machine learning techniques and the exploration of the methodology’s
relevance in diverse industries.

Keywords
Predictive Maintenance (PdM; Diagnostic Parameters; Hierarchical Clustering; SCADA /MES
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Introduction it to, a state in which it can perform the required
function”. Predictive maintenance is a proactive
maintenance strategy that utilises real-time data
and monitoring techniques to assess the condition of
equipment and predict when maintenance should be
performed. This approach aims to prevent unexpected
equipment failures and minimise downtime by
addressing potential issues before they escalate into
serious problems (Mobley, 2002).

Objective and scope of the study

Maintenance refers to the activities and processes
undertaken to preserve or restore the functionality
of equipment, machinery, or systems. It is essential
in various industries, particularly manufacturing, to
minimise unplanned downtime, ensure product quality,
and maintain operational efficiency (Lee et al., 2020).
According to the EN 13306:2017 standard (EN 13306,

Industry practice is evolving towards decentralised
models in predictive maintenance (PdM) due to

2024), “maintenance is a combination of all technical,
administrative and managerial actions during the life
cycle of an item intended to retain it in, or restore
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the increasing number of sensor nodes in industrial
environments that generate vast amounts of data,
which may result in a need for more data processing
efficiency (Nunes et al., 2023). However, the authors
propose a centralised approach to adopting a pre-
dictive maintenance paradigm for the production
system instead of individual machines. A diagnostic
parameter grouping method was proposed to avoid
struggling with data overload due to the application
of a centralised approach. In this article, a novel
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methodology has been developed and validated to
group diagnostic parameters and streamline the
predictive maintenance process design. This innovative
approach reduces the number of critical parameters
monitored for predictive analysis. By systematically
categorising these parameters according to their
relative importance and interrelations, the proposed
method facilitates the development of a more efficient
and effective predictive maintenance strategy, conse-
quently augmenting the overall value of the research
and fostering optimism regarding the prospective
advancements in predictive maintenance. A cen-
tralised approach driven by industrial asset diagnostic
parameter redundancy may provide more holistic and
meaningful information about the production system
than decentralised edge computing of diagnostic data.
The paper’s structure is organised to foster a compre-
hensive understanding of enhancing predictive mainte-
nance within condition-based systems via a diagnostic
parameter grouping methodology. The introductory
section (Section 1) is followed by a literature review
(Section 2), which elucidates the foundational prin-
ciples of CBM, the role of predictive analytics, and
the challenges associated with traditional parameter
monitoring techniques. Fig. 1 presents the segmenta-
tion of the research design methodology employed in
organising the research design section (Section 3).
Subsequent sections of the article present the out-
comes derived from a computational experiment, a cru-
cial step in validating the effectiveness and applica-

b4

bility of the chosen method and thereby instilling
confidence in its reliability. Section 4 discusses the ob-
tained results, and Section 5 summarises this paper’s
contributions and future research prospects.

Literature review

Predictive maintenance

Maintenance refers to the activities and processes
undertaken to preserve or restore the functionality
of equipment, machinery, or systems. It is essential
in various industries, particularly manufacturing, to
minimise unplanned downtime, ensure product quality,
and maintain operational efficiency. Fig. 2 presents
the evolution of maintenance strategies.

Condition-based maintenance (CBM) has emerged
as a fundamental strategy within contemporary indus-
trial environments. It uses real-time data analytics to
anticipate equipment malfunctions and refine main-
tenance schedules. The principal aim of CBM is to
transition from reactive maintenance methodologies
to a proactive framework, thereby augmenting op-
erational efficiency and minimising expenses linked
to unforeseen downtimes. A predictive maintenance
(PdM) initiative represents a systematic framework for
the upkeep of equipment and machinery by surveilling
their real-time operational parameters to forecast the
optimal timing for maintenance interventions. Predic-

[1 . Formulate Hypotheses

Formulate hypotheses based on experiment objectives %

v

T K

[2. Choose Software Framework

Select a software framework suitable for testing the hypotheses H

v

[3. Design Experimental Setup

Design the experiment using the chosen software framework and UML %

v

Gather and prepare data using domain knowledge and expertise %

[4. Source and Prepare Data

v

5. Run Experiments

Execute the experiments and log the results %

T T T

v

[6. Analyse Data and Interpret Resultsj% Analyse the experimental data and interpret the findings %

®

Fig. 1. Staged research design process. Source: own
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(1. Corrective Maintenance

Y
[2. Preventive Maintenance (PM)

Conduct systematic inspections
to prevent failures based on assumed behavior

J Perform maintenance after a failure
— to restore the machine to a specific condition.
Costly due to unexpected downtime
~
/ like mean time between failures

measurements, reducing unnecessary maintenance

- A Make maintenance decisions based on
[3. Condition-Based Maintenance (CBM) l real-time machine conditions obtained through

Y

4. Predictive Maintenance

™ Extend maintenance to proactive
J\ planning, allowing machines to guide users
towards solutions and optimise schedules

kN

[5. Prescriptive Maintenance

for optimising maintenance processes with

\ j‘ ’ Provide actionable recommendations
‘ self-assessment capabilities;

[

[6. Intelligent Maintenance Systems (IMS)

Integrate lloT, Big Data, and Al-enhanced predictive
maintenance, system visibility, and self-awareness
to prevent unscheduled downtime

Fig. 2. The evolution of maintenance strategies. Source: based on Berthold (2008)

tive maintenance is a proactive maintenance strategy
that utilises real-time data and monitoring techniques
to assess the condition of equipment and predict when
maintenance should be performed. This proactive ap-
proach aims to prevent unexpected equipment failures
and minimise downtime by addressing potential issues
before they escalate into serious problems (Mobley,
2002). Tab. 1 presents critical components of the pre-
dictive maintenance approach.

The authors highlight the increasing trend of using
multiple sensors for condition monitoring and the ne-
cessity of data fusion techniques to enhance diagnostic
and prognostic accuracy. Predictive analytics plays
a vital role in CBM by harnessing both historical and
real-time data to project possible equipment failures.
Various statistical and machine-learning methodologies
have scrutinised data patterns and discerned failure
indicators (Gallego Garcia & Garcia, 2019). Empirical
studies have illustrated that sophisticated predictive
models can enhance maintenance scheduling and re-
source allocation, ultimately improving operational
performance. PAM has evolved significantly with ad-
vancements in Industry 4.0 and the Internet of Things
(IoT). It combines sensor data and analytics to improve
maintenance scheduling, moving beyond traditional
corrective and preventive maintenance strategies.

Volume 16 ¢ Number 3 e September 2025

Data sourcing for predictive maintenance

Anomaly detection is concerned with identifying
data values that deviate from typical behaviour. Sev-
eral factors may cause the anomaly; some of them are
related to errors in the acquisition system, such as
sensor malfunction, low battery, or errors during data
transmission, while other anomalies may be caused by
an industrial equipment malfunction or event, such
as changes in the production line or a curative stop
(Nunes et al., 2023).

The amalgamation of data from Supervisory
Control and Data Acquisition (SCADA) systems and
Manufacturing Execution Systems (MES) has become
increasingly common, furnishing a substantial reservoir
of information for predictive maintenance (Jardine et
al., 2006). Integrating Supervisory Control and Data
Acquisition (SCADA) systems with Manufacturing
Execution Systems (MES) is pivotal in enhancing
the efficiency and reliability of highly automated
production systems, particularly within the framework
of Industry 4.0. Fusing data from SCADA and MES
systems creates a substantial reservoir of information
invaluable to predictive maintenance strategies. This
integration allows for monitoring and predicting
system performance, essential for condition-based
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Table 1
Critical components of predictive maintenance

Component Description
Employ various methodologies, in-
cluding vibration analysis, thermo-
graphic imaging, tribological eval-
Condition uation, and monitoring of process
. parameters, to evaluate the opera-
monitoring

tional integrity of machinery. These
techniques yield instantaneous data
regarding the equipment’s mechani-
cal state and operational efficiency.

The systematic accumulation and
examination of data from observa-
tional activities is essential for dis-
cerning patterns and irregularities
that may signify impending failures.
Such analytical endeavours facili-
tate the formulation of well-informed
judgments regarding the optimal
timing for executing maintenance ac-
tivities.

Data analysis

Informed by condition monitoring
and empirical data analysis, main-
tenance operations are orchestrated

Scheduling according to necessity rather than
maintenance | a predetermined schedule. This
methodology enhances the efficiency
of maintenance initiatives and miti-
gates expenditures.
Although predictive maintenance
Integration ?epresents a f.or.midabk approachZ it
. is frequently joined with alternative
with other . .
. maintenance methodologies, such as
maintenance . . .
. preventive and reactive maintenance,
strategies

to formulate a holistic maintenance
management framework.

Source: own elaboration based on (Mobley, 2002).

maintenance. These architectures enable the seamless
integration of IT and OT fields, providing maintenance
teams with valuable insights and customised alarms
for proactive maintenance. Integrating SCADA sys-
tems with MES in Industry 4.0 enhances operational
efficiency, data visibility, and decision-making in
manufacturing. This fusion creates a substantial data
pool for predictive maintenance, supporting effective
condition-based maintenance strategies (Mallioris et
al., 2024). The synergy between SCADA and MES sys-
tems enhances the performance of highly automated
production systems, ensuring greater efficiency and
dependability in industrial automation and control
processes. SCADA systems play a crucial role in

real-time monitoring and data acquisition, which is
essential for maintaining operational efficiency and
minimising downtime in manufacturing environments
(Chandna, 2024). For instance, SCADA systems facili-
tate real-time visualisation of manufacturing processes,
identifying and addressing performance losses and
quality control issues, thereby supporting continuous
improvement and process enhancement (Kaundal et
al., 2024). Conversely, MES is the central information
hub in manufacturing, leveraging IoT-ready devices
to generate and process real-time data.

Hierarchical Clustering

Conventional predictive maintenance techniques of-
ten rely on machine learning, constraint satisfaction,
and Quality-of-Service (QoS) aggregation to forecast
potential process issues. These methods have been
shown to achieve a minimum accuracy of 70% when
predictions are made with sufficient lead time, such
as half of the process duration. However, they vary in
their ability to predict violations and non-violations
accurately, suggesting that combining different tech-
niques can significantly enhance precision and recall
(Metzger et al., 2015). Diminishing the number of criti-
cal parameters under surveillance enhances the efficacy
of predictive maintenance systems for the systematic
organisation of analogous data points predicated on
distance metrics (Murtagh & Legendre, 2014). Hierar-
chical clustering could be applied here to group com-
ponents with similar degradation patterns, allowing
for more efficient maintenance scheduling and resource
allocation. This approach could help reduce costs and
spare part usage by identifying elements that can be
maintained together, thereby improving the overall
maintenance strategy.

Hierarchical clustering is a prominent data anal-
ysis methodology, particularly in predictive mainte-
nance. Hierarchical clustering in predictive mainte-
nance offers the advantage of capturing shared cluster
patterns across multiple machines, enabling health
assessment, degradation modelling, and machine com-
parison. This approach, exemplified by the Gaussian
topic model (GTM) (Karlsson et al., 2021), allows for
directly comparing cluster proportions between ma-
chines, leading to insights into degradation behaviours.
Unlike traditional models such as the Gaussian mix-
ture model (GMM), the GTM considers group-level
information, making it more adept at identifying cru-
cial cluster patterns. Therefore, hierarchical clustering
facilitates a deeper understanding of degradation be-
haviour across machines, enhancing the efficiency and
reliability of predictive maintenance systems (Karlsson
et al., 2021). Another advantage of clustering in pre-
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dictive maintenance is its ability to work with limited
data. In scenarios where sensory data is insufficient
to build a comprehensive physical model, clustering
approaches such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) can be par-
ticularly beneficial. These methods allow for the seg-
mentation and clustering of operational points using
minimal features extracted from single sensor signals,
making them general and adaptable to various con-
texts (Calzavara et al., 2021).

Hierarchical clustering in predictive maintenance of-
fers the advantage of grouping similar data points into
clusters based on proximity, allowing for the identifica-
tion of patterns and trends in equipment performance.
This method aids in predicting the right time for main-
tenance by tracing median values of clusters, as demon-
strated in the development of predictive maintenance
technology for wafer transfer robots (Kim et al., 2019).

Research Design

Hypothesis Formulation

For the preliminary validation of the innova-
tive methodology that groups diagnostic parameters
to streamline predictive maintenance processes in
Condition-based Maintenance (CBM) systems, the
hypotheses are as follows:

1. H1:“Grouping diagnostic parameters based on their
importance and interdependencies, as proposed by
the new methodology, can be effectively imple-
mented with data reported from SCADA/MES
systems”.

2. H2: “The new method, designed with practicality in
mind, should demonstrate domain neutrality and
ease of following by practitioners with open-source
software tools, ensuring its ease of implementation
and use in your work”.

Methodology Design

The selection of computational tools and frameworks
is crucial for effectively executing predictive mainte-
nance strategies. The Konstanz Information Miner
(KNIME) has emerged as a prominent open-source
platform for data analysis and corporate analytics
(Berthold et al., 2008). The modular architecture of
KNIME enables users to develop workflows that amal-
gamate diverse data processing and analytical tasks,
which is especially beneficial for performing intricate
analyses such as hierarchical clustering (Ibrahim et al.,
2016). The capability to integrate external program-
ming languages, including Python and R, significantly

Volume 16 ¢ Number 3 e September 2025

augments its adaptability, rendering it an appropriate
option for professionals aiming to incorporate advanced
analytics into their maintenance operations. It aids
users in scrutinising, refining, and presenting data in
an accessible and effective manner. Through its graph-
ical user interface (GUI), KNIME empowers users to
visually conceptualise and execute data processes util-
ising a modular arrangement of interconnected nodes.
These nodes are the foundational elements of KNIME
workflows, utilised for a broad spectrum of data ma-
nipulation and modelling functions. KNIME provides
a diverse array of pre-designed components and ex-
tensions in the form of nodes, which address specific
demands in data analysis, including text mining, im-
age processing, and machine learning algorithms. It
enhances the platform’s adaptability and capacity to
accommodate diverse data analysis needs.

Experiment Design

The experiment design process was supported by
using an open-source low-code solution for automated
diagram creation (PlantUML Web Server, 2024). Fig. 3
shows the part of the computational procedure in Plan-
tUML notation developed to diagram the KINIME
workflow design (Fig. 4).

@startuml Computational Seguence
'theme wvibrant
hide-footbox

actor User

participant - "Node @1%nExcelinReader"”-as EXR

participant. "Node @2\nTranspose” as TRS

participant. "Node @3\nMissing\nValue® as MWL

participanmt - "Node @4%nhNormalizer"” as-NRM

participant . "Node 85\nDistant\nMatrix\nCalculate” as DMC
participant . "Node 86%nHierarchicali\nClustering”. as-HCL
participant . "Mode @7%nHierarchicalinCluster\nView" as HOV
participant . "Mode @88\nHierarchical\nCluster\nAssigner™.as HCA
== 5tep 1 ==

activate-EXR.#Green

User---» EXR: Supply data time series

EXR -> EXR:-Loads data
User---» EXR: Configures node
EXR -» EXR: Extract data

EXR -» TRS:-Pass data
deactivate EXR

Fig. 3. Screenshot of the sequence diagram code in Plan-
tUML notation. Source: own

The computational experiment was structured us-
ing the KNIME software framework, which provided
a designated environment for data examination and an-
alytics. The KNIME workflow (Fig. 5) was developed
with parametrised computational nodes to implement
an algorithm for hierarchical clustering of critical pa-
rameters.
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Fig. 4. Computation sequence diagram. Source: own
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Normalizer Calculate
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1t Bt
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Fig. 5. Implemented KNIME workflow diagram.

The workflow involved several nodes, such as Fzx-
cel Reader, Transpose, Missing Value, Normaliser,
Distance Matriz Calculate, Hierarchical Clustering,
Hierarchical Cluster View, and Hierarchical Cluster
Assigner. These nodes processed the data and im-
plemented an algorithm for clustering critical pa-
rameters. The KNIME workflow was developed with
parametrised computational nodes to standardise the
data through Z-score normalisation, calculate Eu-
clidean distance values, and hierarchically cluster the
input data using a Complete Linkage strategy param-
eter. The results were visualised through the Hier-
archical Cluster View node, which represented the
hierarchical cluster tree, and the Hierarchical Cluster
Assigner node, which allocated each data point to
a specific cluster for further analysis.

Higrarchical Cluster
Assigner (local)

5>

Node 08

Node 05

Source: KNIME screenshot of own elaboration

Data Collection and Preparation

Anomaly detection identifies data points that signifi-
cantly deviate from standard patterns. Such anomalies
can arise from various factors; some are related to
inaccuracies in data collection, like sensor failures, low
battery levels, or errors during transmission. Others
may result from malfunctions or incidents involving in-
dustrial equipment, such as changes in the production
line or scheduled maintenance. To ensure the study’s
robustness, we obtained authentic raw data in CSV

format from the industrial company’s MES integrated
with the SCADA system. (Tab. 2).

The obtained data series were transformed into an
example malfunction data matrix in an MS Excel work-
sheet (Fig. 6). Each row represents an occurrence of

Table 2
Data set
Work order | Asset id | Error code Error code description
10382 2177 T™Q 1117 FUNCTIONAL TEST REMOVE ERROR
10364 11897 TMQ 150 COUNTER_TEST WITH TESTER_ ERROR
1105 4915 TMQ 2010 ELECTRIC TEST CONVERTER_ ERROR
10039 1080 TMQ 2038 ELECTRIC TEST WRONG_ VOLTAGE MEASURE VCC
10597 4847 TMQ 2042 | ELECTRIC_TEST WRONG_VOLTAGE MEASURE_ UBAT
10285 2055 TMQ 2072 ELECTRIC TEST MOSFET MOTOR_ERROR
1646 1625 TMQ 245 LED VERIFICATION ERROR
10294 1623 TMQ 66 INITIALIZE FUNCTIONAL TESTER ERROR
10325 1622 TMQ 96 INIT OPTO_CONNECTION ERROR
10122 1621 TMQ 99 CHECK_ SERIAL NBR_ERROR

Source: supplied by AIUT Sp. z o.0. (AIUT.com).
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L) A 10325
RN A_10122

TMQ 96

T™MQ 99

Fig. 6. Example malfunction data matrix. Source: screenshot from MS Excel worksheet elaborated with source data

a malfunction of a production asset, and the columns
represent the Asset ID and Error codes taken from the
SCADA system. The first column was filled with the as-
set IDs involved in malfunctions. Each malfunction was
coded by putting the binary value “1” in the error code
column, respectively. It is assumed that error codes rep-
resent critical parameters monitored online in SCADA,
making them useful for predictive maintenance.

Computational Experiment Execution

The experiment began by loading a malfunction
data matrix in an MS Excel worksheet. Each row
represented a malfunction occurrence of a produc-
tion asset, and the columns represented the Asset ID
and Error codes from the SCADA system. The error
codes were considered critical parameters for predic-
tive maintenance. Subsequently, Node 02, using the
“Table Transposer,” transposes the entire input table
by swapping rows and columns. Subsequently, Node
03, acting as “Missing Value,” handles any missing
data in the table cells by replacing them with “0”.

Advancing further, Node 04 utilises the “Normalisa-
tion Processor” to standardise the data through Z-score
normalisation (Gaussian). This linear transformation

ensures all values in each column follow a Gaussian dis-
tribution with a mean of 0.0 and a standard deviation
of 1.0 (Fig. 7).

Node 05 runs the “Distance Matrix Calculate” func-
tion, which computes the Euclidean distance values
for all pairs of rows in the input table. Afterwards,
the result of this computation is added to the original
input table as a new column containing the distance
vector values. (Fig. 8).

Node 06 utilises the functionality of “Hierarchical
Clustering (DistMatrix)” to hierarchically cluster the
input data by employing a distance matrix as an input.
The node implements a bottom-up or agglomerative ap-
proach, wherein the algorithm initiates with each data-
point as an individual cluster and endeavours to merge
the most similar ones into superclusters until eventu-
ally culminating in one extensive cluster encompassing
all subclusters. A Complete Linkage strategy for this
node is pre-defined, determining the distance between
two clusters, cl and c2, as the maximum distance be-
tween any pair of points x and y, where x is in c1, and
y is in c2. Consequently, a hierarchical cluster tree is
generated, which can be input into either the “Hierar-
chical Cluster View” node or the “Hierarchical Cluster
Assigner” node. The “Hierarchical Cluster View” node

Row ID [D] Rowo [D] Row1 [D] Row2 [D] Row3 [D] Row4 [D] Rows [D] Rowe [D] Row7 [D] Rows [D] Rowo
T™MQ 1117 2.846 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316
T™MQ 150 -0.316 2.846 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316
T™MQ 2010 -0.316 -0.316 2.846 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316
TMQ 2038 -0.316 -0.316 -0.316 2.846 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316
TMQ 2042 -0.316 -0.316 -0.316 -0.316 2.846 -0.316 -0.316 -0.316 -0.316 -0.316
T™MQ 2072 -0.316 -0.316 -0.316 -0.316 -0.316 2.846 -0.316 -0.316 -0.316 -0.316
TMQ 245 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 2.846 2.846 -0.316 -0.316
T™MQ 66 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316
T™MQ 96 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 2.846 -0.316
T™MQ 99 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 -0.316 2.846

Fig. 7. Normalised data. Source: Own elaboration & KNIME screenshot
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RowID [[D|Row0 |i&Distance
TMQ 1117 [2.846 0[]
TMQ 150  |-0.316 1 [4.472135954999579]
TMQ 2010 |-0.316 2 [4.472135954999579, 4.472135954999579]
TMQ 2038 |-0.316 3 [4.472135054000579, 4.472135054000579, 4.472135054999570]
TMQ 2042 |-0.316 4 [4.472135054999579, 4.472135954999579, 4.472135954999579, 4.472135954999579]
TMQ 2072 |-0.316 5 [4.472135954999579, 4.472135954999579, 4.472135054999579, 4.472135954999579, 4.472135954999579]
TMQ 245  |-0.316 6 [5.47722557505166, 5.47722557505166, 5.47722557505166, 5.47722557505166, 5.47722557505166, 5.47722557505166]
TMQ 66 -0.316 7 [3.162277660168379, 3.162277660168379, 3.162277660168379, 3.162277660168379, 3.162277660168379, 3.162277660168379, 4.47213...
TMQ 96 -0.316 8 [4.472135054099579, 4.472135954999579, 4.472135954999579, 4.472135054999579, 4.472135954999579, 4.472135954999579, 5.47722...
™Q 99 -0.316 9 [4.472135954999579, 4.472135954999579, 4.472135954999579, 4.472135954999579, 4.472135954999579, 4.472135954999579, 5.47722...

Fig. 8. Clustered data view. Source: Own elaboration & KNIME screenshot

enables the visualisation of the hierarchical cluster tree,
offering a lucid representation of the relationships and
groupings present within the data (Fig. 9).

Dendrogram  Distance

5477 |

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1.000-]

0.500—

TMQE® TMQE6 TMQ96 TMQ2072 TMQ2042 TMQ 2038 TMQ2010 TMQ 150 TMQ@ 1117 TMQ 245

Fig. 9. Dendrogram view. Source: Own elaboration & KN-
IME screenshot

Conversely, the “Hierarchical Cluster Assigner” node
assigns each data point to a specific cluster based on
the hierarchical structure, thereby facilitating a more
detailed analysis and interpretation of the clustered
data (Fig. 10).

Row ID
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1
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Fig. 10. Euclidian distance vector values. Source: Own
elaboration & KNIME screenshot
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Data Analysis and Interpretation

Two hypotheses were formulated within the frame-
work of the computational experiment aimed at vali-
dating the new methodology for categorising diagnostic
parameters in condition-based maintenance systems,
and it was found that:

1. H1 was confirmed. The computational experiment
using the KNIME software framework demon-
strated that grouping diagnostic parameters based
on their importance and interdependencies can be
effectively implemented with data reported from
SCADA /MES systems. The methodology designed
in the experiment streamlined the predictive main-
tenance processes in Condition-based Maintenance
(CBM) systems, showcasing the feasibility and ef-
fectiveness of the proposed approach.

2. H2 was confirmed. The computational experiment
conducted using the KNIME software framework
successfully demonstrated that the new method
showcased domain neutrality and was readily ac-
cessible to practitioners by utilising open-source
software tools.

The experiment emphasised the importance of iden-
tifying the optimal number of clusters when using hi-
erarchical clustering. Techniques such as the elbow
method, silhouette score, or gap statistics can be
utilised to determine the best number of clusters, each
offering different insights into the data’s structure and
aiding decision-making. It could be improved with
a new method, possibly by combining multiple evalua-
tion metrics to increase the accuracy and robustness
of selecting the number of clusters, thereby further
refining the clustering process.

Moreover, the experiment revealed that incorporat-
ing domain knowledge and subject matter expertise
into data preparation, cleaning, and the clustering pro-
cess can further enhance the accuracy and relevance
of the cluster assignments, leading to more insightful
insights and actionable outcomes in predictive mainte-
nance strategies.
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Discussion

The results from the computational experiment util-
ising the KNIME software framework emphasise the
potential inherent in the proposed methodology for
grouping diagnostic parameters, which augment pre-
dictive maintenance strategies within CBM systems.

The successful validation of two hypotheses — H1 and
H2 — demonstrates this innovative strategy’s method-
ological robustness and practical applicability in actual
industrial environments. Reducing the number of mon-
itored parameters enables quicker decision-making, al-
lowing prompt interventions that prevent unexpected
equipment failures. Furthermore, the results suggest
that the proposed methodology can be seamlessly in-
tegrated with data generated from SCADA/MES sys-
tems. This integration is paramount, as it allows organ-
isations to capitalise on pre-existing data frameworks
while improving the precision of predictive analyt-
ics. The capability to effectively utilise historical and
real-time data strategically positions the proposed
approach as a significant asset for industries aim-
ing to evolve from reactive to proactive maintenance
paradigms.

The validation of H2 highlights the impartiality and
accessibility inherent in the proposed methodological
framework. By employing open-source software plat-
forms such as KNIME, the methodology ensures that
practitioners from various industries can implement it
without needing expensive proprietary software solu-
tions. This democratisation of technological resources
is particularly relevant in today’s rapidly evolving
industrial landscape, where small and medium enter-
prises (SMEs) often face challenges in adopting ad-
vanced predictive maintenance strategies due to finan-
cial constraints. The modular design of KNIME allows
users to customise workflows to suit their specific re-
quirements, making it applicable to diverse operational
scenarios. This flexibility enhances the practicality of
the methodology and encourages broader acceptance
across multiple sectors, ultimately leading to improved
operational efficiency and reduced maintenance costs.

The findings of this study pave the way for future
innovations in predictive maintenance, contributing
to the ongoing evolution of industrial practices in the
era of Industry 4.0. However, the study has several
fundamental limitations that warrant consideration:

1. The sample size used in the study was fairly lim-
ited, which could restrict the broader applicability
of the results. Additionally, relying on self-reported
data may introduce systematic bias, as participants
might have varying levels of understanding of the
principles of predictive maintenance. Future re-
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search should aim to address these issues by using
larger, more diverse samples and employing objec-
tive performance measures to verify the findings.

. The effectiveness of the proposed framework heav-

ily depends on the quality and thoroughness of the
data extracted from SCADA and MES systems.
When data is unbalanced, erratic, or inaccurate,
the predictive maintenance approach’s effective-
ness may be compromised, leading to unreliable
predictions and maintenance schedules. Although
the methodology has been tested within a specific
industrial setting, its applicability across differ-
ent industries or machinery types may be limited.
Variations in equipment classifications, operational
contexts, and maintenance practices could impact
the transferability of findings and the success of
the proposed parameter categorisation strategy.
Despite using the KNIME platform for hierarchi-
cal clustering, managing large datasets can pose
challenges due to high computational demands. In
real-world applications, the speed and efficiency
of the technique might be hindered by vast data
volumes, potentially causing delays in real-time
decision-making.

. The applied methodology assumes that the rela-

tionships between diagnostic parameters are linear,
which may not always be the case in complex indus-
trial systems. Non-linear interdependencies among
parameters could lead to suboptimal classifications,
reducing accuracy in predictive maintenance out-
comes.

. Although the study demonstrates the methodol-

ogy’s effectiveness through computational simula-
tions, empirical validation in various operational
settings is essential to establish its practical rel-
evance. The absence of comprehensive field tri-
als may reduce confidence in the methodology’s
performance across diverse industrial environment
conditions.

. The categorisation of diagnostic parameters based

on historical data may cause overfitting, where the
model performs well with the training data but
struggles to generalise to new, unseen data. This
limitation highlights the importance of continuous
monitoring and refining the predictive maintenance
strategy as new data becomes available.

. While the study highlights the methodology’s ac-

cessibility via open-source platforms, effective im-
plementation still requires data analysis and ma-
chine learning skills. Practitioners lacking suffi-
cient technical knowledge might struggle to ap-
ply the proposed method. In conclusion, although
the study significantly advances predictive mainte-
nance strategies, these limitations emphasise the
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need for further research and validation to ensure
the robustness and applicability of the proposed
methodology across various industrial settings.

Conclusions

The research aimed to validate the innovative
methodology’s effectiveness and applicability in en-
hancing predictive maintenance processes in CBM
systems by formulating and testing these hypotheses.
The results served to confirm the following:

e The adaptability and accessibility of the methodol-
ogy across different domains and its compatibility
with commonly used software tools,

e The practicality and feasibility of the proposed
methodology in real-world industrial settings.

A systematic methodology has been developed and
validated to categorise diagnostic parameters that char-
acterise the operational status of machinery and equip-
ment, facilitating predictive analysis. This innovative
strategy reduces the number of critical parameters
requiring predictive evaluation and monitoring. By
systematically arranging these parameters based on
their significance and interrelations, the methodology
provides a foundation for a more efficient and effective
predictive maintenance approach, thereby enhancing
the overall value of the research. Additionally, inte-
grating advanced machine learning algorithms, such
as deep learning or reinforcement learning, could offer
a more sophisticated and nuanced way to perform clus-
ter analysis, potentially revealing hidden patterns and
relationships within the data that traditional methods
might miss.
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