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THERMAL EFFECTS ACCOMPANYING HYDROGEN ACCUMULATION
IN CARBON AND COAL STRUCTURES

The article presents a comprehensive analysis of hydrogen accumulation properties on various carbon
and coal structures, including carbon nanotubes of different diameters, reduced graphene oxide, activated
carbon, and two types of hard coal. The study involved porous structure characterization using volumetric
and microscopic techniques, measurements of hydrogen adsorption isotherms using the Sieverts appa-
ratus and determination of the isosteric heat of adsorption. The highest adsorption capacities in relation
to hydrogen were observed at low temperatures and low pressures, confirming that physisorption is the
dominant adsorption mechanism in the investigated materials. Activated carbon and carbon nanotubes
exhibited the highest adsorption capacities — up to 11.4 mmol/g and 3.3 mmol/g, respectively — demon-
strating their potential for low-temperature hydrogen storage applications. In contrast, hard coals showed
lower capacities, ranging from 0.9 mmol/g to 1.54 mmol/g. The isosteric heat of adsorption (Qj,) at the
initial stages of adsorption varied between 6.5 kJ/mol and 13.2 kJ/mol, decreasing exponentially as surface
coverage progressed. The greatest differences in heat distribution were observed in materials with strongly
heterogeneous surface characteristics. For the coal samples, O, values ranged from 8.4 to 9.1 kJ/mol.
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are the best fit parameters;

is activated carbon,

is adsorption isotherm analysis method,

is the adsorption equilibrium constant related to the characteristic energy of
the energy distribution function,

is Brunauer-Emett-Teller model,

is Barrett-Joyner-Halenda model,

is backscattered electron,

is the heterogeneity exponent (0 < c < 1), the smaller its value, the larger the
width of the adsorption energy distribution; for ¢ = 1 the isotherm takes the
form of the Langmuir isotherm,

is the adsorption equilibrium constant dependent on the difference between
the heat of adsorption of the first layer and the heat of condensation,

is direct isothermal calorimetry method,

carbon nanotubes,

are multi-walled carbon nanotubes with outer dimeter 8-15 and 30-50 re-
spectively

is density functional theory,

is greenhouse gases,

is graphene oxide,

is International Union of Pure and Applied Chemistry,

is the number of moles,

is the Avogadro’s number,

is Langmuir-Freundlich isotherm,

is coal from the Budryk Coal Mine, classified as air-dried medium-rank
Ortho-bituminous coal,

is the absolute pressure,

is the relative pressure,

is coal from the Sobieski Coal Mine, classified as air-dried medium-rank
Para-bituminous coal,

is the isosteric heat of adsorption,

is the gas constant,

is reduced graphene oxide,

is the specific surface area,

is secondary electron detector,

is scanning electron microscopy method,

is the temperature,

is transmission electron microscopy method,

is the surface area occupied by a single adsorbate molecule in a monomo-
lecular layer, the so- called sitting surface,

is the volume of the system,

is the gas compressibility coefficient (for an ideal gas Z=1),

are the degrees of the polynomials approximating the functions appearing in
the equation,

is the adsorbent surface coverage by adsorbate molecules (relative adsorp-
tion).
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1. Introduction

Hydrogen technologies represent one of the most rapidly developing sectors in the energy
industry. Hydrogen meets both environmental criteria — its combustion does not release green-
house gases into the atmosphere [1-3] — and energy-related requirements, with an energy density
of 143 MlJ/kg [4]. It is also geopolitically and climatically independent. The main obstacle to
the development of this technology is the storage of this product, which is strictly dependent on
the direction of its use. For automotive needs, there are several possibilities for storing hydrogen:
under high pressure, at low temperature (cryogenically) and accumulated in a solid state [5]. The
use of hydrogen in fuel cells or combustion engines requires the development of an economical
method of obtaining hydrogen, as well as its safe storage [2,6].

High-pressure hydrogen storage requires maintaining controlled pressure conditions
(80 MPa) and high mechanical strength of the tanks. It is highly energy-intensive and danger-
ous during a vehicle collision. Low-temperature hydrogen storage is not suitable for automotive
applications due to, among others, the high energy consumption necessary to liquefy the gas
(33 K) [1]. On the other hand, storing hydrogen asorbed in the solid materials is a fairly promising
method [7]. In this method, hydrogen reacts with a solid material as a result of chemical absorption,
creating a new compound [8]. Another method is the accumulation of H, in polymers or metal
alloys [9] and physical binding of H, to the surface of porous structures in physical adsorption
[10-12]. Since storing hydrogen in the form adsorbed on the surface of a material, metal hydrides
or intermetallic phases is a safe process, metal hydrides and carbon-based structures are the two
main types of materials that have been the subject of much research over the last dozen or so
years for their use as hydrogen storage materials [13-17].

Carbon materials are considered promising for hydrogen storage, e.g. in fuel cells due to
the possibility of using them for both physisorption and chemisorption. Carbon materials of an-
thropogenic origin are extended structures designed for adsorption (activated carbons), or based
on modern graphene systems, such as carbon nanotubes or graphene oxide. There are studies
on their use as greenhouse gases (GHG) adsorbents [18,19]. Carbon nanomaterials have many
advantages, including being easily available, thermally resistant and having a highly developed
pore structure. Graphene oxide (GO) and carbon nanotubes (CNT) are popular and relatively
easy to synthesize graphene compounds. Their hydrogen accumulation potential has been stud-
ied by many authors. According to [20] the efficiency of H, sorption by carbon nanomaterials
is proportional to their BET surface area and micropore volume. Also according to Klechikov
et al. [21] the adsorption capacity to hydrogen and pore structure in graphene nanomaterials are
strongly correlated. This relationship is valid for many graphene compounds, especially those
with a specific surface area up to 1000 m*/g [22].

Temperature and pressure significantly influence the efficiency of hydrogen (H,) accumula-
tion [23]. At elevated pressures, both the specific surface area and sorption efficiency may decrease,
primarily due to particle aggregation induced by hydrogen pressures exceeding 12 MPa. Typically,
sorption capacities in relation to H, of these materials at room temperature (298 K) and a gas
pressure of 10 MPa reach up to approximately 1 wt.%. At liquid nitrogen temperature (77 K),
the maximum values increase substantially, ranging from about 4 to 7 wt.% [20,24]. Rajaura
et al. [25] investigated the H, uptake capacity at room temperature (298 K) in pristine graphene
oxide (GO) and its reduced form (rGO). The H, storage capacity in GO was 1.90 wt.%, while
in rGO it decreased to 1.34 wt.%. Burres et al. [26] reported hydrogen uptake in the range of
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1.0-1.2 wt.% for GO at 77-87 K under a pressure of 0.7 MPa. Similarly, Kim et al. [27] observed
hydrogen capacities of 4.8 wt.% at 77 K and 0.49 wt.% at 298 K for GO under 9 MPa pressure.
In a study by Aboutalebi [28], H, sorption efficiencies of 0.9 wt.% for carbon nanotubes (CNTs)
and 1.4 wt.% for GO were obtained at 298 K and 0.5 MPa.

Hydrogen sorption performance can be further enhanced by decorating GO with metals
such as boron, yttrium, silicon, or platinum nanoparticles [29-31]. According to Durgun et al.
[32], functionalizing graphene with scandium, vanadium, and titanium allows for achieving high
theoretical gravimetric hydrogen densities of 8.0, 7.5, and 7.8 wt.%, respectively. These values
were experimentally supported by the findings of Mashoff et al. [33].

Naturally derived carbonaceous materials, including hard coals, are characterized by strong
structural and chemical heterogeneity. The sorption capacity of hydrogen on hard coal is crucial
for assessing its suitability as a hydrogen storage medium in geological coal formations. Current
studies show that H, sorption on coal is possible, but its efficiency is low compared to other
gases. Liu and Liu [34] conducted sorption and diffusion studies on various coals and determined
the sorption capacity of H, in the range of 0.82-1.17 mmol/g at pressures of 0-6.5 MPa. Hydro-
gen is adsorbed on coal in significantly smaller quantities than CO, or CH,, which is due to its
small molecular size and weak interaction with the coal surface. This is confirmed by numerous
studies, although the sorption efficiency of coal varies depending on the measurement condi-
tions. Sayyafzadeh et al. [35] found that the sorption capacity of CO, on coal was seven times
greater than that of H, at a pressure of 10 MPa. This difference in sorption efficiency is very
high and may result from the applied measurement pressure. According to Czerw et al. [36],
the sorption capacity of CO, and CH, at low pressure conditions (0-0.1 MPa) was 0.89 mmol/g
and 0.13 mmol/g, respectively, while according to Skoczylas et al. [37] at preferential pressure
(1.6 MPa) and temperature (278 K), it was 2.99 mmol/g and 1.25 mmol/g, respectively. These
values are smaller or at most twice as large as the sorption capacity of H, investigated by Liu
and Liu [34]. Coal exhibits selective sorption, preferring gases such as CO,, which can be used
for CO, separation and storage, but limits the efficiency of H, storage. The highest sorption
capacity of H, is found in coals with high porosity and oxygen functional group content, but
even in these cases the values are low [34,38]. Hydrogen, on the other hand, is characterized by
better gas diffusivity in the coal matrix, defined by the effective hydrogen diffusivity. Effective
hydrogen diffusivities in coal decrease with increasing pressure, with the lowest diffusivity be-
ing up to four times higher than for CH, [34]. High H, diffusivity in coal can be beneficial for
rapid injection and extraction, although low sorption capacity limits the practical use of coal as
an effective hydrogen storage medium.

The characterization of the gas sorption mechanism in hard coals usually focuses on their
potential for the GHGs accumulation [37,39,40]. In the context of a comprehensive analysis of
gas storage in such structures, in addition to the sorption capacity and kinetics parameters, ther-
modynamic aspects such as the heat of adsorption are increasingly taken into account [41,42].
The analysis of the thermodynamics of the sorption process allows for a better understanding
of the mechanisms and energy transformations occurring on the coal surface. Moreover, the
temperature effect accompanying the sorption process can significantly affect the local coal
temperature [43,44].

Thermodynamic properties are also crucial for understanding the heat balance and mass
transfer mechanisms in coal deposits [45]. The heat of adsorption reflects the strength of inter-
actions between the sorbent and the sorbate and determines the amount of energy released or
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absorbed during the adsorption of a unit amount of a substance, with a fixed degree of coverage
of the adsorbent surface [46].

The isosteric heat of adsorption provides unique information on the intensity of the process,
the type of adsorption and its course [45,47,48]. It is also an important thermodynamic parameter
that describes the conversion of energy between the gaseous and adsorbed state. This parameter
can be used to assess the adsorption capacity of coal, the energy inhomogeneity of its surface
and temperature changes accompanying the adsorption and desorption processes, which directly
affects the kinetics of these phenomena [49,50].

Various methods are used to assess the isosteric heat of adsorption, including: adsorption
isotherm analysis method (AIM) and direct isothermal calorimetry (CIM) [51,52]. In the AIM
method, energy dependence is determined based on the adsorption equilibrium points measured
at different temperatures using the Clausius-Clapeyron equation.

This paper presents a comparative analysis of the structural, sorption and thermal properties
of six carbon and coal structures: carbon nanotubes of different diameters (CNT15 and CNT50),
reduced graphene oxide (rGO), activated carbon (AC) and two types of hard coal (pBC and
oBC), in the context of their suitability as materials enabling controlled hydrogen accumulation.
In order to determine the nature of changes in the adsorption capacity of carbon structures with
respect to H», a limiting pressure value was also determined, after which the change in the ad-
sorption capacity value becomes independent of pressure and in some cases also independent of
the process temperature. For each materials, the isosteric heat of adsorption was also determined
and compared as a function of the degree of surface filling. The heat of adsorption values were
determined for adsorption capacities at several temperatures and at pressures of 20 kPa.

2. Research methodology

The surface topography and phase changes of carbon structures were characterized by scan-
ning electron microscopy (SEM). A Philips XL30 electron microscope equipped with a second-
ary electron (SE) detector and a backscattered electron (BSE) detector was used. Analyses were
performed in high-pressure mode. Before measurement, samples were silver-sputtered and images
were recorded at magnifications from 100x to 5000x%, with an electron beam with an accelerating
voltage of 8 kV. Precise contrast analysis of the microstructure of the materials was performed
using transmission electron microscopy (TEM) on an FEI Technai G2 analyzer.

The structural studies of the pore space of the materials were performed by the low-pressure
gas adsorption method, using the ASAP 2020 analyzer (Micromeritics). According to the manu-
facturer’s data, this analyzer has a measurement expanded uncertainty in the amount of adsorbed
substance in the range of 1-2%. Nitrogen (N,) in the gas phase was used as the adsorbate at a tem-
perature of 77 K. Based on the volumetric method, the volume of adsorbed gas was recorded as
a function of pressure 0-0.1 MPa (0 < p/p, < 0.996). Based on the sorption equilibrium points,
adsorption and desorption isotherms were plotted, and structural parameters were determined
on their basis. Depending on the type of material, the specific surface area was determined ac-
cording to the monolayer Langmuir model (1,2) or the multilayer Brunauer-Emett-Teller (BET)
model (3):

b
-2 (1)
1+bp
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where:

6=-" )
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a,Cp/l py
= (3)
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Taking into account the so-called sitting surface of the sorbate particle, the specific surface
area of the materials is determined using equation:

S=a,oN, 4)

The IMI-HTP sorption analyzer (Hiden Isochema) was used for sorption measurements of
hydrogen, which is based on the Sieverts volumetric method. According to the manufacturer’s
data, it has a measurement uncertainty of 2%. This method is based on the gas state Eq. (5), in
which the pressure is proportional to the number of moles of gas:

py=NZRT 5
Assuming that p,V,Z,R,T are constant values, it is possible to determine the number of
moles of hydrogen adsorbed or desorbed:

AN = pV (1)
ZRT ZRT

(6)

In the volumetric Sieverts method, the volume of the reference chamber V|, which is main-
tained at a constant temperature, and the volume of the reactor V5, which contains the sample,
are measured. During the sorption measurement, a predefined pressure is applied to volume V;
while the reactor valve remains closed. Once the equilibrium pressure p; is reached, this value is
recorded. To determine the pressure p,, the valve to the reactor containing the sample is opened,
and the system is allowed to reach a new equilibrium pressure.

Hydrogen sorption measurements on carbon and coal structures began with an activation
process. The sample was heated under vacuum at a temperature of 373 K for 2 hours and then
cooled to ambient temperature. Subsequently, the samples were examined in the low-temperature
range (81-173 K) as well as in the high-temperature range (373-573 K). The obtained sorption
data points were fitted using Langmuir-Freundlich (L-F) isotherms:

a, (bp)°
L p)c
1+ (bp)
In order to observe the changes in the adsorption capacity values with respect to H, on car-

bon and coal structures, the derivative of the Langmuir-Freundlich sorption isotherm function
was used (da)/(dp):

(7

da _ aybe (bp)cf1

dp (1 +(bp)° )2 o
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In order to determine the thermal effects accompanying hydrogen sorption, calculations of
the isosteric heat of adsorption were performed using the adsorption isotherm method (AIM).
Sorption isotherms were fitted to the hydrogen adsorption equilibrium points determined at several
temperatures using the L-F model (Eq. (7)) and an isostere plot was constructed. The isosteric
heat of adsorption was calculated from the isostere angle presented in the coordinate system (9)
for a specific amount of adsorbed hydrogen. The differential form of the Clausius-Clapeyron
Eq. (10) [53] was used, and the detailed Eq. (11) was used for numerical calculations:

1
Inp=f|— 9
P f(Tj ©
Aln]p _ _Qst (10)
AL R
T
1& . k .
Inp=—>A4v' +> By +zInv (11)
T'i% i=0

The isosteric heat of adsorption as a function of surface coverage was calculated using
equation:

0,(v)=-R al# =—RiAivi (12)
)
T

3. Research material

Five types of carbon materials with different physicochemical structures were used to study
the efficiency of hydrogen accumulation. Groups of homogeneous carbon structures (carbon
nanotubes, reduced graphene oxide, activated carbon) and highly heterogeneous natural carbon
materials (hard coals) were selected for the study.

The study included two types of multi-walled carbon nanotubes (CNT15, CNT50) manu-
factured by Nanostructured & Amorphous Materials, Inc., which were produced by the Catalytic
CVD method. In TABLE 1 are shown parameters specified by the producer. The tested CNTs
had a carbon (C) content of 97.4%, chlorine (CI) of 0.2%, iron (Fe) of 0.5%, nickel (Ni) of 1.9%
and a trace content of sulfur (S).

The images taken using the TEM method (Fig. 2) show CNTs in the bright field (BF)
(Fig. 1A,B) and the high-resolution HREM microstructure (Fig. 1C,D). The observed CNTs,
regardless of their type, were unevenly arranged, tangled and bent. Their external surface
showed irregularities and the walls were not continuous in some places and had structural
defects. The structure of CNT walls showed correctly arranged concentric graphene layers and
fullerene ends.
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TABLE 1
Carbon nanotube (CNT) parameters

Symbol Outer dimeter | Inner diameter Length Density Purity

Unit nm nm pm g/cm® %

T1 -1 - 10-
CNTI5 8-15 3-5 0-50 23 <95
CNTS50 30-50 8-15 10-20
8-15nm OD 30-50nm OD

Fig. 1. TEM images of carbon nanotubes CNT, A) bright field image of CNT15, B) bright field image
of CNT50, C) high resolution image of CNT15, D) high resolution image of CNT50

Reduced graphene oxide (rGO) was synthesized using a modified Hummers method at the
Institute of Electronic Materials Technology in Warsaw. According to the producer’s data, the
rGO tested contained carbon (C) at a level of 70-80%, oxygen (O) at a level of 15-20%, and sulfur
(S), hydrogen (H) and nitrogen (N) below 2%, which are the elements involved in the synthesis
of rGO. SEM images (Fig. 2) show sheets with diameters in the range of 5-30 um and thickness
of graphene layers of about 0.5 um. The use of graphene oxide reduction is aimed at increasing
its surface area, especially using post-synthesis activation procedures. Causing a large number
of defects, including discontinuities and pores in the graphene sheets, allows obtaining rGO with
a highly developed surface [54].

Activated carbon AC is a highly porous variety of carbon, characterized by an expanded
pore space, which can make it an exceptionally effective adsorbent. CARBO VP activated car-
bon was used in the study, which is a commercial product made from carbon raw materials or
other materials of organic origin. The SEM images show the structure of the tested AC, which
is heterogeneous and disordered (Fig. 3). The AC particles are of different sizes with a lamellar
structure and different particle sizes.
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Fig. 3. SEM images of activated carbon AC, A) 500 magnification, B) 2000 magnification

The two types of hard coal used for the study differed significantly in composition and
petrographic parameters. They came from Polish mines: Sobieski Coal Mine (pBC) and Budryk
Coal Mine (0BC). The pBC coal from the Sobieski Coal Mine is mined from a depth of about
500-700 m below the surface. According to the UN-ECE International Classification of In-
Seam Coal [55], it is classified as air-dried medium-rank Para-bituminous coal. It has a vitrinite
reflectivity of 0.54% and 73% vitrinite in the maceral composition [19]. SEM images (Fig. 4)
show that the grains of the pBC sample have sharp edges, the color of the grains is uniform and
intensely dark, which confirms the high content of vitrinite maceral (73%).

The oBC coal from the Budryk Coal Mine is mined from a depth of about 1300 m below the
surface. It has been classified as air-dried medium-rank Ortho-bituminous coal. The reflectivity
of vitrinite here was 0.95%, which is confirmed by SEM images (Fig. 5) where the surface of
the sample reflects some light. The 0BC sample has a lower content of vitrinite maceral equal
to 63%, a smooth surface without visible pores, but the structure contains elements of other
macerals, including inertinite [19].
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Fig. 5. SEM images of medium-rank Ortho-bituminous coal o0BC, A) 200x magnification,
B) 2000x magnification

4. Results and discusion

4.1. Surface pore structure

The studies were performed using the low-pressure gas adsorption method (section 2). In all
materials, the course of equilibrium sorption points at pressure of 0-0.1 MPa had the shape of
the type III isotherm according to the IUPAC system, which is characteristic for mesoporous
and weakly porous materials. Since carbon and coal structures are structurally different, the
measured values of sorption capacities were significantly different from each other (Fig. 6).
Sorption capacity increased evenly in the pressure range of 0-0.8 MPa (CNT, rGO) and in
the range of 0-0.9 MPa (AC), while above these pressure ranges, adsorption on the surface
intensified without showing a clear plateau at the saturation stage. The total sorption capacity
in CNT15 and CNT50 was 508 cm®/g and 240 cm?/g, respectively (Fig. 6A). As a result of
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desorption in CNTs, H3 type adsorption/desorption hysteresis was obtained, the shape of which
indicates an irregular structure of slit pores. This type of hysteresis occurs in carbon materials
containing aggregates of plate-like particles, such as porous carbon materials, graphite, some
clays and aerogels. In the tested CNTs, which are chemically homogeneous materials, the shape
of hysteresis reflects gas desorption, which is delayed and occurs not only in the CNT carbon
matrix but also between single graphene layers. In rGO and AC, the final increase in adsorp-
tion intensity results from the capillary condensation effect and the total sorption capacity
was 90 cm’/g (rGO) and 69 cm®/g (AC). As a result of N, desorption, H4 type hysteresis was
obtained in both cases, characteristic for microporous and mesoporous materials (Fig. 6B). The
pore emptying mechanism was significantly delayed. The hysteresis loop curvature occurred
in the pressure range of 0.4-0.6 MPa, which is the effect of adsorption in smaller slit pores
with simultaneous capillary condensation in mesopores. The diversification of porosity should
be seen in the heterogeneity of the porous structure of these materials. Both materials have an
extensive system of pores with different diameters. In hard coals (Fig. 6B), N, adsorption was at
a typical low level for these materials and no hysteresis loop was observed here. The maximum
sorption capacity achieved at a pressure of about 0.1 MPa was 31 cm?/g for pBC, while for oBC
it was below 2 cm®/g.
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Fig. 6. Nitrogen adsorption isotherms, A) CNT15, CNT50, B) rGO, AC, pBC, oBC

Based on the measurement data and formulas (section 2), the structural parameters of carbon
materials were determined (TABLE 2).

Tested materials had different values of structural parameters, with carbon nanotubes hav-
ing the most intensively developed pore volume and specific surface area. Its value assuming
the multilayer BET model was higher for CNT15 and amounted to 166 m?/g, and in CNT50
103 m?/g, respectively. Assuming a monolayer surface coverage with adsorbate, the Langmuir
specific surface area was at a much higher level and amounted to 517 m%*/g (CNT15) and 260 m%/g
(CNT50). The volume of pore space in CNT15 was similar for mesopores and micropores and
amounted to about 0.7 cm®/g, and the predominant volume share was pores with a diameter of
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TABLE 2
Parameters of carbon and coal structures
Adsorption capacity Average
Sample at 0.1 MPa Surface area Pore volume pore size
Used BET | Langmuir BJH (Mesopore | DFT (Micropore BET
model volume) volume)
Unit m?/g m?/g em’/g em’/g nm
rGO 90.26 64.56 179.04 0.139 0.072 7.5
CNTI15 508.02 166.36 517.44 0.749 0.718 15.0
CNT50 240.52 102.61 260.75 0.363 0.268 12.8
AC 68.83 87.12 162.50 0.097 0.052 5.5
pBC 31.37 27.42 68.06 0.041 0.046 9.4
oBC 1.46 0.36 1.49 0.002 0.001 29.7

1.5-4 nm (Fig. 7). In CNT50, the pores had a volume in the range of 0.26-0.36 cm®/g and the larg-
est volume share in the range of 2-4 nm (Fig. 7). Similar structural parameters were determined
in rGO and AC. These materials had a BET specific surface area in the range of 64-87 m%/g,
while the Langmuir surface area was in the range of 162-179 m%/g, respectively. They had a more
developed mesopore volume and ranged from 0.10 cm?/g to 0.14 cm®/g. The pore size distribu-
tion was most developed in pores with a diameter of 2-3 nm. In natural carbon materials — hard
coals, the specific surface area value was strictly dependent on the type of coal. In the pBC coal,
the measured BET and Langmuir specific surface areas were 27 m?/g and 68 m?/g, respectively,
while in oBC they were below 2 m?/g. The pore volume in pBC was below 0.05 cm?/g, while in
pBC they were on the margin of error. In coals with low vitrinite reflectivity and high vitrinite
maceral content, the smallest pores, the so-called ultramicropores, which are difficult to study
using N, and give much lower results. To avoid these ambiguities, CO, is used for measurements
as an alternative [19].
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Fig. 7. Pore size distribution, A) according to DFT model, B) according to BJH model
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4.2. Hydrogen sorption efficiency

Based on the sorption equilibrium points, hydrogen (H,) sorption isotherms were deter-
mined for the analyzed samples. Considering that both carbon nanomaterials and hard coal are
structurally composed primarily of micropores and small mesopores [12,56], it was assumed
that the pore sizes in these materials are comparable to the diameter of hydrogen molecules.
As a result, monolayer coverage of the sorbent surface occurs, which justifies the application
of the Langmuir-Freundlich sorption model (Eq. (7)) to describe the sorption processes. This
model demonstrated very good agreement with the experimental data. The efficiency of hydrogen
adsorption in carbon and coal structures was directly proportional to the pressure and inversely
proportional to the temperature.

H, sorption measurements on carbon structures (rGO, CNT15, CNT50 and AC) were per-
formed at 4-5 temperatures for absolute pressure from 0 to 3000 kPa. The most effective surface
coverage by hydrogen occurred at low pressure ranges. In carbon nanotubes with a smaller diam-
eter of CNT15 tubes, the H, sorption efficiency ranged from 0.8 to 3.3 mmol/g (Fig. 8a), while
in CNT50 it was in the range of 0.5-2.2 mmol/g (Fig. 9a). In reduced graphene oxide, a similar
H, sorption efficiency was achieved as in CNT50. The sorption capacity with respect to H, at the
maximum measurement pressure ranged from 0.5 to 2.8 mmol/g (Fig. 10a). The highest value of
this parameter was obtained in AC and it was in the range of 0.5-11.4 mmol/g (Fig. 11a). In all
samples the hydrogen sorption efficiency was strictly dependent on the temperature at which the
process was carried out. The highest sorption efficiency was achieved at 123 K.

In order to determine the nature of changes in the sorption capacity of carbon structures
in relation to H,, the derivative of the Langmuir-Freundlich sorption isotherm (Eq. (8)) was
determined. At all tested measurement temperatures for carbon materials, the coefficient of
determination R> was in the range of 0.995-0.999. This adjustment allowed for the identifica-
tion of the pressure value, beyond which the change in the sorption capacity value in carbon
and coal structures becomes independent of pressure and, in some cases, also independent of
temperature. With increasing pressure, the derivative curves at different temperatures tended to
flatten, indicating a gradual saturation of available sorption sites on the material surface. This
flattening suggests that at higher pressures the rate of increase of sorption capacity in relation to
pressure decreases, reflecting the approach to the monolayer adsorption limit. Furthermore, the
convergence of derivative values at different temperatures suggests that the increase in temperature
reduces the adsorption. This may result from the saturation of the most energetically favorable
micropores, after which adsorption occurs in less selective sites.

In the case of CNT15, the hydrogen sorption efficiency curves flattened (Fig. 8B). A plateau
was reached at 20 MPa, except for the sorption curve at 123 K, where the plateau did not occurre
at 20 MPa. The difference between the incremental changes in sorption capacity (da) at that
point was 5.49 -10~> mmol/(g-kPa). For CNT50, the dynamics of sorption capacity to hydrogen
changes were more varied (Fig. 9B). The sorption processes at 123 K and 173 K were the most
pressure-dependent. Additionally, at 573 K, an initial increase in sorption capacity was observed,
although the magnitude of these changes was small and negligible in the context of the overall
sorption rate. At 20 MPa, the difference in incremental values reached 1.22-10~* mmol/(g- kPa),
indicating that temperature still had a significant effect on the sorption process in CNT50.

For rGO, the hydrogen sorption process at 123 K was the most pressure- dependent, and con-
ditions approaching a plateau were reached at approximately 20 MPa (Fig. 10B). At this pressure,
the difference in the derivative values across different temperatures was 9.77 - 10> mmol/(g - kPa).
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In the case of activated carbon (AC), the curves showed similar trends, and equilibrium was
reached as early as 8 MPa (Fig. 11B). Increasing the pressure beyond this critical value did not
lead to further increases in sorption capacity. Above this pressure, sorption efficiency was also
independent of temperature.

The hydrogen sorption efficiency on coal structures (pBC and oBC) was evaluated at three
temperatures and pressures up to 2400 kPa. Due to significant structural differences between
the studied coals, their sorption capacities to hydrogen varied accordingly. The highest sorption
capacities were observed at low pressures and at temperatures of 123 K and 173 K. In the highly
microporous coal pBC, the maximum sorption capacity to H, ranged from 0.75 to 1.54 mmol/g
at 123 K and 173 K, while at 373 K it dropped below 0.1 mmol/g (Fig. 12A). In contrast, hy-
drogen sorption on 0BC coal, which has a higher proportion of mesopores in its pore structure,
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reached 0.75 mmol/g and 0.90 mmol/g at 123 K and 173 K, respectively, and 0.15 mmol/g at
373 K (fig. 13A).

The variation in sorption capacity to hydrogen was determined up to a pressure of 20 MPa,
based on the derivative of the LangmuirOFreundlich isotherm (Eq. (8)). The coefficient of deter-
mination R> for both hard coals was in the range of 0.995-0.999. The sorption capacity curves
recorded at different temperatures exhibited a characteristic flattening trend as pressure increased
(Figs. 12B and 13B), which reflects the progressive saturation of available adsorption sites within
the porous structures of the coal samples. At the lowest measurement temperature of 123 K, the
pressure had the greatest influence on both coal types, and this effect decreased with increasing
measurement temperature. As the temperature increased to 173 K and 373 K, the influence of
pressure on sorption efficiency decreased, which is consistent with the thermally driven reduc-
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tion in adsorption affinity. At approximately 20 MPa, the difference in the derivative values was
8.07-107> mmol/(g - kPa) for pBC and 9.63 - 10 ® mmol/(g - kPa) for oBC. These values indicate that
at this high pressure, further increases in pressure result in minimal changes in sorption capacity.
This flattening of the derivative curve suggests that the systems are approaching or have already
reached equilibrium, with most accessible adsorption sites occupied. Therefore, the sorption process
becomes largely independent of further pressure increases and, to a lesser extent, of temperature.
Notably, the derivative value for pBC was an order of magnitude greater than that for oBC. This
significant difference underscores the much higher pressure sensitivity of hydrogen sorption in pBC.

These findings highlight the critical role of pore size distribution and surface characteristics
in governing the sorption behavior of hydrogen in coal-based materials and support the use of
high-resolution isothermal analysis combined with derivative interpretation for evaluating sorb-
ent performance under varying thermodynamic conditions.



591

4.3. Thermal effects of hydrogen adsorption

For each carbon and coal structure, the isosteric heat of adsorption (Q,,) was determined
(section 2) and compared as a function of the surface filling degree. The heat of adsorption
values were determined for sorption capacities at several temperatures and pressures of 20 kPa.
Adsorption, understood here as a reduction in the number of degrees of freedom of hydrogen
molecules located near the sorbent surface [57,58]. The process defined in this way occurs al-
most immediately and is accompanied by the release of a specific amount of heat. The amount
of heat released during the attachment of hydrogen molecules to the surface of carbon and coal
structures while maintaining a constant amount of adsorbed hydrogen was the highest in the
initial stages of sorption. Then the surface of the materials was free from sorbate. This is due to
the fact that at the beginning, hydrogen adsorbs on the strongest binding sites, and as adsorption
progresses, it occupies increasingly weaker sorption sites. In all tested materials, a low Q,, value
below 15 kJ/mol was obtained, which indicates a physical adsorption process accompanied by
weaker, reversible interactions.

In CNT15 carbon nanotubes, at the initial stage of H, adsorption, the Q;; value was
13.2 kJ/mol (Fig. 14A). As the surface was filled with adsorbate, the heat of adsorption de-
creased exponentially up to a sorption capacity of 0.4 mmol/g, where it reached a minimum of
4.8 kJ/mol. Strong surface heterogeneity was observed here, which was manifested in a suc-
cessive increase in the Oy, value up to 5.7 kJ/mol. In CNT50, a different course of the heat of
adsorption parameter was obtained (Fig. 14B). The initial Q,, value was lower than in CNT15
and amounted to 7.9 kJ/mol. As the surface was filled with adsorbate, the heat exponentially
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decreased up to a sorption capacity of 0.2 mmol/g, after which the function graph became flat.
The analysis of the course of Qst changes shows that CNT50 has a more homogeneous surface
than CNT15, although the thermal effects accompanying hydrogen adsorption are smaller here.
In the reduced graphene oxide, the value of the isosteric heat of adsorption (Q,,) changed with
the filling of the surface with hydrogen molecules (Fig. 14C). The maximum value of O, at the
beginning of the process was 6.5 kJ/mol. Up to the sorption value of 0.1 mmol/g, the heat of
adsorption decreased its value, down to about 3.7 kJ/mol. The decrease in the Q,, value began
to stabilize, which indicates the homogeneity of the rGO surface. At the end of adsorption at the
highest measurement temperature (473K) and in the sorption capacity to H, of about 0.5 mmol/g,
the value of the heat of adsorption was about 3.4 kJ/mol. The graph of changes in the isosteric
heat of adsorption in AC was different from the others. In the initial stage of the process O,
reached a maximum of 10.6 kJ/mol and then gradually decreased. Importantly, with the increase
in the surface filling with sorbate, a plateau was not reached, and the Q,, graph was inclined
towards the X axis and had an almost linear course. In pBC and oBC coals, the maximum heat
of adsorption was 9.1 kJ/mol and 8.4 kJ/mol, respectively. These values decreased exponentially
with the surface filling with adsorbate up to about 0.4 mmol/g (pBC) and 0.15 mmol/g (0BC).
After this stage, the graph of Q,, changes reached a plateau and there were not observed further
changes in this parameter.

5. Conclusions

The tested carbon and coal structures differed significantly in terms of structure. The obtained
results indicate that nanocarbon materials (CNT and rGO) are characterized by a much more
developed porous structure than natural carbons, which directly translated into higher sorption
capacities in relation to hydrogen. Among them, the CNT15 sample showed the largest specific
surface area (BET: 166 m*/g; Langmuir: 517m?/g), which correlated with the highest isosteric
adsorption heat Q, in the initial stage of the process (13.2 kJ/mol). Such a high Q, value indi-
cates the presence of sorption sites with strong potential for hydrogen binding, which makes this
material particularly attractive in the context of applications at low temperatures and pressures.
Compared to CNT15, the CNT50 material was characterized by a smaller specific surface area
(BET: 103 m?%/g) and a lower initial Oy, (7.9 kJ/mol). Nevertheless, the Oy, evolution plot sug-
gests a higher surface homogeneity, which may be beneficial from the point of view of thermal
stability during cyclic adsorption—desorption processes.

Reduced graphene oxide (rGO) showed moderate textural parameters, however, low surface
heterogeneity and stable Q,, values (max. 6.5 kJ/mol and final: 3.4 kJ/mol) suggest its potential
utility as a lightweight and homogeneous sorbent under moderate pressure and temperature condi-
tions. The highest sorption capacity to hydrogen was obtained for activated carbon (AC), where
the maximum value reached 11.4 mmol/g. The Q,, value of AC was lower than that of CNT, but
showed a linear decrease without reaching a plateau. This indicates a wide range of available
sorption sites over the entire hydrogen saturation range of the material, which makes AC a very
attractive material for buffer or stationary hydrogen storage, especially where volumetric capacity
and material cost are important.

The pBC hard coal, despite its limited specific surface area (27 m?/g), showed relatively high
initial Oy, values (9.1 kJ/mol), which was attributed to the presence of ultramicropores inacces-
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sible to nitrogen in conventional BET measurements. This indicates the need to use alternative
methods (e.g. CO, adsorption) for a more complete characterization of porosity. On the other
hand, the oBC sample, containing a higher share of mesopores, showed a lower and less stable
sorption capacity, as well as lower Oy, values (max. 8.4 kJ/mol), which limits its application
potential in the field of hydrogen storage.

In all the materials tested, the hydrogen sorption process was of a physical nature, as indicated
by O, values below 15 kJ/mol and the dependence of the process efficiency on temperature and
pressure. Adsorption occurred most intensively in the low pressure range and at a temperature
of 123 K, which is typical for physisorption on microporous sorbents.

In summary, the greatest application potential as hydrogen sorbents was demonstrated by
CNT15 nanotubes and activated carbon AC. The first material offers high binding energy, while
AC combines high sorption capacity with technological and economic availability, which makes
it particularly promising for hydrogen storage technology on a larger scale.
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