
 

1. Introduction 

The Rayleigh-Taylor instability (RTI) arises at the interface be-

tween fluids of differing densities when a heavier fluid is placed 

above a lighter one in the presence of a vertical gravitational 

field [1]. This type of instability plays a crucial role in various 

physical and astrophysical phenomena, including laser–plasma 

interactions, Z-pinch implosions and magnetised target fusion, 

as well as in systems such as inertial confinement fusion, galaxy 

clusters and dense plasma focus devices. Goldston and Ruther-

ford [2] extended the analysis of RTI to fluids with continuously 

varying density profiles and demonstrated that angular velocity, 

mass concentration and stress relaxation time have a stabilising 

influence on the instability. 

The significant potential of quantum plasma in diverse fields 

− such as laser fusion, white dwarfs, semiconductor devices and 

dense astrophysical plasmas − has recently drawn extensive re-

search interest. Quantum plasma consists of charged particles 

exhibiting distinct behaviour at moderate temperatures, differ-

ing from classical plasmas. This quantum effect arises when the 

de Broglie wavelength of charged particles becomes comparable 

to or larger than the system’s characteristic length [3]. The pres-

sure term in the equations of motion is divided into two terms, 

𝑝 = 𝑝𝐶 + 𝑝𝑄 (pC  classical pressure, pQ  quantum pressure), 

by using Wingen principle and Schrödinger wave equation in 

the momentum equations, (−𝛻𝑝) and 𝑸 =
ℎ̂2

2𝑚𝑒𝑚𝑖
𝜌𝛻 (

𝛻2√𝜌

√𝜌
).  

A lot of work has been done in this direction to evaluate the 

growth rates of RTI in various processes with quantum pressure 

by many researchers, both theoretically and experimentally.  

Gardner [4] noticed that the quantum hydrodynamic conser-

vation laws have the same form as the classical hydrodynamic 
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Abstract 

This study explores the stabilising interplay of finite Larmor radius corrections and quantum pressure on the Rayleigh-
Taylor instability in a non-Newtonian, magnetised fluid. The investigation is motivated by the need to understand how 
quantum and magnetohydrodynamic effects jointly influence instability behaviour in complex fluid systems. The govern-
ing magnetohydrodynamic equations are linearised using normal mode analysis and appropriate boundary conditions to 
derive a general dispersion relation for Rayleigh-Taylor instability under the Jeffrey fluid model. Numerical results show 
that the combined presence of finite Larmor radius corrections and quantum pressure suppresses the growth rate of Ray-
leigh-Taylor instability modes. In contrast, the Jeffrey parameter amplifies instability, while quantum and finite Larmor 
radius effects reduce both the cut-off and critical wavenumbers. 
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Nomenclature 

d – thickness of layer, m 

eij – rate of strain tensor 

g ‒ gravitational acceleration, m/s2 

ℎ̂ – Planck constant, 6.626070151034 m2 kg/s 

H – magnetic field, A/m 

k – wave number, 1/m 

kmax – cut-off wave number, 1/m 

LD ‒ length scale, m 

𝑚𝑒 – mass of electron, amu 

𝑚𝑖 – mass of ion, amu 

n – growth rate, 1/s 

ni – growth rate of RTI, 1/s 

nq – quantum parameter, kg m/s 

p ‒ pressure, Pa 

𝑝𝐶 – classical pressure, Pa 

𝑝𝑄 – quantum pressure, Pa 

Q – quantum pressure, Pa 

t ‒ time, s 

T – temperature, K 

Tij – stress tensor, Pa 

u – velocity vector of fluid, m/s 

uj  – velocity vector components, m/s  

u, v, w – velocity vector components, m/s 

x, y, z – Cartesian coordinates, m 

 

Greek symbols 

𝛿𝑖𝑗 – Kronecker delta 

𝜆 – Jeffrey parameter 

𝜆0 – stress relaxation time parameter 

𝜆1 – strain retardation time parameter 

 – dynamic viscosity, Pas  

𝜇𝑒 – magnetic permeability, H/m 

𝜈 – kinematic viscosity, m2/s 

𝜈𝐹𝑅

 

– finite Larmor radius correction, kg/(m2 s2) 

ρ – density, kg/m3  

𝜏𝑖𝑗  – viscous stress tensor 

𝛺 – ion gyro-frequency, rad/s 

 

Abbreviations and Acronyms 

FLR – finite Larmor radius 

ICF – inertial confinement fusion 

MHD – magnetohydrodynamics  

QMHD – quantum magnetohydrodynamics 

RTI – Rayleigh-Taylor instability

 

equations. Haas [5] employed the quantum hydrodynamics 

model to analyse charge mobility in dense quantum plasmas. 

Elena et al. [6] investigated the influence of quantum effects on 

RTI and internal waves in plasmas, while Bychkov et al. [7] 

studied RTI in incompressible, stratified quantum plasmas, es-

tablishing that quantum pressure at low temperatures stabilises 

perturbation growth. Sharma et al. [8] explored the combined 

effects of angular velocity and surface tension on the stability of 

two superimposed fluids embedded with dust particles. Ho-

shoudy [9−11], and Hoshoudy and Awasthi [12] analysed RTI 

in stratified quantum plasmas under the influence of vertical 

magnetic fields and viscosity, concluding that quantum pres-

sure, in conjunction with the magnetic field, plays a crucial role 

in stabilising the system and suppressing RTI. Additionally, Ho-

shoudy and Prajapati [13] demonstrated the impact of suspended 

particles on RTI, observing a stabilising effect due to both quan-

tum pressure and dust particle mass concentration. 

 Sharma and Gupta [14] examined the stability of an elastico-

viscous fluid under the influence of magnetic field and rotation. 

Dolai and Prajapati [15] analysed RTI in strongly coupled, 

dusty, rotating plasmas and observed significant suppression of 

instability due to the combined influence of shear and angular 

velocities. Micro-level instabilities in plasmas are often de-

scribed by models incorporating collisionless dissipative effects, 

finite Larmor radius (FLR) corrections and other non-ideal be-

haviours. Although the length and time scales associated with 

micro-instabilities typically match those of transport coeffi-

cients and turbulence  leading to a common practice of neglect-

ing FLR effects  this assumption breaks down when the Larmor 

radius becomes comparable to the hydromagnetic wavelength or 

when the ion gyrofrequency approaches the wave frequency. 

Under such conditions, the FLR must be considered. Conse-

quently, the time and spatial scales at which magnetohydrody-

namics (MHD) fails align with the scales of ion gyration and the 

ion Larmor frequency. 

The effects of finite Larmor radius have drawn significant 

attention due to their applicability in a range of astrophysical 

environments, including mirror machines, the solar corona, and 

both interplanetary and interstellar plasmas, particularly in the 

presence of gyro-viscous forces. Rosenbluth et al. [16] demon-

strated the stabilising influence of FLR on RTI by employing 

plasma fluid equations. Roberts and Taylor [17] extended MHD 

theory by incorporating finite Larmor radius effects. Jukes [18] 

showed that FLR can suppress RTI, though with some con-

straints introduced by the presence of a sheared magnetic field. 

Following these foundational studies, numerous investigations 

explored the effects of FLR, dust particles, rotation and viscosity 

on RTI in continuously stratified magnetofluids [19−22]. Nota-

bly, Tiwari et al. [23] were the first to establish the influence of 

FLR corrections on the RTI in an inviscid, stratified plasma, in-

corporating both magnetic fields and quantum pressure. They 

concluded that FLR corrections suppress the instability more ef-

fectively than quantum pressure alone. Sun et al. [24] high-

lighted the RTI in magnetised fluids relevant to inertial confine-

ment fusion (ICF), emphasising that viscosity, rather than elec-

trical resistivity, plays a dominant role in determining the inter-

face dynamics. 

It is important to note that most of the aforementioned stud-

ies have been conducted in the context of Newtonian plasma flu-

ids. However, in recent years, the mechanisms and applications 

of non-Newtonian fluids described by various rheological mod-

els have gained considerable interest due to their relevance in 

both industrial (e.g. chemical processing) and astrophysical set-

tings. A fluid is characterised as Newtonian or non-Newtonian 

based on the nature of the relationship between stress and strain 

rate, expressed through its constitutive equation. Among non-

Newtonian models, the Jeffrey fluid model [25] is of particular 

interest in this study. It exhibits linear viscoelastic behaviour, 

yield stress, shear-thinning properties and high shear viscosity, 
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making it well-suited for modelling complex plasma dynamics 

with non-Newtonian characteristics.  

In Jeffrey fluid, the two-time parameters  namely, the strain 

retardation time and stress relaxation time  play a significant 

role in understanding wave propagation phenomena, such as 

those occurring within the Earth’s mantle. The strain retardation 

time relates to the delay in deformation under stress, while the 

stress relaxation time represents the time a fluid takes to return 

from a disturbed state to its original equilibrium. Fluids exhibit-

ing such time-dependent behaviour are particularly relevant in 

environmental and biomedical applications, including polypro-

pylene coalescence sintering, geological flows and blood flow 

dynamics.  

Yadav [26−28] investigated the effects of anisotropy, electric 

fields, and thermal non-equilibrium on the onset and instability 

mechanisms of Jeffrey fluid convection in various porous media 

configurations and found that rotation and anisotropy in thermal 

diffusivity delay the onset of Jeffrey fluid convection, whereas the 

Jeffrey parameter and permeability anisotropy exhibit dual effects 

under rotation. Increased electric field and internal heating param-

eters reduce system stability. Gautam et al. [29] investigated the 

influence of an electric field on thermal convection in a nanofluid-

saturated porous medium, whereas Sharma et al. [30] analysed the 

Rayleigh-Taylor instability of superposed dusty Jeffrey fluids in 

a porous medium, considering interfacial surface tension. Yadav 

et al. [31–32] analysed the Horton-Rogers-Lapwood problem and 

convective flow of ethylene glycol-silver Jeffrey nanofluid in 

a Hele-Shaw cell under the influence of a magnetic field. 

Prajapati [33] investigated RTI in a strongly coupled visco-

elastic fluid, considering the effects of non-homogeneous  

magnetic fields, uniform rotation and density gradients, and  

observed a substantial suppression of the instability. Garai  

et al. [34] examined RTI in viscoelastic plasma embedded with 

dust particles and magnetic fields, highlighting the significant 

stabilising influence of non-Newtonian properties. Dey [35] ex-

plored Jeffrey fluid flow in the presence of suspended particles 

and angular velocity, including the Hall effect and volume frac-

tion, and concluded that non-Newtonian parameters tend to have 

a retarding influence on the evolution of instability in the sys-

tem. Garai et al. [36] analysed RTI in strongly coupled quantum 

plasma with shear velocity and found that shear effects could 

either suppress or trigger instability, depending on the direction 

of the shear velocity gradient. Adak et al. [37] studied RTI in 

inhomogeneous pair-ion plasma and derived the instability cri-

teria for the classical case. 

Das et al. [38] investigated the collective behaviour of 

strongly coupled dusty plasma, whereas Dharodi and Das [39] 

performed numerical simulations on gravity-driven instabilities 

in such plasmas. The result indicates that increasing the coupling 

strength of the medium leads to suppression of these instabili-

ties. Dharodi [40–41] conducted numerical investigations on 

gravity-driven instabilities in strongly coupled dusty plasmas, 

focusing on hetero-interactions between a rising bubble and  

a falling droplet, as well as homo-interactions between pairs of 

rising or falling bubbles/droplets. The study revealed that, under 

gravity, the formation of counter-rotating vorticity lobes causes 

bubbles to ascend and droplets to descend. In viscoelastic fluids, 

besides the initial separation, shear waves generated by rotating 

vortices were found to play a key role in bringing two droplets 

or bubbles closer together. 

Motivated by the work presented above, this study focuses 

on investigating the influence of FLR corrections on the Ray-

leigh-Taylor instability in a non-Newtonian plasma fluid ar-

ranged in horizontal stratification, incorporating quantum pres-

sure effects. The RTI is a fundamental plasma instability that 

plays a critical role in astrophysical plasmas, ICF and space 

weather phenomena. Understanding the onset and control of 

RTI under the influence of quantum and magnetic effects is cru-

cial for enhancing the stability of fusion plasmas and improving 

performance in high-energy density systems. The inclusion of 

FLR corrections and non-Newtonian (Jeffrey) fluid behaviour 

provides a more realistic model for magnetised plasmas found 

in laboratory and astrophysical environments, such as solar 

prominences, planetary magnetospheres and accretion disks. 

The novelty of this study lies in the combined consideration of 

quantum pressure effects, FLR corrections and non-Newtonian 

fluid dynamics (via the Jeffrey model) in analysing RTI. While 

previous studies have independently examined RTI in Newto-

nian or classical fluids with either quantum effects or magnetic 

field influences, this is the first comprehensive analysis that in-

tegrates all three aspects simultaneously in a stratified magnet-

ised plasma system. Moreover, the use of the Jeffrey fluid model 

introduces a new viscoelastic framework that captures memory 

effects absent in earlier studies. The non-Newtonian behaviour 

of the plasma is modelled using the Jeffrey fluid framework, 

which effectively captures viscoelastic features and complex 

rheological behaviour. 

2. Mathematical models 

The equation that governs the behaviour of fluid flow in the con-

text of Jeffrey fluid, as formulated by [26-32], can be expressed 

as follows: 

 𝑇𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  (1) 

and 

 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 +
2𝜇

1+𝜆
[1 + 𝜆1 {

𝜕(2𝑒𝑖𝑗)

𝜕𝑡
+

𝜕𝑢𝑖

𝜕𝑥𝑗
}] 𝑒𝑖𝑗. (2) 

For incompressible fluids, the above relation reduces to 

 𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 +
2𝜇

1+𝜆
𝑒𝑖𝑗. (3) 

Here, an incompressible, heterogeneous, infinitely extending 

and infinitely electrically conducting viscoelastic Jeffrey fluid 

of finite thickness 𝑑, comprised of the planes 𝑧 = 0 and 𝑧 = 𝑑, 

is organised in a horizontal layer of electrons and immobile ions 

saturating homogeneous, isotropic porous media. A uniform 

gravitational field 𝒈(0,0, −𝑔) acts vertically downward, thereby 

influencing the buoyancy-driven motion within the system. In 

addition, the plasma is subjected to a uniform externally applied 

magnetic field 𝑯(𝐻, 0,0) directed along the horizontal axis, in-

troducing magnetohydrodynamic (MHD) effects into the flow. 

The presence of a quantum pressure term 𝑸, originating from 

quantum mechanical effects associated with electron degener-

acy, further modifies the momentum balance and contributes to 
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stabilising or destabilising tendencies in the convective motion. 

The schematic representation of the physical system, along with 

the associated external forces and boundary constraints, is illus-

trated in Fig. 1.  

The equations of momentum balance in quantum hydrody-

namics (QHD) are [33−37]:  

 𝜌 [
𝜕

𝜕𝑡
+ 𝒖 ∙ ∇] 𝒖 = −∇𝑝 + 𝜌𝒈 + ∇ ∙ 𝐏 + 𝑸 +

𝜇

1+𝜆
∇2𝒖 + 

                                            +
𝜇𝑒

4𝜋
(∇ × 𝑯) × 𝑯, (4) 

where 𝒖, 𝜌, 𝑝, 𝜇, 𝜆, and 𝜇𝑒

 

represent the velocity of fluid, density, 

pressure, dynamic viscosity, Jeffrey parameter and magnetic 

permeability, respectively. Here, P represents the pressure ten-

sor that anticipates the finite Larmor radius effects. 

The mass balance equation of incompressible plasma fluid is  

 𝛻 ∙ 𝒖 = 0. (5) 

The condition of compressibility implies that the fluid den-

sity is not constant and may vary with pressure and temperature. 

Accordingly, the continuity equation takes the general form as:  

 
𝜕𝜌

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝜌 = 0. (6) 

In various circumstances of physical intrigue in ICF, insta-

bility occurs at velocities much smaller than that of local sound 

speed. Consequently, accelerations in flow are too weak to vary 

the fluid flow density appreciably, and the fluid moves without 

expanding or compressing, meaning that elements of fluid move 

with constant density, as seen in Eq. (6). 

Maxwell’s equations, due to the presence of a magnetic field, 

are:  

 𝛻 ∙ 𝑯 = 0, (7) 

 
𝜕𝑯

𝜕𝑡
= 𝛻 × (𝒖 × 𝑯). (8) 

Furthermore, the initial steady state is characterised by no 

flow motion and each physical variable varies along the vertical, 

i.e.

 

z-axis, only. Therefore, the steady state solutions are given 

as  

 𝒖 = (0,0,0),    𝑝 = 𝑝(𝑧),   𝜌 = 𝜌(𝑧),   𝑸 = 𝑸(𝑧). (9) 

To investigate the stability of the hydrodynamic motion, in-

finitesimal perturbations are superimposed on each of the phys-

ical quantities of the initial state solutions as  

 
𝜌 = 𝜌0 + 𝜌′,    𝑝 = 𝑝0 + 𝑝′,    𝑯 = 𝑯0 + 𝒉,

𝒖 = 𝒖0 + 𝒖′,    𝑸 = 𝑸0 + 𝑸′,
 (10) 

where 𝑝′, 𝜌′, 𝒉(ℎ𝑥, ℎ𝑦 , ℎ𝑧),   𝒖
′(𝑢, 𝑣, 𝑤),   𝑸′(𝑄𝑥1, 𝑄𝑦1, 𝑄𝑧1)

 
represent the perturbations in the pressure, the density of fluid, 

the magnetic field, the plasma fluid velocity and the quantum 

force, respectively. The subscript ‘0’ denotes the equilibrium 

state. 

Utilising the disturbance equations (10) and the linear the-

ory, Eqs. (4)−(8) take linear form as 

 𝛻 ∙ 𝒖′ = 0, (11) 

 
𝜌

𝜕𝒖′

𝜕𝑡
= −𝛻𝑝′ + 𝒈𝜌′ − 𝛻 ∙ 𝐏 + 𝑸′ +

𝜇

1+𝜆
𝛻2𝒖′

+
𝜇𝑒

4𝜋
[(𝛻 × 𝒉) × 𝑯]

, (12) 

 
𝜕𝜌′

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝜌 = 0, (13) 

 𝛻 ∙ 𝒉 = 0, (14) 

 
𝜕𝒉

𝜕𝑡
= 𝛻 × (𝒖 × 𝑯), (15) 

where 

 𝑸′ =
ℎ̂2

2𝑚𝑒𝑚𝑖

[
 
 
 
 
 
 
1

2
𝛻(𝛻2𝜌′) −

1

2𝜌
𝛻𝜌′𝛻2𝜌 −

1

2𝜌
𝛻𝜌𝛻2𝜌′

+
𝜌′

2𝜌2 𝛻𝜌𝛻2𝜌 −
1

2𝜌
𝛻(𝛻𝜌𝛻𝜌′)

  +
𝜌′

4𝜌2 𝛻(𝛻𝜌)2 +
1

2𝜌2
(𝛻𝜌)2𝛻𝜌′

+
1

𝜌2
(𝛻𝜌𝛻𝜌′)𝛻𝜌 −

𝜌′

𝜌3
(𝛻𝜌)3

]
 
 
 
 
 
 

. (16) 

For the horizontal magnetic field, the stress tensor in the 

component form is [23]: 

 𝑃𝑥𝑥 = 0,  𝑃𝑦𝑦 = −𝜌𝑣𝐹𝑅 (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) ,  𝑃𝑧𝑧 = 𝜌𝑣𝐹𝑅 (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
),  

 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = −2𝜌𝑣𝐹𝑅 (
𝜕𝑢

𝜕𝑧
) , 𝑃𝑥𝑧 = 𝑃𝑧𝑥 = 2𝜌𝑣𝐹𝑅 (

𝜕𝑢

𝜕𝑦
), (17) 

 𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 𝜌𝜈𝐹𝑅 (
𝜕𝑣

𝜕𝑦
−

𝜕𝑤

𝜕𝑥
),  

where 𝜈𝐹𝑅 =
𝑎2𝛺

4
 represents the FLR correction, with

 

a being the 

ion Larmor radius and Ω denoting the ion gyrofrequency. 

3. Methodology adopted 

To investigate the stability of a system, perturbations in physical 

variables are analysed in terms of modes by ascribing a horizon-

tal wave number, depending on y, z and time (t), are supposed to 

vary as 

 𝑓′(𝑦, 𝑧, 𝑡) = 𝑓(𝑧)exp[𝑖(𝑘𝑦 + 𝑛𝑡)], (18) 

where i is the imaginary unit, and the term exp[𝑖(𝑘𝑦 + 𝑛𝑡)] rep-

resents a wave-like disturbance varying sinusoidally in space 

 

Fig. 1. Physical configuration. 
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(in the y-direction with the wave number k) and in time (with the 

growth rate n). 

Using Eq. (18), Eqs. (11)−(15) transform to Cartesian com-

ponents as:  

 𝑖𝑘𝑣 + 𝐷𝑤 = 0, (19) 

 
𝜌𝑖𝑛𝑣 = −𝑖𝑘𝑝′ + 𝜌𝜈𝐹𝑅(𝐷2 − 𝑘2)𝑤 +

2𝜈𝐹𝑅𝐷𝜌𝐷𝑤 +
𝜇

1+𝜆
(𝐷2 − 𝑘2)𝑣 + 𝑄𝑦1

, (20) 

 
𝜌𝑖𝑛𝑤 = −𝐷𝑝′ − 𝑔𝜌′ − 𝜈𝐹𝑅𝐷𝜌(𝑖𝑘𝑤 + 𝐷𝑤)

−𝜌𝜐𝐹𝑅(𝐷2 − 𝑘2)𝑣 +
𝜇

1+𝜆
(𝐷2 − 𝑘2)𝑤 + 𝑄𝑧1

, (21) 

 𝑖𝑛𝜌′ + 𝑤𝐷𝜌 = 0, (22) 

 ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = 0, (23) 

where  

 𝑄𝑦1 =

  
𝑘𝑦

𝑘𝑥

ℎ̂2

2𝜀𝑛𝑚𝑒𝑚𝑖
[

1

2
𝐷𝜌𝐷2𝑤 + {𝐷2𝜌 −

1

2𝜌
(𝐷2𝜌)2}𝐷𝑤 +

{
1

2
𝐷3𝜌 −

1

𝜌
𝐷𝜌𝐷2𝜌 −

𝑘2

2
𝐷𝜌 +

1

2𝜌2
(𝐷𝜌)3}𝑤

], (24) 

 𝑄𝑧1 =

ℎ̂2

2𝜀𝑛𝑚𝑒𝑚𝑖

[
 
 
 
 
 
 

1

2
𝐷𝜌𝐷3𝑤 + {

3

2
𝐷2𝜌 −

1

𝜌
(𝐷2𝜌)2}𝐷2𝑤 +

{
1

2
𝐷3𝜌 −

1

𝜌
𝐷𝜌𝐷2𝜌 −

𝑘2

2
𝐷𝜌 +

3

2𝜌2
(𝐷𝜌)3}𝐷𝑤𝑘2

+
1

2
𝐷4𝜌 −

1

𝜌
𝐷𝜌𝐷3𝜌 −

𝑘2

2
𝐷2𝜌 −

1

𝜌
(𝐷2𝜌)2

+
5

2𝜌2
(𝐷𝜌)2𝐷2𝜌 +

𝑘2

2𝜌
(𝐷𝜌)2 −

1

𝜌
(𝐷𝜌)4

]
 
 
 
 
 
 

. (25) 

In the above, D stands for 
𝑑

𝑑𝑧
,  is the medium porosity, and kx and 

ky are the horizontal and vertical components of the wave num-

ber, respectively. 

On eliminating 𝑣,  𝜌′, and 𝑝′ from Eq. (17) and using 

Eqs. (15)−(16) and Eqs. (18)−(21), we get the general differential 

equation for 𝑤 as 

 

[𝜌𝑛2 + 2𝜈𝐹𝑅𝑘𝑛𝐷𝜌 +
𝜇𝑘𝑛

1+𝜆
𝐷𝜌 + 𝑘2𝐴]𝐷2𝑤

+[𝑛2𝐷𝜌 + 2𝜈𝐹𝑅𝑘𝑛𝐷2𝜌 + 𝑘2𝐵]𝐷𝑤 −

[𝜌𝑛2𝑘2 + (2𝑣𝐹𝑅𝑘𝑛 +
𝜇𝑘𝑛

1+𝜆
+ 𝑔 − 𝐶) 𝑘2𝐷𝜌] 𝑤 = 0.

 (26) 

Here  

𝐴 = −
ℎ̂2

4𝑚𝑒𝑚𝑖

1

𝜌
(𝐷𝜌)2, 𝐵 = −

ℎ̂2

4𝑚𝑒𝑚𝑖

1

𝜌
𝐷𝜌[(𝐷𝜌)2 − 2𝜌𝐷2𝜌],

𝐶 = −
ℎ̂2

4𝑚𝑒𝑚𝑖

𝑘2

𝜌
𝐷𝜌.

 

The density of fluid is assumed to vary exponentially with 

respect to z and depends on LD a length scale. Thus, the density 

distribution at 0z   is described as  

 𝜌(𝑧) = 𝜌exp (
𝑧

𝐿𝐷
). (27) 

Equation (26), using Eq. (23), after algebraic simplification 

yields 

 

[𝑛2 +
2𝜈𝐹𝑅𝑘𝑛

𝐿𝐷
+

𝑣𝑘𝑛

(1+𝜆)𝐿𝐷
− 𝑛𝑞

2𝑘2] 𝐷2𝑤

+ [𝑛2 +
2𝜈𝐹𝑅𝑘𝑛

𝐿𝐷
+

𝑣𝑘𝑛

(1+𝜆)𝐿𝐷
− 𝑛𝑞

2𝑘2] 𝐷𝑤

−𝑘2 [𝑛2 +
2𝜈𝐹𝑅𝑘𝑛

𝐿𝐷
+

𝑣𝑘𝑛

(1+𝜆)𝐿𝐷
+

𝑔

𝐿𝐷
− 𝑛𝑞

2𝑘2] 𝑤 = 0,

 (28) 

where 𝜈 =
𝜇

𝜌
 and 𝑛𝑞

2 =
ℎ̂2𝑘2

2𝜀𝑛𝑚𝑒𝑚𝑖
 represent the kinematic viscosity 

and the quantum parameter accounting for quantum pressure. 

The plasma fluid velocity diminishes at 𝑧 = 0 and 𝑧 = 𝑑, irre-

spective of the nature of the bounding surface. Therefore, the 

solution of Eq. (24) is taken as  

 𝑤 = 𝑤1sin (
𝑚1𝜋

𝑑
𝑧) exp(𝜆𝑧), (29) 

where 𝑚1 is a positive integer, 𝜆 =
1

2𝐿𝐷
 and w1 is constant. 

Using the solutions given in Eq. (29), Eq. (28) gives 

 

𝑛2 + (
2𝜈𝐹𝑅𝑘

𝐿𝐷
+

𝑣𝑘

(1+𝜆)𝐿𝐷
) 𝑛 − 𝑛𝑞

2𝑘2

+
4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑚1
2𝜋2𝐿𝐷

2 +4𝑚1
2𝑘2𝐿𝐷

2 = 0.
 (30) 

Now introducing the non-dimensional variables  

 

𝑛∗ =
𝑛1

𝑛𝑝𝑒
,   𝑛𝑞

∗2 =
ℎ̂2

4𝑚𝑒𝑚𝑖𝐿𝐷
4 𝑛𝑝𝑒

2 ,

𝜈∗ =
𝜈

𝐿𝐷
2 𝑛𝑝𝑒

2 ,    𝜈𝐹𝑅 =
𝜈𝐹𝑅

𝐿𝐷
2 𝑛𝑝𝑒

2 ,

𝑑∗2 =
𝑑2

𝐿𝐷
2 ,   𝑘∗2 = 𝑘2𝐿𝐷

2 ,    𝑔∗ =
𝑔

𝑛𝑝𝑒𝐿𝐷
.

 (31) 

Equation (30) (the asterisks are omitted for the sake of conven-

ience) transforms to  

 
𝑛2 + (2𝜈𝐹𝑅𝑘 +

𝑣𝑘

1+𝜆
) 𝑛 − 𝑛𝑞

2𝑘2

+
4𝑔𝑘2𝑑2

𝑑2+4𝑚1
2𝜋2+4𝑑2𝑘2 = 0.

 (32) 

It is noteworthy from Eq. (32) that stability/instability of the 

Rayleigh-Taylor configuration is modified in the presence of 

FLR corrections, quantum pressure and Jeffrey parameter. Also, 

it is observed that RTI remains uninfluenced due to the presence 

of the magnetic field. 

Substituting 𝑛 = 𝑛𝑟 + 𝑖𝑛𝑖 (𝑛𝑟 and 𝑛𝑖 are real numbers) in 

Eq. (32) and separating real and imaginary parts, we get 

 

(𝑛𝑟
2 − 𝑛𝑖

2) − (2𝜈𝐹𝑅𝑘 +
𝑣𝑘

1+𝜆
) 𝑛𝑖 − 𝑛𝑞

2𝑘2 +

4𝑔𝑘2𝑑2

𝑑2+4𝑚1
2𝜋2+4𝑑2𝑘2 = 0

 (33) 

and 

 2𝑛𝑟𝑛𝑖 + (2𝑣𝐹𝑅𝑘 +
𝑣𝑘

1+𝜆
) 𝑛𝑟 = 0,  

which implies that 𝑛𝑟 = 0.

                    

 

Putting 𝑛𝑟 = 0 in Eq. (32), one gets  

 𝑛𝑖
2 + (2𝜈𝐹𝑅𝑘 +

𝑣𝑘

1+𝜆
) 𝑛𝑖 + 𝑛𝑞

2𝑘2 −
4𝑔𝑘2𝑑2

𝑑2+4𝑚1
2𝜋2+4𝑑2𝑘2 = 0, (34) 

which is the required relation between n and k to examine the 

Rayleigh-Taylor instability in a stratified non-Newtonian plasma 
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fluid with FLR corrections, quantum pressure and Jeffrey pa-

rameter. 

3.1. Special cases 

For non-viscous Newtonian fluid, i.e. 𝜈 = 0, 𝜆 = 0, Eq. (34) 

condenses to 

 𝑛𝑖
2 + 2𝜈𝐹𝑅𝑘𝑛𝑖 + 𝑛𝑞

2𝑘2 −
4𝑔𝑘2𝑑2

𝑑2+4𝑚1
2𝜋2+4𝑑2𝑘2 = 0, (35) 

which coincides with the earlier result of Tiwari et al. [23]. 

4. Numerical results and discussion 

To investigate the influence of the Jeffrey parameter, FLR and 

quantum pressure on both classical and non-classical cases of 

stratified RTI, the growth rate frequency of the most unstable 

mode has been numerically computed from the dispersion relation 

given in Eq. (29), using Mathematica (version 12). The permissi-

ble experimental values of all the involved parameters used by 

Tiwari et al. [23] and Dey [35], and many others, are taken as 

𝑣𝐹𝑅= 0.5, nq = 0.6, λ = 0.3, m1 = 1, d = 1 and  𝑔 = 10, respectively. 

The growth rate (𝑛𝑖) of RTI against wave number (k) 

 

is plotted 

to analyse the effect of distinct values of FLR correction,  

𝑣𝐹𝑅 = 0.3, 0.5, 0.9 in Figs. 2 and 3 for both classical and quan-

tum cases, respectively. The plots in Figs. 2 and 3 clearly show 

that increasing the FLR correction parameter leads to a notable 

reduction in the growth rate of RTI in a stratified plasma fluid. 

This suppression weakens the formation of Rayleigh-Taylor 

structures and significantly dampens the instability dynamics, 

particularly in dense plasma systems. Thus, the FLR correction 

plays a stabilising role by effectively mitigating RTI in both 

classical and non-classical regimes. Additionally, it is observed 

that the cut-off wave number kmax corresponding to the maxi-

mum growth rate shifts to lower values under the influence of 

quantum pressure, further contributing to the suppression of the 

instability. 

Figures 4 and 5 illustrate the impact of distinct values of the 

non-dimensional quantum parameter accounting for quantum 

pressure, nq = 0.3, 0.5, 0.7, on the growth rate of RTI versus 

wave number, with and without FLR corrections, respectively. 

The curves indicate a decrease in the frequency and growth rate 

of RTI with increasing quantum pressure. Consequently, both 

Fig. 2. Impact of FLR correction (𝜈𝐹𝑅) on the growth rate of RTI 

(ni) against the wave number (k), with quantum pressure. 

 

Fig. 4. Impact of the quantum pressure on the growth rate of RTI (ni) 

against the wave number (k), with FLR correction. 

 

Fig. 3. Impact of FLR correction (𝜈𝐹𝑅) on the growth rate of RTI 

(ni) against the wave number (k), with no quantum pressure. 

 

Fig. 5. Impact of the quantum pressure on the growth rate of RTI (ni) 

against the wave number (k), with no FLR correction. 
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quantum pressure and FLR corrections demonstrate a stabilising 

influence by effectively suppressing the growth of instability in 

non-Newtonian stratified plasma fluids. It is noticed from Fig. 3 

that the growth rate starts to decrease for k > kmax and complete 

stability occurs at kc = 6.0 in lieu of both quantum pressure and 

FLR corrections. 

In Figs. 6 and 7, the influence of various values of the Jeffrey 

parameter, λ = 0.1, 0.4, 07,

 

 on the growth rate of Rayleigh-Tay-

lor instability for both quantum and classical cases, is displayed. 

The curves illustrate that the growth rate of RTI increases with 

the rise in the Jeffrey parameter. Hence, the Jeffrey parameter 

tends to promote the onset of RTI in stratified plasma fluid for 

both cases. However, it is visualised from the curves in Figs. 7 

and 8 that the value of kmax gets decreased in the simultaneous 

presence of quantum pressure and FLR corrections. 

Figure 8 illustrates the effect of the Jeffrey parameter on the 

growth rate of RTI in the presence of quantum pressure and the 

absence of FLR correction. The curves indicate that an increase 

in the Jeffrey parameter results in a higher amplitude of the RTI 

growth rate under the influence of quantum pressure. It is note-

worthy to observe from the curves that kmax is not attained in the 

absence of FLR corrections. 

Figures 9 and 10 depict the influence of kinematic viscosity 

on the growth rate of RTI, with and without the inclusion of the 

Jeffrey parameter, respectively. The plots reveal that kinematic 

viscosity reduces the instability region in both cases. However, 

kmax is higher for a non-Newtonian fluid than for a Newtonian 

 

Fig. 6. Impact of the Jeffrey parameter (λ) on the growth rate of RTI 

(ni) against the wave number (k), with no quantum pressure (classical 

case). 

 

Fig. 7. Impact of the Jeffrey parameter (λ) on the growth rate of RTI 

(ni) against the wave number (k), with quantum pressure. 

 

Fig. 8. Impact of the Jeffrey parameter on the growth rate (ni) of RTI 

against the wave number (k), 

 

with quantum pressure 

and no FLR corrections. 

 

Fig. 9. Impact of kinematic viscosity (ν) on the growth rate of RTI (ni)  

against wave number (k), with Jeffrey parameter. 

 

Fig. 10. Impact of the kinematic viscosity (ν) on the growth rate of RTI 

(ni) against the wave number (k) in the absence of Jeffrey parameter.  
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fluid in the present case. These results are in strong agreement 

with the findings reported by various authors [18−23]. 

5. Conclusions 

The combined effects of quantum pressure and FLR corrections 

on the RTI in a laminar Jeffrey model plasma fluid are investi-

gated. An explicit dispersion relation for the RTI growth rate is 

derived, highlighting its dependence on various physical param-

eters. 

 The classical Rayleigh-Taylor instability undergoes signif-

icant modification with the inclusion of finite Larmor ra-

dius corrections and quantum pressure, resulting in en-

hanced stability and effective suppression of Rayleigh-

Taylor instability in the plasma fluid system. 

 The Jeffrey parameter has a destabilising effect on the Ray-

leigh-Taylor instability of stratified plasma fluid. 

 The viscosity of the plasma fluid enhances the stabilisation 

of the Rayleigh-Taylor instability configuration under the 

influence of finite Larmor radius corrections and quantum 

pressure, regardless of the presence of the Jeffrey parameter. 

 An important facet of the present study is the demonstra-

tion that quantum pressure and finite Larmor radius correc-

tions play a crucial role in various non-Newtonian astro-

physical systems, particularly in inertial confinement fu-

sion capsules and white dwarfs.  

 The findings offer valuable insights into the non-Newto-

nian behaviour of astrophysical systems characterised by 

low temperatures and high densities, enhancing our under-

standing of their underlying dynamics. 

Examining the effects of compressibility, magnetic shear and 

temperature gradients on the role of finite Larmor radius in the 

onset of Rayleigh-Taylor instability in stratified magnetised Jef-

frey plasma could offer a deeper understanding of the interplay 

between kinetic effects and macroscopic plasma parameters, 

thereby improving stability predictions in both astrophysical and 

laboratory settings. 
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